Search results for: disaster relief networks
2203 The Evaluation of Heavy Metal Pollution Degree in the Soils Around the Zangezur Copper and Molybdenum Combine
Authors: K. A. Ghazaryan, G. A. Gevorgyan, H. S. Movsesyan, N. P. Ghazaryan, K. V. Grigoryan
Abstract:
The heavy metal pollution degree in the soils around the Zangezur copper and molybdenum combine in Syunik Marz, Armenia was aessessed. The results of the study showed that heavy metal pollution degree in the soils mainly decreased with increasing distance from the open mine and the ore enrichment combine which indicated that the open mine and the ore enrichment combine were the main sources of heavy metal pollution. The only exception was observed in the northern part of the open mine where pollution degree in the sites (along the open mine) situated 600 meters far from the mine was higher than that in the sites located 300 meters far from the mine. This can be explained by the characteristics of relief and air currents as well as the weak vegetation cover of these sites and the characteristics of soil structure. According to geo-accumulation index (I-geo), contamination factor (Cf), contamination degree (Cd) and pollution load index (PLI) values, the pollution degree in the soils around the open mine and the ore enrichment combine was higher than that in the soils around the tailing dumps which was due to the proper and accurate operation of the Artsvanik tailing damp and the recultivation of the Voghji tailing dump. The high Cu and Mo pollution of the soils was conditioned by the character of industrial activities, the moving direction of air currents as well as the physicochemical peculiarities of the soils.Keywords: Armenia, Zangezur copper and molybdenum combine, soil, heavy metal pollution degree
Procedia PDF Downloads 3022202 Dark Tourism and Local Development. Creating a Dark Urban Route
Authors: Christos N. Tsironis, Loanna Mitaftsi
Abstract:
Currently, the various forms of tours and touristic visits to destinations associated with the “dark” facets of the past constitute one of the most dynamic fields of touristic initiatives and economic development. This analysis focuses on the potential development of urban dark routes. It aims a) to shed light to touristic, social, and ethical considerations and to describe some of the trends and links combining heritage and dark tourism in post-pandemic societies and b) to explore the possibilities of developing a new and polymorphic form of dark tourism in Thessaloniki, Greece, a distinctive heritage destination. The analysis concludes with a detailed dark route designed to serve a new, polymorphic and sustainable touristic product that describes a dark past with places, sights, and monuments and narrates stories and events stigmatized by death, disaster, and violence throughout the city’s history.Keywords: dark tourism, dark urban route, local development, polymorphic tourism
Procedia PDF Downloads 2132201 The Impact of Resource-oriented Music Listening on Oversea Dispatch Employees Work Stress Relief
Authors: Wei Yaming
Abstract:
Objective: In order to compare the stress of employees sent overseas with (GRAS) before and after, we used the resource-oriented music listening intervention in this study. We also collected pertinent experimental data. Methods: The experiment involved 47 employees who were sent abroad by the Chinese side. They completed the stress scale test and documented it before the intervention. They tested for stress after five interventions and performed one-on-one interviews. Quantitative data and SPSS software were used to analyze relationships between stress reduction and resource-oriented music listening, as well as Pearson's correlation, multiple regression levels, and ANOVA. For the qualitative analysis, content analysis of one-on-one interviews was performed. Results: A comparison of data from before and after demonstrates how resource-focused music listening activities can lessen and relieve stress in remote workers. In the qualitative study, stress is broken down into six categories: relationship stress, health stress, emotional stress, and frustration stress. External pressures include work pressure and cultural stress. And it has been determined that listening to music that is resource-oriented can better ease internal stress (health, emotion, and dissatisfaction). Conclusion: The Guide Resource-oriented Music Listening (GROML) Program appears to have had some effect on the participants' stress levels. The resources that the participants encountered while listening to music are bravery, calm, letting go, and relaxing.Keywords: resource-oriented, music listening, oversea dispatch employees, work stress
Procedia PDF Downloads 992200 Urban Networks as Model of Sustainable Design
Authors: Agryzkov Taras, Oliver Jose L., Tortosa Leandro, Vicent Jose
Abstract:
This paper aims to demonstrate how the consideration of cities as a special kind of complex network, called urban network, may lead to the use of design tools coming from network theories which, in fact, results in a quite sustainable approach. There is no doubt that the irruption in contemporary thought of Gaia as an essential political agent proposes a narrative that has been extended to the field of creative processes in which, of course, the activity of Urban Design is found. The rationalist paradigm is put in crisis, and from the so-called sciences of complexity, its way of describing reality and of intervening in it is questioned. Thus, a new way of understanding reality surges, which has to do with a redefinition of the human being's own place in what is now understood as a delicate and complex network. In this sense, we know that in these systems of connected and interdependent elements, the influences generated by them originate emergent properties and behaviors for the whole that, individually studied, would not make sense. We believe that the design of cities cannot remain oblivious to these principles, and therefore this research aims to demonstrate the potential that they have for decision-making in the urban environment. Thus, we will see an example of action in the field of public mobility, another example in the design of commercial areas, and a third example in the field of redensification of sprawl areas, in which different aspects of network theory have been applied to change the urban design. We think that even though these actions have been developed in European cities, and more specifically in the Mediterranean area in Spain, the reflections and tools could have a broader scope of action.Keywords: graphs, complexity sciences, urban networks, urban design
Procedia PDF Downloads 1542199 Insecurity as a Challenge to Nutritional Status of Children and Mothers in Dansadau, Maru Local Government Area Zamfara State, North Western Nigeria
Authors: Mohammed Hussaini
Abstract:
This paper discusses insecurity as a challenge to the nutritional Status of children and mothers in Dansadau, Maru Local Government area of Zamfara state, Northwestern Nigeria. A Descriptive survey design was used in the study. Objectives of the study were formulated to guide the study. 20 Health workers and 100 mothers were used as population of the study; the instrument validation for data collection was interview. The interview structure was validated by 3 experts, the data collected was analyzed and presented using descriptive standard score (Z-score). The study revealed that, Nutritional Status of children and mothers in Northwest Nigeria specifically Zamfara state is low. This mostly affect children and mother as a result of serious insecurity challenge in the region, consisting of banditry and kidnapping, killing of farmers, destruction of farmland, burning of farm products. The study recommended that the focus is on implementing strong communication strategies to enhance short-term relief initiatives, both governmental and non-governmental organizations should actively play a role in initiating lasting change, especially when tackling issues of insecurity and effectively addressing the rise of armed banditry and other security concerns requires a sophisticated and nuanced strategy.Keywords: insecurity, malnutrition, children, mothers
Procedia PDF Downloads 552198 Synthesis and Solubilization of Flurbiprofen Derivatives and Investigation of Their Biological Activities
Authors: Muhammad Mustaqeem, Musa Kaleem Baloch, Irfan Ullah, Ammarah Luqman, Afshan Ahmad
Abstract:
Flurbiprofen is one of the most potent nonsteroidal anti-inflammatory drugs. It is widely used for relief of pain in patients suffering from rheumatic diseases, migraine, sore throat and primary dysmenorrhea. However, its aqueous solubility is very low and hinders the skin permeation. Thus, it is imperative to develop such a drug delivery systems which can improve its aqueous solubility and hence improve the skin permeation and therapeutic compliance. Microemulsions have been also proven to increase the cutaneous absorption of lipophilic drugs as compared to conventional vehicles. Micro-emulsion is thermodynamically stable emulsion that has the capacity to ‘hide/solubilize’ water-insoluble molecules within a continuous oil phase. Therefore, flurbiprofen was converted to Easters through chemical reactions with alcohols such as methanol, ethanol, propanol and butanol. The product was further treated with hydrazine to get hydrazide. The solubility of the parent drug Flurbiprofen and the products were solubilized in microemulsions formed using various surfactants like ionic, non-ionic and zwitterions. It has been concluded that the product was more soluble than the parent compound. The biological activities of these were also investigated. The outcome was very promising and the product was more active than the parent compound. It, therefore, concluded that in this way, we can not only enhance the solubility of the drug and increase its bioactivity, but also reduce the risk of stomach cancer.Keywords: Flurbiprofen, microemulsion, surfactants, hyrazides
Procedia PDF Downloads 2282197 The Effect of Education given to Parents of Children with Sickle Cell Anemia in Turkey and Chad to Reduce Children's Pain
Authors: Fatima El Zahra Amin, Emine Efe
Abstract:
This study was carried out to evaluate the effect of the education program for parents of children with Sickle Cell Anemia, on the knowledge level of parents and the reduction of pain relief by non-pharmacological methods used by parents at home. In Turkey, 54 parents and 109 from Chad agreed to participate in the survey. The data were collected by the researcher using a face-to-face interview method. Non-pharmacological treatment information form for parents, face expressions rating scale, and parent education program for non-pharmacological methods used in children with sickle cell anemia were used. It was determined that there was a statistically significant difference between the educational status, occupation, disease status, place of residence, family structure and age of parents of Chad and Turkey. According to the ratings of facial expressions scale, it was concluded that there was no significant difference between the children’s average degree of pain before and after administration of non-pharmacological methods by the groups of Chad and Turkey. It was determined that the educational programs prepared for parents of children with sickle cell anemia in both Turkey and Chad were effective in increasing the knowledge level of parents and also in reducing pain crisis with non-pharmacological methods parents used at home.Keywords: Chad, child, non-pharmacological treatment methods, nurse, sickle cell anemia, Turkey
Procedia PDF Downloads 2692196 An Approach to Control Electric Automotive Water Pumps Deploying Artificial Neural Networks
Authors: Gabriel S. Adesina, Ruixue Cheng, Geetika Aggarwal, Michael Short
Abstract:
With the global shift towards sustainability and technological advancements, electric Hybrid vehicles (EHVs) are increasingly being seen as viable alternatives to traditional internal combustion (IC) engine vehicles, which also require efficient cooling systems. The electric Automotive Water Pump (AWP) has been introduced as an alternative to IC engine belt-driven pump systems. However, current control methods for AWPs typically employ fixed gain settings, which are not ideal for the varying conditions of dynamic vehicle environments, potentially leading to overheating issues. To overcome the limitations of fixed gain control, this paper proposes implementing an artificial neural network (ANN) for managing the AWP in EHVs. The proposed ANN provides an intelligent, adaptive control strategy that enhances the AWP's performance, supported through MATLAB simulation work illustrated in this paper. Comparative analysis demonstrates that the ANN-based controller surpasses conventional PID and fuzzy logic-based controllers (FLC), exhibiting no overshoot, 0.1secs rapid response, and 0.0696 IAE performance. Consequently, the findings suggest that ANNs can be effectively utilized in EHVs.Keywords: automotive water pump, cooling system, electric hybrid vehicles, artificial neural networks, PID control, fuzzy logic control, IAE, MATLAB
Procedia PDF Downloads 342195 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3892194 Characterization of Thermal Images Due to Aging of H.V Glass Insulators Using Thermographic Scanning
Authors: Nasir A. Al-Geelani, Zulkurnain Abdul-Malek, M. Afendi M. Piah
Abstract:
This research paper investigation is carried out in the laboratory on single units of transmission line glass insulator characterized by different thermal images, which aimed to find out the age of the insulators. The tests were carried out on virgin and aged insulators using the thermography scan. Various samples having different periods of aging 20, 15, and 5 years from a 132 kV transmission line which have exhibited a different degree of corrosion. The second group of insulator samples was relatively mild aged insulators, while the third group was lightly aged; finally, the fourth group was the brand new insulators. The results revealed a strong correlation between the aging and the thermal images captured by the infrared camera. This technique can be used to monitor the aging of high voltage insulators as a precaution to avoid disaster.Keywords: glass insulator, infrared camera, corona diacharge, transmission lines, thermograpy, surface discharge
Procedia PDF Downloads 1602193 Predicting Root Cause of a Fire Incident through Transient Simulation
Authors: Mira Ezora Zainal Abidin, Siti Fauzuna Othman, Zalina Harun, M. Hafiz M. Pikri
Abstract:
In a fire incident involving a Nitrogen storage tank that over-pressured and exploded, resulting in a fire in one of the units in a refinery, lack of data and evidence hampered the investigation to determine the root cause. Instrumentation and fittings were destroyed in the fire. To make it worst, this incident occurred during the COVID-19 pandemic, making collecting and testing evidence delayed. In addition to that, the storage tank belonged to a third-party company which requires legal agreement prior to the refinery getting approval to test the remains. Despite all that, the investigation had to be carried out with stakeholders demanding answers. The investigation team had to devise alternative means to support whatever little evidence came out as the most probable root cause. International standards, practices, and previous incidents on similar tanks were referred. To narrow down to just one root cause from 8 possible causes, transient simulations were conducted to simulate the overpressure scenarios to prove and eliminate the other causes, leaving one root cause. This paper shares the methodology used and details how transient simulations were applied to help solve this. The experience and lessons learned gained from the event investigation and from numerous case studies via transient analysis in finding the root cause of the accident leads to the formulation of future mitigations and design modifications aiming at preventing such incidents or at least minimize the consequences from the fire incident.Keywords: fire, transient, simulation, relief
Procedia PDF Downloads 952192 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm
Authors: S. Neelima, P. S. Subramanyam
Abstract:
A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction
Procedia PDF Downloads 3902191 Street-Connected Youth: A Priority for Global HIV Prevention
Authors: Shorena Sadzaglishvili, Teona Gotsiridze, Ketevan Lekishvili, Darejan Javakhishvili, Alida Bouris
Abstract:
Globally, adolescents and young people experience high levels of HIV vulnerability and risk. Estimates suggest that AIDS-related deaths among young people are increasing, suggesting poor prioritization of adolescents in national plans for HIV testing and treatment services. HIV/AIDS is currently the sixth leading cause of death in people aged 10-24 years. Among young people, street connected youth are clearly distinguished as being among the most at risk for HIV infection. The present study recognizes the urgent need to scale up effective HIV responses that are tailored to the unique needs of street connected youth for the global HIV agenda and especially, the former Soviet country - Georgia, where 'street kids' are a new phenomenon and estimated to be about 2,500. During two months trained interviewers conducted individual semi-structured qualitative interviews with 22 key informants from the local governmental and nongovernmental service organizations, including psychologists, social workers, peer educators, mobile health workers, and managers. Informants discussed social network characteristics influencing street connected youth’s sexual risk behaviors. Data were analyzed using Dedoose. It was revealed that there are three types of homogeneous networks of street-connected youth aged 10-19 based on ethnical background: (1) Georgians; (2) migrant kids of Azeri-Kurdish origin, and (3) local Roma-Moldavian kids. These networks are distinguished with various HIV risk through both risky sexual and drug-related behaviors. In addition, there are several cases of HIV infection identified through reactive social services. Street connected youth do not have basic information about the HIV related sexual, alcohol and drug behaviors nor there are any systematic programs providing HIV testing and consultation for reducing the vulnerability of HIV infection. There is a need to systematically examine street-connected youth risk-taking behaviors by applying an integrated, multilevel framework to a population at great risk of HIV. Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [#FR 17_31], Ilia State University.Keywords: street connected youth, social networks, HIV/AIDS, HIV testing
Procedia PDF Downloads 1652190 Media Diplomacy in the Age of Social Networks towards a Conceptual Framework for Understanding Diplomatic Cyber Engagement
Authors: Mohamamd Ayish
Abstract:
This study addresses media diplomacy as an integral component of public diplomacy which emerged in the United States in the post-World War II era and found applications in other countries around the world. The study seeks to evolve a conceptual framework for understanding the practice of public diplomacy through social networks, often referred to as social engagement diplomacy. This form of diplomacy is considered far more ahead of the other two forms associated with both government controlled and independent media. The cases of the Voice of America Arabic Service and the 1977 CBS interviews with the late Egyptian President Anwar Sadat and Israeli Prime Minister Menachem Begin are cited in this study as reflecting the two traditional models. The new social engagement model sees public diplomacy as an act of communication that seeks to effect changes in target audiences through a process of persuasion shaped by discourse orientations and technological features. The proposed conceptual framework for social, diplomatic engagement draws on an open communication environment, an empowered audience, an interactive and symmetrical process of communication, multimedia-based flows of information, direct and credible feedback, distortion and high risk. The writer believes this study would be helpful in providing appropriate knowledge pertaining to our understanding of social diplomacy and furnishing concrete insights into how diplomats could harness virtual space to maximize their goals in the global environment.Keywords: diplomacy, engagement, social, globalization
Procedia PDF Downloads 2762189 Research on the Internal Mechanism of Overseas Market Opportunity Construction of the Emerging-Market Multinational Enterprises
Authors: Jie Zhang, Chaomin Zhang
Abstract:
Based on the network theory, this paper selects three Emerging-Market Multinationals Enterprises (EMNEs) as the research object and takes the typical overseas market opportunities constructed by them as the analysis unit to research the internal mechanism of overseas market opportunity construction of the EMNEs. The results show that: (1) EMNEs overseas market opportunity construction is a complex process, through the continuous interaction between enterprises and entities in the internal and external networks to achieve opportunity prototype, opportunity creation, and opportunity optimization in overseas markets. (2) Governments, foreign institutions and industry associations in the institutional network and competitors, partners, and customers in the commercial networks are the important entities in the construction of overseas market opportunities. Through the interaction of entity perception, relationship construction, and utilization, enterprises can obtain the necessary information, resources, and political asylum in the process of opportunity construction. (3) Organizations, project teams, and organizational sub-units within the enterprise are important internal entities for the construction of overseas market opportunities. Through the connection between different entities, they can achieve the circulation of resources within the organization and promote the opportunity construction of overseas markets. The research conclusions expand the relevant research on international opportunities and have inspiring and guiding significance for the expansion of EMNEs overseas markets.Keywords: international (overseas) opportunities, opportunity construction, network entities, interaction, resource circulation
Procedia PDF Downloads 172188 Case Study: 3000acres Facilitating Urban Agriculture in Melbourne, Australia
Authors: Philippa Anne French
Abstract:
This paper presents a case study of 3000acres, a for-purpose organisation established in 2013 to improve the health of Melbournians by enabling them to grow more of their own food. Over the past four years, the organisation has encountered a number of barriers, both obvious and less obvious, which discourage communities from beginning their own food-growing projects. These include soil contamination, planning policies, public perception and access to land. 3000acres has been working to remove these barriers if possible, or otherwise to find ways around them. Strategies have included the use of removable planter boxes on temporarily vacant land, separating the site soil from above-ground garden beds, writing planning exemptions, developing relationships with land management authorities and recording both the quantitative and qualitative products of food gardens in Melbourne. While creating change in policy and legal requirements will be a gradual process, discernable progress has been made in the attitudes of land management authorities and the establishment of new food gardens is becoming easier. Over the past four years, 3000acres has supported the establishment of 14 food gardens in and around Melbourne, including public community gardens, fenced community gardens and urban farms supplying food to a food relief organisation.Keywords: case study, community gardens, land access, land contamination, urban agriculture
Procedia PDF Downloads 1802187 Politics in Academia: How the Diffusion of Innovation Relates to Professional Capital
Authors: Autumn Rooms Cypres, Barbara Driver
Abstract:
The purpose of this study is to extend discussions about innovations and career politics. Research questions that grounded this effort were: How does an academic learn the unspoken rules of the academy? What happens politically to an academic’s career when their research speaks against the grain of society? Do professors perceive signals that it is time to move on to another institution or even to another career? Epistemology and Methods: This qualitative investigation was focused on examining perceptions of academics. Therefore an open-ended field study, based on Grounded Theory, was used. This naturalistic paradigm (Lincoln & Guba,1985) was selected because it tends to understand information in terms of whole, of patterns, and in relations to the context of the environment. The technique for gathering data was the process of semi-structured, in-depth interviewing. Twenty five academics across the United States were interviewed relative to their career trajectories and the politics and opportunities they have encountered in relation to their research efforts. Findings: The analysis of interviews revealed four themes: Academics are beholden to 2 specific networks of power that influence their sense of job security; the local network based on their employing university and the national network of scholars who share the same field of research. The fights over what counts as research can and does drift from the intellectual to the political, and personal. Academic were able to identify specific instances of shunning and or punishment from their colleagues related directly to the dissemination of research that spoke against the grain of the local or national networks. Academics identified specific signals from both of these networks indicating that their career was flourishing or withering. Implications: This research examined insights from those who persevered when the fights over what and who counts drifted from the intellectual to the political, and the personal. Considerations of why such drifts happen were offered in the form of a socio-political construct called Fit, which included thoughts on hegemony, discourse, and identity. This effort reveals the importance of understanding what professional capital is relative to job security. It also reveals that fear is an enmeshed and often unspoken part of the culture of Academia. Further research to triangulate these findings would be helpful within international contexts.Keywords: politics, academia, job security, context
Procedia PDF Downloads 3212186 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data
Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim
Abstract:
Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth
Procedia PDF Downloads 3172185 Monitoring and Analysis of Bridge Crossing Ground Fissures
Authors: Zhiqing Zhang, Xiangong Zhou, Zihan Zhou
Abstract:
Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling.Keywords: bridge monitoring, ground fissures, typical disease, structural displacement
Procedia PDF Downloads 2232184 Sustainable Strategies for Post-Disaster Shelters: Case Study-Based Review and Future Prospects
Authors: Fangwen Ni, Hongpeng Xu
Abstract:
When disasters occur, it is important to provide temporary shelters to protect victims from their environment and to comfort them with privacy and dignity. However, the commonly used shelters like tents and shanties can not ensure a comfortable condition. Furthermore, the demand for more energy and less pollution has become a major challenge. Focusing on the sustainable of temporary shelters, this study intends to clarify the essential role of temporary shelters before the reconstruction work is done. The paper also identifies the main problems from three aspects including spatial layout, thermal comfort and utilization of passive technology. Moreover, it expounds the passive strategies of ecological design by case study and simulation. It is found that the living condition of shelters can be improved from the perspective of architectural space, ventilation theory and construction techniques. Regardless of being temporary, these shelters are crucial elements in emergency situations and should be taken more seriously.Keywords: architectural space, construction technique, sustainable strategy, temporary shelter
Procedia PDF Downloads 2702183 Cry, the Peacock: A Psychoanalytic Feminist Study
Authors: Taira Bano
Abstract:
Cry, the Peacock is a famous novel by Anita Desai which deals with the psychic tumult of a young and sensitive female protagonist, Maya. The novel deals with the in-depth study of the psyche of Maya who is haunted by a childhood prophecy of a fatal disaster. This persistent obsession of death either for her or her husband within four years of their marriage is the main reason for Maya’s neurosis. The novel is not only concerned with the psychological aspect of Maya but is also a strong plea for the rights of women. The novel consists of both psychological as well as feministic elements. The attitude of Maya, not to submit to the authority of her husband gives perfect description of second wave feminism. Feminism is a movement which deals with the issues of inequality between men and women. Psychoanalysis is the study of the psychology of characters. It depicts how an incident in one’s life shapes the personality of an individual. This paper will deal with the study of the novel Cry, the Peacock from psychoanalytic perspective and will try to trace out the reason for such an extreme step that Maya takes in the end of the novel- crossing all the limits of a traditional submissive wife.Keywords: psyche, psychological, mental, feminist
Procedia PDF Downloads 5152182 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air
Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli
Abstract:
Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.Keywords: air pollution, dust, numerical modeling, urban
Procedia PDF Downloads 1872181 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.Keywords: autism disease, neural network, CPU, GPU, transfer learning
Procedia PDF Downloads 1182180 Urban Seismic Risk Reduction in Algeria: Adaptation and Application of the RADIUS Methodology
Authors: Mehdi Boukri, Mohammed Naboussi Farsi, Mounir Naili, Omar Amellal, Mohamed Belazougui, Ahmed Mebarki, Nabila Guessoum, Brahim Mezazigh, Mounir Ait-Belkacem, Nacim Yousfi, Mohamed Bouaoud, Ikram Boukal, Aboubakr Fettar, Asma Souki
Abstract:
The seismic risk to which the urban centres are more and more exposed became a world concern. A co-operation on an international scale is necessary for an exchange of information and experiments for the prevention and the installation of action plans in the countries prone to this phenomenon. For that, the 1990s was designated as 'International Decade for Natural Disaster Reduction (IDNDR)' by the United Nations, whose interest was to promote the capacity to resist the various natural, industrial and environmental disasters. Within this framework, it was launched in 1996, the RADIUS project (Risk Assessment Tools for Diagnosis of Urban Areas Against Seismic Disaster), whose the main objective is to mitigate seismic risk in developing countries, through the development of a simple and fast methodological and operational approach, allowing to evaluate the vulnerability as well as the socio-economic losses, by probable earthquake scenarios in the exposed urban areas. In this paper, we will present the adaptation and application of this methodology to the Algerian context for the seismic risk evaluation in urban areas potentially exposed to earthquakes. This application consists to perform an earthquake scenario in the urban centre of Constantine city, located at the North-East of Algeria, which will allow the building seismic damage estimation of this city. For that, an inventory of 30706 building units was carried out by the National Earthquake Engineering Research Centre (CGS). These buildings were digitized in a data base which comprises their technical information by using a Geographical Information system (GIS), and then they were classified according to the RADIUS methodology. The study area was subdivided into 228 meshes of 500m on side and Ten (10) sectors of which each one contains a group of meshes. The results of this earthquake scenario highlights that the ratio of likely damage is about 23%. This severe damage results from the high concentration of old buildings and unfavourable soil conditions. This simulation of the probable seismic damage of the building and the GIS damage maps generated provide a predictive evaluation of the damage which can occur by a potential earthquake near to Constantine city. These theoretical forecasts are important for decision makers in order to take the adequate preventive measures and to develop suitable strategies, prevention and emergency management plans to reduce these losses. They can also help to take the adequate emergency measures in the most impacted areas in the early hours and days after an earthquake occurrence.Keywords: seismic risk, mitigation, RADIUS, urban areas, Algeria, earthquake scenario, Constantine
Procedia PDF Downloads 2622179 Reinforcement Learning for Classification of Low-Resolution Satellite Images
Authors: Khadija Bouzaachane, El Mahdi El Guarmah
Abstract:
The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.Keywords: classification, deep learning, reinforcement learning, satellite imagery
Procedia PDF Downloads 2132178 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients
Authors: Elena Carcano, James Ball
Abstract:
This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.Keywords: hierarchical process, strategic plan, water emergency conditions, water supply
Procedia PDF Downloads 1602177 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 1182176 Classification of Barley Varieties by Artificial Neural Networks
Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran
Abstract:
In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.Keywords: physical properties, artificial neural networks, barley, classification
Procedia PDF Downloads 1782175 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang
Abstract:
Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing
Procedia PDF Downloads 702174 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation
Procedia PDF Downloads 93