Search results for: adaptive deep learning
7851 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness
Procedia PDF Downloads 4227850 Customized Design of Amorphous Solids by Generative Deep Learning
Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang
Abstract:
The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.Keywords: metallic glass, artificial intelligence, mechanical property, automated generation
Procedia PDF Downloads 567849 Professionals’ Learning from Casework in Child Protection: The View from Within
Authors: Jude Harrison
Abstract:
Child protection is a complex and sensitive practice. The core responsibility is the care and protection of children and young people who have been subject to or who are at risk from abuse and neglect. The work involves investigating allegations of harm, preparing for and making representations to the legal system, and case planning and management across a continuum of complicated care interventions. Professionals’ learning for child protection practice is evident in a range of literature investigating multiple learning processes such as university preparation, student placements, professional supervision, training, and other post-qualifying professional development experiences at work. There is, however, very limited research into how caseworkers learn in and through their daily practice. Little is known, therefore, about how learning at work unfolds for caseworkers, the dimensions in which it can be understood or the ways in which it can be best facilitated and supported. Compounding this, much of the current child protection learning literature reflects an orthodox conception of learning as mentalistic and individualised, in which knowledge is typically understood as abstract theory or as technical skill or competency. This presentation outlines key findings from a PhD research study that explored learning at work for statutory child protection caseworkers from an alternative interpretation of learning using a practice theory approach. Practice theory offers an interpretation of learning as performative and grounded in situated experience. The findings of the study show that casework practice is both a mode and site of learning. The study was ethnographic in design based and followed 17 child protection caseworkers via in-depth interviews, observations and participant reflective journaling. Inductive and abductive analysis was used to organise and interpret the data and expand analysis, leading to themes. Key findings show learning to be a sociomaterial property of doing; the social ontological character of learning; and teleoaffectivity as a feature of learning. The findings contribute to theoretical and practical understandings of learning and practice in child protection, child welfare and the professional learning literature more broadly. The findings have potential to contribute to policy directions at state, territory and national levels to enhance child protection practice and systems.Keywords: adiult learning, workplace learning, child welfare, sociomaterial, practice theory
Procedia PDF Downloads 767848 A Dynamic Software Product Line Approach to Self-Adaptive Genetic Algorithms
Authors: Abdelghani Alidra, Mohamed Tahar Kimour
Abstract:
Genetic algorithm must adapt themselves at design time to cope with the search problem specific requirements and at runtime to balance exploration and convergence objectives. In a previous article, we have shown that modeling and implementing Genetic Algorithms (GA) using the software product line (SPL) paradigm is very appreciable because they constitute a product family sharing a common base of code. In the present article we propose to extend the use of the feature model of the genetic algorithms family to model the potential states of the GA in what is called a Dynamic Software Product Line. The objective of this paper is the systematic generation of a reconfigurable architecture that supports the dynamic of the GA and which is easily deduced from the feature model. The resultant GA is able to perform dynamic reconfiguration autonomously to fasten the convergence process while producing better solutions. Another important advantage of our approach is the exploitation of recent advances in the domain of dynamic SPLs to enhance the performance of the GAs.Keywords: self-adaptive genetic algorithms, software engineering, dynamic software product lines, reconfigurable architecture
Procedia PDF Downloads 2857847 FisherONE: Employing Distinct Pedagogy through Technology Integration in Senior Secondary Education
Authors: J. Kontoleon, D.Gall, M.Pidskalny
Abstract:
FisherONE offers a distinct pedagogic model for senior secondary education that integrates advanced technology to meet the learning needs of Year 11 and 12 students across Catholic schools in Queensland. As a fully online platform, FisherONE employs pedagogy that combines flexibility with personalized, data-driven learning. The model leverages tools like the MaxHub hybrid interactive system and AI-powered learning assistants to create tailored learning pathways that promote student autonomy and engagement. This paper examines FisherONE’s success in employing pedagogic strategies through technology. Initial findings suggest that students benefit from the blended approach of virtual assessments and real-time support, even as AI-assisted tools remain in the proof-of-concept phase. The study outlines how FisherONE plans to continue refining its educational methods to better serve students in distance learning environments, specifically in challenging subjects like physics. The integration of technology in FisherONE enhances the effectiveness of teaching and learning, addressing common challenges in online education by offering scalable, individualized learning experiences. This approach demonstrates the future potential of technology in education and the role it can play in fostering meaningful student outcomes.Keywords: AI-assisted learning, innovative pedagogy, personalized learning, senior education, technology in education
Procedia PDF Downloads 187846 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes
Authors: Vincent Liu
Abstract:
Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.Keywords: diabetes, machine learning, 30-day readmission, metaheuristic
Procedia PDF Downloads 627845 Exploring Motivation and Attitude to Second Language Learning in Ugandan Secondary Schools
Authors: Nanyonjo Juliet
Abstract:
Across Sub-Saharan Africa, it’s increasingly becoming an absolute necessity for either parents or governments to encourage learners, most particularly those attending high schools, to study a second or foreign language other than the “official language” or the language of instruction in schools. The major second or foreign languages under consideration include but are not necessarily limited to English, French, German, Arabic, Swahili/Kiswahili, Spanish and Chinese. The benefits of learning a second (foreign) language in the globalized world cannot be underestimated. Amongst others, it has been expounded to especially involve such opportunities related to traveling, studying abroad and widening one’s career prospects. Research has also revealed that beyond these non-cognitive rewards, learning a second language enables learners to become more thoughtful, considerate and confident, make better decisions, keep their brain healthier and generally – speaking, broaden their world views. The methodology of delivering a successful 2nd language – learning process by a professionally qualified teacher is located in motivation. We strongly believe that the psychology involved in teaching a foreign language is of paramount importance to a learner’s successful learning experience. The aim of this paper, therefore, is to explore and show the importance of motivation in the teaching and learning of a given 2nd (foreign) language in the local Ugandan high schools.Keywords: second language, foreign language, language learning, language teaching, official language, language of instruction, globalized world, cognitive rewards, non-cognitive rewards, learning process, motivation
Procedia PDF Downloads 687844 A Typology System to Diagnose and Evaluate Environmental Affordances
Authors: Falntina Ahmad Alata, Natheer Abu Obeid
Abstract:
This paper is a research report of an experimental study on a proposed typology system to diagnose and evaluate the affordances of varying architectural environments. The study focused on architectural environments which have been developed with a shift in their use of adaptive reuse. The novelty in the newly developed environments was tested in terms of human responsiveness and interaction using a variety of selected cases. The study is a follow-up on previous research by the same authors, in which a typology of 16 categories of environmental affordances was developed and introduced. The current study introduced other new categories, which together with the previous ones establish what could be considered a basic language of affordance typology. The experiment was conducted on ten architectural environments while adopting two processes: 1. Diagnostic process, in which the environments were interpreted in terms of their affordances using the previously developed affordance typology, 2. The evaluation process, in which the diagnosed environments were evaluated using measures of emotional experience and architectural evaluation criteria of beauty, economy and function. The experimental study demonstrated that the typology system was capable of diagnosing different environments in terms of their affordances. It also introduced new categories of human interaction: “multiple affordances,” “conflict affordances,” and “mix affordances.” The different possible combinations and mixtures of categories demonstrated to be capable of producing huge numbers of other newly developed categories. This research is an attempt to draw a roadmap for designers to diagnose and evaluate the affordances within different architectural environments. It is hoped to provide future guidance for developing the best possible adaptive reuse according to the best affordance category within their proposed designs.Keywords: affordance theory, affordance categories, architectural environments, architectural evaluation criteria, adaptive reuse environment, emotional experience, shift in use environment
Procedia PDF Downloads 1937843 Deployment of Attack Helicopters in Conventional Warfare: The Gulf War
Authors: Mehmet Karabekir
Abstract:
Attack helicopters (AHs) are usually deployed in conventional warfare to destroy armored and mechanized forces of enemy. In addition, AHs are able to perform various tasks in the deep, and close operations – intelligence, surveillance, reconnaissance, air assault operations, and search and rescue operations. Apache helicopters were properly employed in the Gulf Wars and contributed the success of campaign by destroying a large number of armored and mechanized vehicles of Iraq Army. The purpose of this article is to discuss the deployment of AHs in conventional warfare in the light of Gulf Wars. First, the employment of AHs in deep and close operations will be addressed regarding the doctrine. Second, the US armed forces AH-64 doctrinal and tactical usage will be argued in the 1st and 2nd Gulf Wars.Keywords: attack helicopter, conventional warfare, gulf wars
Procedia PDF Downloads 4737842 Efficiency of Information Technology Based Learning and Teaching in Higher Educations
Authors: Mahalingam Palaniandi
Abstract:
Higher education plays vital role in the nation building process for a country and the rest of world. The higher education sector develops the change-agents for the various fields which will help the human-kind wheel to run further. Conventional and traditional class-room based learning and teaching was followed in many decades which is one-to-one and one-to-many. In a way, these are simplest form of learners to be assembled in a class room wherein the teacher used the blackboard to demonstrate the theory and laboratories used for practical. As the technology evolved tremendously for the last 40 years, the teaching and learning environment changed slowly, wherein, the learning community will be anywhere in the world and teacher deliver the content through internet based tools such as video conferencing, web based conferencing tools or E-learning platforms such as Blackboard or noodle. Present day, the mobile technologies plays an important tool to deliver the teaching content on-the-go. Both PC based and mobile based learning technology brought the learning and teaching community together in various aspects. However, as the learning technology also brought various hurdles for learning processes such as plagiarism and not using the reference books entirely as most of the students wants the information instantaneously using internet without actually going to the library to take the notes from the millions of the books which are not available online as e-books which result lack of fundamental knowledge of the concepts complex theories. However, technology is inseparable in human life, now-a-days and every part of it contains piece of information technology right from computers to home appliances. To make use of the IT based learning and teaching at most efficiency, we should have a proper framework and recommendations laid to the learning community in order to derive the maximum efficiency from the IT based teaching and leaning. This paper discusses various IT based tools available for the learning community, efficiency from its usage and recommendations for the suitable framework that needs to be implemented at higher education institutions which makes the learners stronger in both theory as well as real-time knowledge of their studies that is going to be used in their future for the better world.Keywords: higher education, e-learning, teaching learning, eLearning tools
Procedia PDF Downloads 4267841 Climate Change Vulnerability and Capacity Assessment in Coastal Areas of Sindh Pakistan and Its Impact on Water Resources
Authors: Falak Nawaz
Abstract:
The Climate Change Vulnerability and Capacity Assessment carried out in the coastal regions of Thatta and Malir districts underscore the potential risks and challenges associated with climate change affecting water resources. This study was conducted by the author using participatory rural appraisal tools, with a greater focus on conducting focus group discussions, direct observations, key informant interviews, and other PRA tools. The assessment delves into the specific impacts of climate change along the coastal belt, concentrating on aspects such as rising sea levels, depletion of freshwater, alterations in precipitation patterns, fluctuations in water table levels, and the intrusion of saltwater into rivers. These factors have significant consequences for the availability and quality of water resources in coastal areas, manifesting in frequent migration and alterations in agriculture-based livelihood practices. Furthermore, the assessment assesses the adaptive capacity of communities and organizations in these coastal regions to effectively confront and alleviate the effects of climate change on water resources. It considers various measures, including infrastructure enhancements, water management practices, adjustments in agricultural approaches, and disaster preparedness, aiming to bolster adaptive capacity. The study's findings emphasize the necessity for prompt actions to address identified vulnerabilities and fortify the adaptive capacities of Sindh's coastal areas. This calls for comprehensive strategies and policies promoting sustainable water resource management, integrating climate change considerations, and providing essential resources and support to vulnerable communities.Keywords: climate, climate change adaptation, disaster reselience, vulnerability, capacity, assessment
Procedia PDF Downloads 597840 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 687839 Building Knowledge Partnership for Collaborative Learning in Higher Education – An On-Line ‘Eplanete’ Knowledge Mediation Platform
Authors: S. K. Ashiquer Rahman
Abstract:
This paper presents a knowledge mediation platform, “ePLANETe Blue” that addresses the challenge of building knowledge partnerships for higher education. The purpose is to present, as an institutional perception, the ‘ePLANETe' idea and functionalities as a practical and pedagogical innovation program contributing to the collaborative learning goals in higher education. In consequence, the set of functionalities now amalgamated in ‘ePLANETe’ can be seen as an investigation of the challenges of “Collaborative Learning Digital Process.” It can exploit the system to facilitate collaborative education, research and student learning in higher education. Moreover, the platform is projected to support the identification of best practices at explicit levels of action and to inspire knowledge interactions in a “virtual community” and thus to advance in deliberation and learning evaluation of higher education through the engagement of collaborative activities of different sorts.Keywords: mediation, collaboration, deliberation, evaluation
Procedia PDF Downloads 1407838 Goal Orientation, Learning Strategies and Academic Performance in Adult Distance Learning
Authors: Ying Zhou, Jian-Hua Wang
Abstract:
Based upon the self-determination theory and self-regulated learning theory, this study examined the predictiveness of goal orientation and self-regulated learning strategies on academic achievement of adult students in distance learning. The results show a positive relation between goal orientation and the use of self-regulated strategies, and academic achievements. A significant and positive indirect relation of mastery goal orientation through self-regulated learning strategies was also found. In addition, results pointed to a positive indirect impact of performance-approach goal orientation on academic achievement. The effort regulation strategy fully mediated this relation. The theoretical and instructional implications are discussed. Interventions can be made to motivate students’ mastery or performance approach goal orientation and help them manage their time or efforts.Keywords: goal orientation, self-regulated strategies, achievement, adult distance students
Procedia PDF Downloads 2747837 Incorporating Adult Learners’ Interests into Learning Styles: Enhancing Education for Lifelong Learners
Authors: Christie DeGregorio
Abstract:
In today's rapidly evolving educational landscape, adult learners are becoming an increasingly significant demographic. These individuals often possess a wealth of life experiences and diverse interests that can greatly influence their learning styles. Recognizing and incorporating these interests into educational practices can lead to enhanced engagement, motivation, and overall learning outcomes for adult learners. This essay aims to explore the significance of incorporating adult learners' interests into learning styles and provide an overview of the methodologies used in related studies. When investigating the incorporation of adult learners' interests into learning styles, researchers have employed various methodologies to gather valuable insights. These methodologies include surveys, interviews, case studies, and classroom observations. Surveys and interviews allow researchers to collect self-reported data directly from adult learners, providing valuable insights into their interests, preferences, and learning styles. Case studies offer an in-depth exploration of individual adult learners, highlighting how their interests can be integrated into personalized learning experiences. Classroom observations provide researchers with a firsthand understanding of the dynamics between adult learners' interests and their engagement within a learning environment. The major findings from studies exploring the incorporation of adult learners' interests into learning styles reveal the transformative impact of this approach. Firstly, aligning educational content with adult learners' interests increases their motivation and engagement in the learning process. By connecting new knowledge and skills to topics they are passionate about, adult learners become active participants in their own education. Secondly, integrating interests into learning styles fosters a sense of relevance and applicability. Adult learners can see the direct connection between the knowledge they acquire and its real-world applications, which enhances their ability to transfer learning to various contexts. Lastly, personalized learning experiences tailored to individual interests enable adult learners to take ownership of their educational journey, promoting lifelong learning habits and self-directedness.Keywords: integration, personalization, transferability, learning style
Procedia PDF Downloads 747836 Impacts of E-Learning on Educational Policy: Policy of Sensitization and Training in E-Learning in Saudi Arabia
Authors: Layla Albdr
Abstract:
Saudi Arabia instituted the policy of Sensitizing and Training Stakeholders for E-learning and witnessed wide adoption in many institutions. However, it is at the infancy stage and needs time to develop to mirror the US and UK. The majority of the higher education institutions in Saudi Arabia have adopted E-learning as an alternative to traditional methods to advance education. Conversely, effective implementation of the policy of sensitization and training of stakeholders for E-learning implementation has not been attained because of various challenges. The objectives included determining the challenges and opportunities of the E-learning policy of sensitization and training of stakeholders in Saudi Arabia's higher education and examining if sensitization and training of stakeholder's policy will help promote the implementation of E-learning in institutions. The study employed a descriptive research design based on qualitative analysis. The researcher recruited 295 students and 60 academic staff from four Saudi Arabian universities to participate in the study. An online questionnaire was used to collect the data. The data was then analyzed and reported both quantitatively and qualitatively. The analysis provided an in-depth understanding of the opportunities and challenges of E-learning policy in Saudi Arabian universities. The main challenges identified as internal challenges were the lack of educators’ interest in adopting the policy, and external challenges entailed lack of ICT infrastructure and Internet connectivity. The study recommends encouraging, sensitizing, and training all stakeholders to address these challenges and adopt the policy.Keywords: e-learning, educational policy, Saudi Arabia, policy of sensitization and training
Procedia PDF Downloads 1577835 Investigating the Effect of the Pedagogical Agent on Visual Attention in Attention Deficit Hyperactivity Disorder Students
Authors: Nasrin Mohammadhasani, Rosa Angela Fabio
Abstract:
The attention to relevance information is the key element for learning. Otherwise, Attention Deficit Hyperactivity Disorder (ADHD) students have a fuzzy visual pattern that prevents them to attention and remember learning subject. The present study aimed to test the hypothesis that the presence of a pedagogical agent can effectively support ADHD learner's attention and learning outcomes in a multimedia learning environment. The learning environment was integrated with a pedagogical agent, named Koosha as a social peer. This study employed a pretest and posttest experimental design with control group. The statistical population was 30 boys students, age 10-11 with ADHD that randomly assigned to learn with/without an agent in well designed environment for mathematic. The results suggested that experimental and control groups show a significant difference in time when they participated and mathematics achievement. According to this research, using the pedagogical agent can enhance learning of ADHD students by gaining and guiding their attention to relevance information part on display, so it can be considered as asocial cue that provides theme cognitive supports.Keywords: attention, computer assisted instruction, multimedia learning environment, pedagogical agent
Procedia PDF Downloads 3147834 Semi-Supervised Learning Using Pseudo F Measure
Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian
Abstract:
Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.Keywords: PU learning, semi-supervised learning, pseudo f measure, classification
Procedia PDF Downloads 2357833 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments
Authors: Naduni Ranasinghe
Abstract:
E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model
Procedia PDF Downloads 1577832 Integrated Target Tracking and Control for Automated Car-Following of Truck Platforms
Authors: Fadwa Alaskar, Fang-Chieh Chou, Carlos Flores, Xiao-Yun Lu, Alexandre M. Bayen
Abstract:
This article proposes a perception model for enhancing the accuracy and stability of car-following control of a longitudinally automated truck. We applied a fusion-based tracking algorithm on measurements of a single preceding vehicle needed for car-following control. This algorithm fuses two types of data, radar and LiDAR data, to obtain more accurate and robust longitudinal perception of the subject vehicle in various weather conditions. The filter’s resulting signals are fed to the gap control algorithm at every tracking loop composed by a high-level gap control and lower acceleration tracking system. Several highway tests have been performed with two trucks. The tests show accurate and fast tracking of the target, which impacts on the gap control loop positively. The experiments also show the fulfilment of control design requirements, such as fast speed variations tracking and robust time gap following.Keywords: object tracking, perception, sensor fusion, adaptive cruise control, cooperative adaptive cruise control
Procedia PDF Downloads 2297831 Exploring Factors Affecting the Implementation of Flexible Curriculum in Information Systems Higher Education
Authors: Clement C. Aladi, Zhaoxia Yi
Abstract:
This study investigates factors influencing the implementation of flexible curricula in e-learning in Information Systems (IS) higher education. Drawing from curriculum theorists and contemporary literature, and using the Technology, Pedagogy, and Content Knowledge (TPACK) framework, it explores teacher-related challenges and their impact on curriculum flexibility implementation. By using the PLS-SEM, the study uncovers these factors and hopes to contribute to enhancing curriculum flexibility in delivering online and blended learning in IS higher education.Keywords: flexible curriculum, online learning, e-learning, technology
Procedia PDF Downloads 557830 Knowledge Representation Based on Interval Type-2 CFCM Clustering
Authors: Lee Myung-Won, Kwak Keun-Chang
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation
Procedia PDF Downloads 3227829 Efficacy of Social-emotional Learning Programs Amongst First-generation Immigrant Children in Canada and The United States- A Scoping Review
Authors: Maria Gabrielle "Abby" Dalmacio
Abstract:
Social-emotional learning is a concept that is garnering more importance when considering the development of young children. The aim of this scoping literature review is to explore the implementation of social-emotional learning programs conducted with first-generation immigrant young children ages 3-12 years in North America. This review of literature focuses on social-emotional learning programs taking place in early childhood education centres and elementary school settings that include the first-generation immigrant children population to determine if and how their understanding of social-emotional learning skills may be impacted by the curriculum being taught through North American educational pedagogy. Research on early childhood education and social-emotional learning reveals the lack of inter-cultural adaptability in social emotional learning programs and the potential for immigrant children as being assessed as developmentally delayed due to programs being conducted through standardized North American curricula. The results of this review point to a need for more research to be conducted with first-generation immigrant children to help reform social-emotional learning programs to be conducive for each child’s individual development. There remains to be a gap of knowledge in the current literature on social-emotional learning programs and how educators can effectively incorporate the intercultural perspectives of first-generation immigrant children in early childhood education.Keywords: early childhood education, social-emotional learning, first-generation immigrant children, north america, inter-cultural perspectives, cultural diversity, early educational frameworks
Procedia PDF Downloads 1017828 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots
Authors: Baoshan Wei, Shuai Han, Xing Zhang
Abstract:
Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.Keywords: adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots
Procedia PDF Downloads 1597827 The Development of Learning Outcomes and Learning Management Process of Basic Education along Thailand, Laos, and Cambodia Common Border for the ASEAN Community Preparation
Authors: Ladda Silanoi
Abstract:
One of the main purposes in establishment of ASEAN Community is educational development. All countries in ASEAN shall then prepare for plans and strategies for country development. Therefore, Thailand set up the policy concerning educational management for all educational institutions to understand about ASEAN Community. However, some educational institutions lack of precision in determining the curriculums of ASEAN Community, especially schools in rural areas, for example, schools along the common border with Laos, and Cambodia. One of the effective methods to promote the precision in ASEAN Community is to design additional learning courses. The important process of additional learning courses design is to provide learning outcomes of ASEAN Community for course syllabus determination. Therefore, the researcher is interested in developing teachers in the schools of common border with Laos, and Cambodia to provide learning outcomes and learning process. This research has the objective of developing the learning outcomes and learning process management of basic education along Thailand, Laos, and Cambodia Common Border for the ASEAN Community Preparation. Research methodology consists of 2 steps. Step 1: Delphi Technique was used to provide guidelines in development of learning outcomes and learning process. Step 2: Action Research procedures was employed to study the result of additional learning courses design. Result of the study: By using Delphi technique, consensus is expected to be achieved, from 50 experts in the study within 3 times of the survey. The last survey found that experts’ opinions were compatible on every item (inter-quartile range = 0) leading to the arrangement of training courses in step of Action Research. The result from the workshop found that teachers in schools of Srisaket and Bueng Kan provinces could be able to provide learning outcomes of all courses.Keywords: learning outcome and learning process, basic education, ASEAN Community preparation, Thailand Laos and Cambodia common border
Procedia PDF Downloads 4307826 Effect of Incentives on Knowledge Sharing and Learning: Evidence from the Indian IT Sector
Authors: Asish O. Mathew, Lewlyn L. R. Rodrigues
Abstract:
The organizations in the knowledge economy era have recognized the importance of building knowledge assets for sustainable growth and development. In comparison to other industries, Information Technology (IT) enterprises, holds an edge in developing an effective Knowledge Management (KM) program, thanks to their in-house technological abilities. This paper tries to study the various knowledge-based incentive programs and its effect on Knowledge Sharing and Learning in the context of the Indian IT sector. A conceptual model is developed linking KM incentives, knowledge sharing, and learning. A questionnaire study is conducted to collect primary data from the knowledge workers of the IT organizations located in India. The data was analysed using Structural Equation Modeling using Partial Least Square method. The results show a strong influence of knowledge management incentives on knowledge sharing and an indirect influence on learning.Keywords: knowledge management, knowledge management incentives, knowledge sharing, learning
Procedia PDF Downloads 4777825 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 1297824 Educational Equity through Cross-Disciplinary Innovation: A Study of Fresh Developed E-Learning System from a Practitioner-Teacher
Authors: Peijen Pamela Chuang, Tzu-Hua Wang
Abstract:
To address the notion of educational equity, undergo the global pandemic, a digital learning system was cross-disciplinarily designed by a 15-year-experienced teaching practitioner. A study was performed on students through the use of this pioneering e-learning system, in which Taiwanese students with different learning styles and special needs have a foreign language- English as the target subject. 121 students are particularly selected from an N= 580 sample spread across 20 inclusive and special education schools throughout districts of Taiwan. To bring off equity, the participants are selected from a mix of different socioeconomic statuses. Grouped data, such as classroom observation, individual learning preference, prerequisite knowledge, learning interest, and learning performance of the population, is carefully documented for further analyzation. The paper focuses on documenting the awareness and needs of this pedagogical methodology revolution, data analysis of UX (User Experience), also examination and system assessment of this system. At the time of the pilot run, this newly-developed e-learning system had successfully applied for and received a national patent in Taiwan. This independent research hoped to expand the awareness of the importance of individual differences in SDG4 (Substantial Development Goals 4) as a part of the ripple effect, and serve as a comparison for future scholars in the pedagogical research with an interdisciplinary approach.Keywords: e-learning, educational equity, foreign language acquisition, inclusive education, individual differences, interdisciplinary innovation, learning preferences, SDG4
Procedia PDF Downloads 767823 Phytoplankton Community Structure in the Moroccan Coast of the Mediterranean Sea: Case Study of Saiidia, Three Forks Cape
Authors: H. Idmoussi, L. Somoue, O. Ettahiri, A. Makaoui, S. Charib, A. Agouzouk, A. Ben Mhamed, K. Hilmi, A. Errhif
Abstract:
The study on the composition, abundance, and distribution of phytoplankton was conducted along the Moroccan coast of the Mediterranean Sea (Saiidia - Three Forks Cape) in April 2018. Samples were collected at thirteen stations using Niskin bottles within two layers (surface and deep layers). The identification and enumeration of phytoplankton were carried out according to the Utermöhl method (1958). A total number of 54 phytoplankton species were identified over the entire survey area. Thirty-six species could be found both in the surface and the deep layers while eleven species were observed only in the surface layer and seven in the deep layer. The phytoplankton throughout the study area was dominated by diatoms represented mainly by Nitzschia sp., Pseudonitzschia sp., Chaetoceros sp., Cylindrotheca closterium, Leptocylindrus minimus, Leptocylindrus danicus, Dactyliosolen fragilissimus. Dinoflagellates were dominated by Gymnodinium sp., Scrippsiella sp., Gyrodinium spirale, Noctulica sp, Prorocentrum micans. Euglenophyceae, Silicoflagellates and Raphidophyceae were present in low numbers. Most of the phytoplankton were concentrated in the surface layer, particularly towards the Three Forks Cape (25200 cells·l⁻¹). Shannon species diversity (ranging from 2 and 4 Bits) and evenness index (broadly > 0.7) suggested that phytoplankton community is generally diversified and structured in the studied area.Keywords: abundance, diversity, Mediterranean Sea, phytoplankton
Procedia PDF Downloads 1587822 Transforming ESL Teaching and Learning with ICT
Authors: Helena Sit
Abstract:
Developing skills in using ICT in the language classroom has been discussed at all educational levels. Digital tools and learning management systems enable teachers to transform their instructional activities while giving learners the opportunity to engage with virtual communities. In the field of English as a second language (ESL) teaching and learning, the use of technology-enhanced learning and diverse pedagogical practices continues to grow. Whilst technology and multimodal learning is a way of the future for education, second language teachers now face the predicament as to whether implementing these newer ways of learning is, in fact, beneficial or disadvantageous to learners. Research has shown that integrating multimodality and technology can improve students’ engagement and participation in their English language learning. However, students can experience anxiety or misunderstanding when engaging with E-learning or digital-mediated learning. This paper aims to explore how ESL teaching and learning are transformed via the use of educational technology and what impact it has had on student teachers. Case study is employed in this research. The study reviews the growing presence of technology and multimodality in university language classrooms, discusses their impact on teachers’ pedagogical practices, and proposes scaffolding strategies to help design effective English language courses in the Australian education context. The study sheds light on how pedagogical integration today may offer a way forward for language teachers of tomorrow and provides implications to implement an evidence-informed approach that blends knowledge from research, practice and people experiencing the practice in the digital era.Keywords: educational technology, ICT in higher education, curriculum design and innovation, teacher education, multiliteracies pedagogy
Procedia PDF Downloads 79