Search results for: emotional intelligent
976 Intelligent Chatbot Generating Dynamic Responses Through Natural Language Processing
Authors: Aarnav Singh, Jatin Moolchandani
Abstract:
The proposed research work aims to build a query-based AI chatbot that can answer any question related to any topic. A chatbot is software that converses with users via text messages. In the proposed system, we aim to build a chatbot that generates a response based on the user’s query. For this, we use natural language processing to analyze the query and some set of texts to form a concise answer. The texts are obtained through web-scrapping and filtering all the credible sources from a web search. The objective of this project is to provide a chatbot that is able to provide simple and accurate answers without the user having to read through a large number of articles and websites. Creating an AI chatbot that can answer a variety of user questions on a variety of topics is the goal of the proposed research project. This chatbot uses natural language processing to comprehend user inquiries and provides succinct responses by examining a collection of writings that were scraped from the internet. The texts are carefully selected from reliable websites that are found via internet searches. This project aims to provide users with a chatbot that provides clear and precise responses, removing the need to go through several articles and web pages in great detail. In addition to exploring the reasons for their broad acceptance and their usefulness across many industries, this article offers an overview of the interest in chatbots throughout the world.Keywords: Chatbot, Artificial Intelligence, natural language processing, web scrapping
Procedia PDF Downloads 66975 Intelligent Fishers Harness Aquatic Organisms and Climate Change
Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee
Abstract:
Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery
Procedia PDF Downloads 111974 The Influence of Language on Music Consumption in Japan: An Experimental Study
Authors: Timur Zhukov, Yuko Yamashita
Abstract:
Music as a product of hedonic consumption has been researched at least since the early 20th century, but little light has been shed on how language affects its consumption process. At the intersection of music consumption, language impact, and consumer behavior, this research explores the influence of language on music consumption in Japan. Its aim is to clarify how listening to music in different languages affects the listener’s purchase intention and sharing intention by conducting a survey where respondents listen to three versions of the same song in different languages in random order. It uses an existing framework that views the flow of music consumption as a combination of responses (emotional response, sensory response, imaginal response, analytical responses) affecting the experiential response, which then affects the overall affective response, followed by the need to reexperience and lastly the purchase intention. In this research, the sharing intention has been added to the model to better fit the modern consumption model (e.g., AISAS). This research shows how positive and negative emotions and imaginal and analytical responses change depending on the language and what impact it has on consumer behavior. It concludes by proposing how modern music businesses can learn from the language differences and cater to the needs of the audiences who speak different languages.Keywords: AISAS, consumer behavior, first language, music consumption, second language
Procedia PDF Downloads 133973 Prosody of Text Communication: Inducing Synchronization and Coherence in Chat Conversations
Authors: Karolina Ziembowicz, Andrzej Nowak
Abstract:
In the current study, we examined the consequences of adding prosodic cues to text communication by allowing users to observe the process of message creation while engaged in dyadic conversations. In the first condition, users interacted through a traditional chat that requires pressing ‘enter’ to make a message visible to an interlocutor. In another, text appeared on the screen simultaneously as the sender was writing it, letter after letter (Synchat condition), so that users could observe the varying rhythm of message production, precise timing of message appearance, typos and their corrections. The results show that the ability to observe the dynamics of message production had a twofold effect on the social interaction process. First, it enhanced the relational aspect of communication – interlocutors synchronized their emotional states during the interaction, their communication included more statements on relationship building, and they evaluated the Synchat medium as more personal and emotionally engaging. Second, it increased the coherence of communication, reflected in greater continuity of the topics raised in Synchat conversations. The results are discussed from the interaction design (IxD) perspective.Keywords: chat communication, online conversation, prosody, social synchronization, interaction incoherence, relationship building
Procedia PDF Downloads 141972 Training AI to Be Empathetic and Determining the Psychotype of a Person During a Conversation with a Chatbot
Authors: Aliya Grig, Konstantin Sokolov, Igor Shatalin
Abstract:
The report describes the methodology for collecting data and building an ML model for determining the personality psychotype using profiling and personality traits methods based on several short messages of a user communicating on an arbitrary topic with a chitchat bot. In the course of the experiments, the minimum amount of text was revealed to confidently determine aspects of personality. Model accuracy - 85%. Users' language of communication is English. AI for a personalized communication with a user based on his mood, personality, and current emotional state. Features investigated during the research: personalized communication; providing empathy; adaptation to a user; predictive analytics. In the report, we describe the processes that captures both structured and unstructured data pertaining to a user in large quantities and diverse forms. This data is then effectively processed through ML tools to construct a knowledge graph and draw inferences regarding users of text messages in a comprehensive manner. Specifically, the system analyzes users' behavioral patterns and predicts future scenarios based on this analysis. As a result of the experiments, we provide for further research on training AI models to be empathetic, creating personalized communication for a userKeywords: AI, empathetic, chatbot, AI models
Procedia PDF Downloads 92971 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things
Authors: Wei Hu, Wenguang Chen, Chong Dong
Abstract:
In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management
Procedia PDF Downloads 123970 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM
Procedia PDF Downloads 413969 Bamboo Resilience: Mentoring Asian Students to Develop their Self-Leadership via Online Seminars
Authors: Tam Nguyen
Abstract:
Self-leadership is strongly tied to the ability to be resilient in the face of adversity. This study aims to demonstrate how a strategy based on a culturally relevant "bamboo metaphor" enables Asian students to cross cultural boundaries and to engage in online discussions to unlock their self-leadership potential. Asian students are influenced to varying degrees by the Confucian heritage culture, which educates students to respect authority, maintain harmony, and avoid public confrontations. This has a significant impact on the cultural readiness of Asian students to express their development as self-leaders. In this research project, researchers as mentors individually assist students, cultivate cognitive progress, encourage and personally ask students to join a process of mentorship program. This study analyzes and interprets the data from a large online seminar in Ho Chi Minh City, Vietnam, where students were trained in self-leadership skills. Focus-group interviews were implemented among 90 students in the program. Findings reveal the emotional needs of Asian students and suggest a cognitive model for developing students' self-awareness, self-confidence, and self-efficacy. The research results are anticipated to be applicable to a broader Asian population with a comparable cultural environment to Vietnam.Keywords: self-leadership, bamboo resilience, cognitive modeling, Asian culture
Procedia PDF Downloads 88968 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy
Authors: Ingrid Argote, John Archila, Marcelo Becker
Abstract:
In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.
Procedia PDF Downloads 229967 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power
Procedia PDF Downloads 375966 Mind Care Assistant - Companion App
Authors: Roshani Gusain, Deep Sinha, Karan Nayal, Anmol Kumar Mishra, Manav Singh
Abstract:
In this research paper, we introduce "Mind Care Assistant - Companion App", which is a Flutter and Firebase-based mental health monitor. The app wants to improve and monitor the mental health of its users, it uses noninvasive ways to check for a change in their emotional state. By responding to questions, the app will provide individualized suggestions ᅳ tasks and mindfulness exercises ᅳ for users who are depressed or anxious. The app features a chat-bot that incorporates cognitive behavioural therapy (CBT) principles and combines natural language processing with machine learning to develop personalised responses. The feature of the app that makes it easy for us to choose between iOS and Android is cross-platform, which allows users from both mobile systems to experience almost no changes in their interfaces. With Firebase integration synchronized and real-time data storage, security is easily possible. The paper covers the architecture of the app, how it was developed and some important features. The primary research result presents the promise of a "Mind Care Assistant" in mental health care using new wait-for-health technology, proposing a full stack application to be able to manage depression/anxiety and overall Mental well-being very effectively.Keywords: mental health, mobile application, flutter, firebase, Depression, Anxiety
Procedia PDF Downloads 12965 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads
Authors: Kayijuka Idrissa
Abstract:
This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.Keywords: statistical methods, traffic flow, Poisson distribution, car moving technics
Procedia PDF Downloads 282964 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks
Authors: Shidrokh Goudarzi, Wan Haslina Hassan
Abstract:
Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms
Procedia PDF Downloads 393963 Trauma-Informed Applied Theatre: Using Performance to Connect with Mental Dysfunction Using Physical Embodiment Begins with Ancient Civilizations
Authors: Stephanie Elizabeth Talder
Abstract:
Art therapy is a field that is growing exponentially with new groundbreaking discoveries that allow for embodying trauma and mental healing. Applied theatre and performance is a continuously growing and developing field that can help people who are struggling to work through traumatic experiences plaguing their life. By using performance, there is an ability to target sensitive topics in a manner that does not lead to re-traumatization. The use of theatre as a healing agent has been going on for centuries, with clear applications beginning in Greek theatre and tragedy. When working with complex mental illness, issues such as PTSD, anxiety, and depression can be managed and worked through. A central component of drama therapy is the connection to community and self. The ability to connect mind-body to stories as well as to other people allows for healing to occur. There is the opportunity for healing through emotional catharsis and community building. Applied theatre in connection to the medical field can allow for there to be a meaningful impact made on mental health. Though there is still a significant amount of progress to be made within the stigmatization of mental health problems, bringing in a varying option that allows for there to be movement and community building possesses a strong ability to impact people in a positive way.Keywords: applied theatre, drama therapy, art therapy, performance, theatre
Procedia PDF Downloads 86962 Quantitative and Qualitative Analysis: Predicting and Improving Students’ Summative Assessment Math Scores at the National College for Nuclear
Authors: Abdelmenen Abobghala, Mahmud Ahmed, Mohamed Alwaheshi, Anwar Fanan, Meftah Mehdawi, Ahmed Abuhatira
Abstract:
This research aims to predict academic performance and identify weak points in students to aid teachers in understanding their learning needs. Both quantitative and qualitative methods are used to identify difficult test items and the factors causing difficulties. The study uses interventions like focus group discussions, interviews, and action plans developed by the students themselves. The research questions explore the predictability of final grades based on mock exams and assignments, the student's response to action plans, and the impact on learning performance. Ethical considerations are followed, respecting student privacy and maintaining anonymity. The research aims to enhance student engagement, motivation, and responsibility for learning.Keywords: prediction, academic performance, weak points, understanding, learning, quantitative methods, qualitative methods, formative assessments, feedback, emotional responses, intervention, focus group discussion, interview, action plan, student engagement, motivation, responsibility, ethical considerations
Procedia PDF Downloads 67961 An Approach to Control Electric Automotive Water Pumps Deploying Artificial Neural Networks
Authors: Gabriel S. Adesina, Ruixue Cheng, Geetika Aggarwal, Michael Short
Abstract:
With the global shift towards sustainability and technological advancements, electric Hybrid vehicles (EHVs) are increasingly being seen as viable alternatives to traditional internal combustion (IC) engine vehicles, which also require efficient cooling systems. The electric Automotive Water Pump (AWP) has been introduced as an alternative to IC engine belt-driven pump systems. However, current control methods for AWPs typically employ fixed gain settings, which are not ideal for the varying conditions of dynamic vehicle environments, potentially leading to overheating issues. To overcome the limitations of fixed gain control, this paper proposes implementing an artificial neural network (ANN) for managing the AWP in EHVs. The proposed ANN provides an intelligent, adaptive control strategy that enhances the AWP's performance, supported through MATLAB simulation work illustrated in this paper. Comparative analysis demonstrates that the ANN-based controller surpasses conventional PID and fuzzy logic-based controllers (FLC), exhibiting no overshoot, 0.1secs rapid response, and 0.0696 IAE performance. Consequently, the findings suggest that ANNs can be effectively utilized in EHVs.Keywords: automotive water pump, cooling system, electric hybrid vehicles, artificial neural networks, PID control, fuzzy logic control, IAE, MATLAB
Procedia PDF Downloads 34960 Intelligent Chemistry Approach to Improvement of Oxygenates Analytical Method in Light Hydrocarbon by Multidimensional Gas Chromatography - FID and MS
Authors: Ahmed Aboforn
Abstract:
Butene-1 product is consider effectively raw material in Polyethylene production, however Oxygenates impurities existing will be effected ethylene/butene-1 copolymers synthesized through titanium-magnesium-supported Ziegler-Natta catalysts. Laterally, Petrochemical industries are challenge against poor quality of Butene-1 and other C4 mix – feedstock that reflected on business impact and production losing. In addition, propylene product suffering from contamination by oxygenates components and causing for lose production and plant upset of Polypropylene process plants. However, Multidimensional gas chromatography (MDGC) innovative analytical methodology is a chromatography technique used to separate complex samples, as mixing different functional group as Hydrocarbon and oxygenates compounds and have similar retention factors, by running the eluent through two or more columns instead of the customary single column. This analytical study striving to enhance the quality of Oxygenates analytical method, as monitoring the concentration of oxygenates with accurate and precise analytical method by utilizing multidimensional GC supported by Backflush technique and Flame Ionization Detector, which have high performance separation of hydrocarbon and Oxygenates; also improving the minimum detection limits (MDL) to detect the concentration <1.0 ppm. However different types of oxygenates as (Alcohols, Aldehyde, Ketones, Ester and Ether) may be determined in other Hydrocarbon streams asC3, C4-mix, until C12 mixture, supported by liquid injection auto-sampler.Keywords: analytical chemistry, gas chromatography, petrochemicals, oxygenates
Procedia PDF Downloads 83959 Using Storytelling Tasks to Enhance Language Acquisition in Young Learners
Authors: Sinan Serkan Çağlı
Abstract:
This study explores the effectiveness of incorporating storytelling tasks into language acquisition programs for young learners. The research investigates how storytelling, as a pedagogical tool, can contribute to the enhancement of language acquisition skills in children. Drawing upon relevant literature and empirical data, this article examines the impact of storytelling on vocabulary development, comprehension, and overall language proficiency in early childhood education in Turkey. The study adopts a qualitative approach, including classroom observations and interviews with teachers and students. Findings suggest that storytelling tasks not only foster linguistic competence but also stimulate cognitive and socio-emotional development in young learners. Additionally, the article explores various storytelling techniques and strategies suitable for different age groups. It is evident that integrating storytelling tasks into language learning environments can create engaging and effective opportunities for young learners to acquire language skills in a natural and enjoyable way. This research contributes valuable insights into the pedagogical practices that promote language acquisition in early childhood, emphasizing the significance of storytelling as a powerful educational tool, especially in Turkey for EFL students.Keywords: storytelling, language acquisition, young learners, early childhood education, pedagogy, language proficiency
Procedia PDF Downloads 78958 Damage to Strawberries Caused by Simulated Transport
Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni
Abstract:
The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.Keywords: microbiological analysis, shelf life, transport damage, volatile organic compounds
Procedia PDF Downloads 425957 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm
Authors: S. Neelima, P. S. Subramanyam
Abstract:
A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction
Procedia PDF Downloads 390956 A Two Year Follow Up of Sexually Abused Children
Authors: Horesh Reinman Netta
Abstract:
Early research on child sexual abuse (CSA) attempted to assess its possible effects. Researchers found that victims of CSA are prone to a host of emotional disorders, including post-traumatic stress disorder, depression, dissociative disorders, anxiety disorders and suicidality later in life. The study examined the development of symptoms over a two-year period at base line and after six months. Factors including the age at the onset of abuse, the gender of the abused child and academic achievements were also examined. Other variables examined include the complex association among self-disclosure, self-esteem, the child’s attachment and coping styles, and psychological adjustment. The abused child’s domestic environment has been found to have a relevant impact on the psychological outcomes of CSA. The study examined inter-parental conflicts, cohesion in the child’s home, parental attachment styles and psychopathology. To the best of our knowledge, no investigation of this nature has yet been performed. Hence, the study makes a major contribution to research in this field. In addition, a combined examination of abuse characteristics, child characteristics, domestic environment and therapeutic history will facilitate enhanced understanding of the interactions among CSA, mediating factors and psychological outcomes.Keywords: sexual abuse, follow up, victimization, children
Procedia PDF Downloads 74955 Family Photos as Catalysts for Writing: A Pedagogical Exercise in Visual Analysis with MA Students
Authors: Susana Barreto
Abstract:
This paper explores a pedagogical exercise that employs family photos as catalysts for teaching visual analysis and inspiring academic writing among MA students. The study aimed to achieve two primary objectives: to impart students with the skills of analyzing images or artifacts and to ignite their writing for research purposes. Conducted at Viana Polytechnic in Portugal, the exercise involved two classes on Arts Management and Art Education Master course comprising approximately twenty students from diverse academic backgrounds, including Economics, Design, Fine Arts, and Sociology, among others. The exploratory exercise involved selecting an old family photo, analyzing its content and context, and deconstructing the chosen images in an intuitive and systematic manner. Students were encouraged to engage in photo elicitation, seeking insights from family/friends to gain multigenerational perspectives on the images. The feedback received from this exercise was consistently positive, largely due to the personal connection students felt with the objects of analysis. Family photos, with their emotional significance, fostered deeper engagement and motivation in the learning process. Furthermore, visual analysing family photos stimulated critical thinking as students interpreted the composition, subject matter, and potential meanings embedded in the images. This practice enhanced their ability to comprehend complex visual representations and construct compelling visual narratives, thereby facilitating the writing process. The exercise also facilitated the identification of patterns, similarities, and differences by comparing different family photos, leading to a more comprehensive analysis of visual elements and themes. Throughout the exercise, students found analyzing their own photographs both enjoyable and insightful. They progressed through preliminary analysis, explored content and context, and artfully interwove these components. Additionally, students experimented with various techniques such as converting photos to black and white, altering framing angles, and adjusting sizes to unveil hidden meanings.The methodology employed included observation, documental analysis of written reports, and student interviews. By including students from diverse academic backgrounds, the study enhanced its external validity, enabling a broader range of perspectives and insights during the exercise. Furthermore, encouraging students to seek multigenerational perspectives from family and friends added depth to the analysis, enriching the learning experience and broadening the understanding of the cultural and historical context associated with the family photos Highlighting the emotional significance of these family photos and the personal connection students felt with the objects of analysis fosters a deeper connection to the subject matter. Moreover, the emphasis on stimulating critical thinking through the analysis of composition, subject matter, and potential meanings in family photos suggests a targeted approach to developing analytical skills. This improvement focuses specifically on critical thinking and visual analysis, enhancing the overall quality of the exercise. Additionally, the inclusion of a step where students compare different family photos to identify patterns, similarities, and differences further enhances the depth of the analysis. This comparative approach adds a layer of complexity to the exercise, ultimately leading to a more comprehensive understanding of visual elements and themes. The expected results of this study will culminate in a set of practical recommendations for implementing this exercise in academic settings.Keywords: visual analysis, academic writing, pedagogical exercise, family photos
Procedia PDF Downloads 59954 Affective (And Effective) Teaching and Learning: Higher Education Gets Social Again
Authors: Laura Zizka, Gaby Probst
Abstract:
The Covid-19 pandemic has affected the way Higher Education Institutions (HEIs) have given their courses. From emergency remote where all students and faculty were immediately confined to home teaching and learning, the continuing evolving sanitary situation obliged HEIs to adopt other methods of teaching and learning from blended courses that included both synchronous and asynchronous courses and activities to hy-flex models where some students were on campus while others followed the course simultaneously online. Each semester brought new challenges for HEIs and, subsequently, additional emotional reactions. This paper investigates the affective side of teaching and learning in various online modalities and its toll on students and faculty members over the past three semesters. The findings confirm that students and faculty who have more self-efficacy, flexibility, and resilience reported positive emotions and embraced the opportunities that these past semesters have offered. While HEIs have begun a new semester in an attempt to return to ‘normal’ face-to-face courses, this paper posits that there are lessons to be learned from these past three semesters. The opportunities that arose from the challenge of the pandemic should be considered when moving forward by focusing on a greater emphasis on the affective aspect of teaching and learning in HEIs worldwide.Keywords: effective teaching and learning, higher education, engagement, interaction, motivation
Procedia PDF Downloads 117953 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 250952 How Rational Decision-Making Mechanisms of Individuals Are Corrupted under the Presence of Others and the Reflection of This on Financial Crisis Management Situations
Authors: Gultekin Gurcay
Abstract:
It is known that the most crucial influence of the psychological, social and emotional factors that affect any human behavior is to corrupt the rational decision making mechanism of the individuals and cause them to display irrational behaviors. In this regard, the social context of human beings influences the rationality of our decisions, and people tend to display different behaviors when they were alone compared to when they were surrounded by others. At this point, the interaction and interdependence of the behavioral finance and economics with the area of social psychology comes, where intentions and the behaviors of the individuals are being analyzed in the actual or implied presence of others comes into prominence. Within the context of this study, the prevalent theories of behavioral finance, which are The Prospect Theory, The Utility Theory Given Uncertainty and the Five Axioms of Choice under Uncertainty, Veblen’s Hidden Utility Theory, and the concept of ‘Overreaction’ has been examined and demonstrated; and the meaning, existence and validity of these theories together with the social context has been assessed. Finally, in this study the behavior of the individuals in financial crisis situations where the majority of the society is being affected from the same negative conditions at the same time has been analyzed, by taking into account how individual behavior will change according to the presence of the others.Keywords: conditional variance coefficient, financial crisis, garch model, stock market
Procedia PDF Downloads 240951 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption
Authors: Robert Joseph M. Licup
Abstract:
The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption
Procedia PDF Downloads 108950 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 464949 Feminist Revolution and the Quest for Women Emancipation in Public Life in Nigeria: The African Dimension
Authors: Adekunle Saheed Ajisebiyawo, Christie Omoduwa Achime
Abstract:
In Nigerian society, women have very little or no involvement in the decision-making process and this is large because women are objectified as effective means of reproduction and provision of emotional support to the society. Despite the movements and awareness by international, national and local bodies to promote and encourage women's empowerment, there are still many factors daunting to the efforts of women in society. This paper examined the critical role of feminism in the quest for women's emancipation in public life. Guided by African feminism theory, this paper utilizes both historical and descriptive methods to examine these factors. The paper argues that gender bias in Nigeria's public life is often traced to the onset of colonialism in Nigeria. Thus the Western cultural notion of colonialism woven around male superiority is reflected in their relations with Nigerians. The study outlines how women have strategized pathways through patriarchal structures by deploying their femininity. The paper concludes that women are strong, courageous, natural leaders and indeed have a major strategic role to play in public life; thus, women's movements and groups remain an important and necessary means of social cohesion and strength, especially in a country such as Nigeria.Keywords: African feminism, democratic governance, feminism, patriarchy, women emancipation.
Procedia PDF Downloads 107948 Enabling and Ageing-Friendly Neighbourhoods: An Eye-Tracking Study of Multi-Sensory Experience of Senior Citizens in Singapore
Authors: Zdravko Trivic, Kelvin E. Y. Low, Darko Radovic, Raymond Lucas
Abstract:
Our understanding and experience of the built environment are primarily shaped by multi‐sensory, emotional and symbolic modes of exchange with spaces. Associated sensory and cognitive declines that come with ageing substantially affect the overall quality of life of the elderly citizens and the ways they perceive and use urban environment. Reduced mobility and increased risk of falls, problems with spatial orientation and communication, lower confidence and independence levels, decreased willingness to go out and social withdrawal are some of the major consequences of sensory declines that challenge almost all segments of the seniors’ everyday living. However, contemporary urban environments are often either sensory overwhelming or depleting, resulting in physical, mental and emotional stress. Moreover, the design and planning of housing neighbourhoods hardly go beyond the passive 'do-no-harm' and universal design principles, and the limited provision of often non-integrated eldercare and inter-generational facilities. This paper explores and discusses the largely neglected relationships between the 'hard' and 'soft' aspects of housing neighbourhoods and urban experience, focusing on seniors’ perception and multi-sensory experience as vehicles for design and planning of high-density housing neighbourhoods that are inclusive and empathetic yet build senior residents’ physical and mental abilities at different stages of ageing. The paper outlines methods and key findings from research conducted in two high-density housing neighbourhoods in Singapore with aims to capture and evaluate multi-sensorial qualities of two neighbourhoods from the perspective of senior residents. Research methods employed included: on-site sensory recordings of 'objective' quantitative sensory data (air temperature and humidity, sound level and luminance) using multi-function environment meter, spatial mapping of patterns of elderly users’ transient and stationary activity, socio-sensory perception surveys and sensorial journeys with local residents using eye-tracking glasses, and supplemented by walk-along or post-walk interviews. The paper develops a multi-sensory framework to synthetize, cross-reference, and visualise the activity and spatio-sensory rhythms and patterns and distill key issues pertinent to ageing-friendly and health-supportive neighbourhood design. Key findings show senior residents’ concerns with walkability, safety, and wayfinding, overall aesthetic qualities, cleanliness, smell, noise, and crowdedness in their neighbourhoods, as well as the lack of design support for all-day use in the context of Singaporean tropical climate and for inter-generational social interaction. The (ongoing) analysis of eye-tracking data reveals the spatial elements of senior residents’ look at and interact with the most frequently, with the visual range often directed towards the ground. With capacities to meaningfully combine quantitative and qualitative, measured and experienced sensory data, multi-sensory framework shows to be fruitful for distilling key design opportunities based on often ignored aspects of subjective and often taken-for-granted interactions with the familiar outdoor environment. It offers an alternative way of leveraging the potentials of housing neighbourhoods to take a more active role in enabling healthful living at all stages of ageing.Keywords: ageing-friendly neighbourhoods, eye-tracking, high-density environment, multi-sensory approach, perception
Procedia PDF Downloads 154947 Design of Smart Urban Lighting by Using Social Sustainability Approach
Authors: Mohsen Noroozi, Maryam Khalili
Abstract:
Creating cities, objects and spaces that are economically, environmentally and socially sustainable and which meet the challenge of social interaction and generation change will be one of the biggest tasks of designers. Social sustainability is about how individuals, communities and societies live with each other and set out to achieve the objectives of development model which they have chosen for themselves. Urban lightning as one of the most important elements of urban furniture that people constantly interact with it in public spaces; can be a significant object for designers. Using intelligence by internet of things for urban lighting makes it more interactive in public environments. It can encourage individuals to carry out appropriate behaviors and provides them the social awareness through new interactions. The greatest strength of this technology is its strong impact on many aspects of everyday life and users' behaviors. The analytical phase of the research is based on a multiple method survey strategy. Smart lighting proposed in this paper is an urban lighting designed on results obtained from a collective point of view about the social sustainability. In this paper, referring to behavioral design methods, the social behaviors of the people has been studied. Data show that people demands for a deeper experience of social participation, safety perception and energy saving with the meaningful use of interactive and colourful lighting effects. By using intelligent technology, some suggestions are provided in the field of future lighting to consider the new forms of social sustainability.Keywords: behavior pattern, internet of things, social sustainability, urban lighting
Procedia PDF Downloads 194