Search results for: MCM (mini chromosome manteinance) complex
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5553

Search results for: MCM (mini chromosome manteinance) complex

4113 Health Monitoring of Concrete Assets in Refinery

Authors: Girish M. Bhatia

Abstract:

Most of the important structures in refinery complex are RCC Structures for which in-depth structural monitoring and inspection is required for incessant service. Reinforced concrete structures can be under threat from a combination of insidious challenges due to environmental conditions, including temperature and humidity that lead to accelerated deterioration mechanisms like carbonation, as well as marine exposure, above and below ground structures can experience ingress from aggressive ground waters carrying chlorides and sulphates leading to unexpected deterioration that threaten the integrity of a vital structural asset. By application of health monitoring techniques like corrosion monitoring with help of sensor probes, visual inspection of high rise structures with help of drones, it is possible to establish an early warning at the onset of these destructive processes.

Keywords: concrete structures, corrosion sensors, drones, health monitoring

Procedia PDF Downloads 398
4112 Assessment of Psychomotor Development of Preschool Children: A Review of Eight Psychomotor Developmental Tools

Authors: Viola Hubačová Pirová

Abstract:

The assessment of psychomotor development allows us to identify children with motor delays, helps us to monitor progress in time and prepare suitable intervention programs. The foundation of psychomotor development lies in pre-school age and is crucial for child´s further cognitive and social development. Many assessment tools of psychomotor development have been developed over the years. Some of them are easy screening tools; others are more complex and sophisticated. The purpose of this review is to describe the history of psychomotor assessment, specify preschool children´s psychomotor evaluation and review eight psychomotor development assessment tools for preschool children (Denver II., DEMOST-PRE, TGMD -2/3, BOT-2, MABC-2, PDMS-2, KTK, MOT 4-6). The selection of test depends on purpose and context in which is the assessment planned.

Keywords: assessment of psychomotor development, preschool children, psychomotor development, review of assessment tools

Procedia PDF Downloads 167
4111 Solution of the Blast Wave Problem in Dusty Gas

Authors: Triloki Nath, R. K. Gupta, L. P. Singh

Abstract:

The aim of this paper is to find the new exact solution of the blast wave problem in one-dimensional unsteady adiabatic flow for generalized geometry in a compressible, inviscid ideal gas with dust particles. The density of the undisturbed region is assumed to vary according to a power law of the distance from the point of explosion. The exact solution of the problem in form of a power in the distance and the time is obtained. Further, the behaviour of the total energy carried out by the blast wave for planar, cylindrically symmetric and spherically symmetric flow corresponding to different Mach number of the fluid flow in dusty gas is presented. It is observed that the presence of dust particles in the gas yields more complex expression as compared to the ordinary Gasdynamics.

Keywords: shock wave, blast wave, dusty gas, strong shock

Procedia PDF Downloads 332
4110 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector

Authors: Aron Witkowski, Andrzej Wodecki

Abstract:

Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.

Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing

Procedia PDF Downloads 49
4109 Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy

Authors: Meisam Moghadasi, Hassan Ali Ozgoli, Foad Farhani

Abstract:

In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated.

Keywords: gas sweetening unit, simulation, MDEA, power recovery turbine, waste-to-energy

Procedia PDF Downloads 178
4108 The Role of Group Size, Public Employees’ Wages and Control Corruption Institutions in a Game-Theoretical Model of Public Corruption

Authors: Pablo J. Valverde, Jaime E. Fernandez

Abstract:

This paper shows under which conditions public corruption can emerge. The theoretical model includes variables such as the public employee wage (w), a control corruption parameter (c), and the group size of interactions (GS) between clusters of public officers and contractors. The system behavior is analyzed using phase diagrams based on combinations of such parameters (c, w, GS). Numerical simulations are implemented in order to contrast analytic results based on Nash equilibria of the theoretical model. Major findings include the functional relationship between wages and network topology, which attempts to reduce the emergence of corrupt behavior.

Keywords: public corruption, game theory, complex systems, Nash equilibrium.

Procedia PDF Downloads 242
4107 Devising a Paradigm for the Assessment of Guilt across Species

Authors: Trisha S. Malhotra

Abstract:

While there exist frameworks to study the induction, manifestation, duration and general nature of emotions like shame, guilt, embarrassment and pride in humans, the same cannot be said for other species. This is because such 'complex' emotions have situational inductions and manifestations that supposedly vary due to differences between and within different species' ethology. This paper looks at the socio-adaptive functions of guilt to posit why this emotion might be observed across varying species. Primarily, the experimental paradigm of guilt-assessment in domesticated dogs is critiqued for lack of ethological consideration in its measurement and analysis. It is argued that a paradigm for guilt-assessment should measure the species-specific prosocial approach behavior instead of the immediate feedback of the 'guilty'. Finally, it is asserted that the origin of guilt is subjective and if it must be studied across a plethora of species, its definition must be tailored to fit accordingly.

Keywords: guilt, assessment, dogs, prosocial approach behavior, empathy, species, ethology

Procedia PDF Downloads 308
4106 Monitoring Potential Temblor Localities as a Supplemental Risk Control System

Authors: Mikhail Zimin, Svetlana Zimina, Maxim Zimin

Abstract:

Without question, the basic method of prevention of human and material losses is the provision for adequate strength of constructions. At the same time, seismic load has a stochastic character. So, at all times, there is little danger of earthquake forces exceeding the selected design load. This risk is very low, but the consequences of such events may be extremely serious. Very dangerous are also occasional mistakes in seismic zoning, soil conditions changing before temblors, and failure to take into account hazardous natural phenomena caused by earthquakes. Besides, it is known that temblors detrimentally affect the environmental situation in regions where they occur, resulting in panic and worsening various disease courses. It may lead to mistakes of personnel of hazardous production facilities like the production and distribution of gas and oil, which may provoke severe accidents. In addition, gas and oil pipelines often have long mileage and cross many perilous zones by contrast with buildings. This situation increases the risk of heavy accidents. In such cases, complex monitoring of potential earthquake localities would be relevant. Even though the number of successful real-time forecasts of earthquakes is not great, it is well in excess, such as may be under random guessing. Experimental performed time-lapse study and analysis consist of searching seismic, biological, meteorological, and light earthquake precursors, processing such data with the help of fuzzy sets, collecting weather information, utilizing a database of terrain, and computing risk of slope processes under the temblor in a given setting. Works were done in a real-time environment and broadly acceptable results took place. Observations from already in-place seismic recording systems are used. Furthermore, a look back study of precursors of known earthquakes is done. Situations before Ashkhabad, Tashkent, and Haicheng seismic events are analyzed. Fairish findings are obtained. Results of earthquake forecasts can be used for predicting dangerous natural phenomena caused by temblors such as avalanches and mudslides. They may also be utilized for prophylaxis of some diseases and their complications. Relevant software is worked out too. It should be emphasized that such control does not require serious financial expenses and can be performed by a small group of professionals. Thus, complex monitoring of potential earthquake localities, including short-term earthquake forecasts and analysis of possible hazardous consequences of temblors, may further the safety of pipeline facilities.

Keywords: risk, earthquake, monitoring, forecast, precursor

Procedia PDF Downloads 23
4105 Optimizing Inanda Dam Using Water Resources Models

Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective and management

Procedia PDF Downloads 573
4104 3D Mesh Coarsening via Uniform Clustering

Authors: Shuhua Lai, Kairui Chen

Abstract:

In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.

Keywords: coarsening, mesh clustering, shape approximation, mesh simplification

Procedia PDF Downloads 380
4103 Research on the Optimization of Satellite Mission Scheduling

Authors: Pin-Ling Yin, Dung-Ying Lin

Abstract:

Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.

Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling

Procedia PDF Downloads 25
4102 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 246
4101 The Quantitative Analysis of the Traditional Rural Settlement Plane Boundary

Authors: Yifan Dong, Xincheng Pu

Abstract:

Rural settlements originate from the accumulation of residential building elements, and their agglomeration forms the settlement pattern and defines the relationship between the settlement and the inside and outside. The settlement boundary is an important part of the settlement pattern. Compared with the simplification of the urban settlement boundary, the settlement of the country is more complex, fuzzy and uncertain, and then presents a rich and diverse boundary morphological phenomenon. In this paper, China traditional rural settlements plane boundary as the research object, using fractal theory and fractal dimension method, quantitative analysis of planar shape boundary settlement, and expounds the research for the architectural design, ancient architecture protection and renewal and development and the significance of the protection of settlements.

Keywords: rural settlement, border, fractal, quantification

Procedia PDF Downloads 249
4100 Characteristics of the Severe Rollover Crashes in the UAE Using In-Depth Crash Investigation Data

Authors: Yaser E. Hawas, Md. Didarul Alam

Abstract:

Rollover crashes are complex events entailing interactions of driver, road, vehicle, and environmental factors. The primary objective of this paper is to present an empirical approach that can be used to characterise the rollover crashes and to identify some of the important factors that may lead to rollovers. Among the studied factors are the vehicle types and the rollover occurrence rate after hitting various barrier types. The carried analysis indicated that 71% of the rollover crashes occurred after impact and the type of rollover initiation is “trip/turn over” (nearly 50%). It was also found that light trucks (LTVs) vehicles are more likely to rollover than the sedan vehicles. Barrier impacts are associated with increased incidence of rollover.

Keywords: empirical, hitting barrier, in-depth crash investigation, rollover, severe crash

Procedia PDF Downloads 372
4099 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.

Procedia PDF Downloads 154
4098 Efficient Management of Construction Logistics: A Challenge to Both Conventional and Technological Systems in the Developing Nations

Authors: Nuruddeen Usman, Ahmad Muhammad Ibrahim

Abstract:

Management of construction logistics at construction sites becomes increasingly complex with rising construction volume, which made it relatively inefficient in the developing nations even with the technological advancement. The objective of this research is to conceptually synthesise the approaches and challenges befall in the course of construction logistic management, with the aim to proffer possible solution to it. Therefore, this study appraised the glitches associated with both conventional and technological methods of construction logistic management that result in its inefficiency. Thus, this investigation found that, both conventional and the technological issues were due to certain obstacles that affect the construction logistic management which resulted into delays, accidents, fraudulent activities, time and cost overrun. Therefore, this study has developed a framework that might bring a lasting solution to the challenges of construction logistic management.

Keywords: construction, conventional, logistic, technological

Procedia PDF Downloads 554
4097 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 83
4096 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
4095 Decrease in Olfactory Cortex Volume and Alterations in Caspase Expression in the Olfactory Bulb in the Pathogenesis of Alzheimer’s Disease

Authors: Majed Al Otaibi, Melissa Lessard-Beaudoin, Amel Loudghi, Raphael Chouinard-Watkins, Melanie Plourde, Frederic Calon, C. Alexandre Castellano, Stephen Cunnane, Helene Payette, Pierrette Gaudreau, Denis Gris, Rona K. Graham

Abstract:

Introduction: Alzheimer disease (AD) is a chronic disorder that affects millions of individuals worldwide. Symptoms include memory dysfunction, and also alterations in attention, planning, language and overall cognitive function. Olfactory dysfunction is a common symptom of several neurological disorders including AD. Studying the mechanisms underlying the olfactory dysfunction may therefore lead to the discovery of potential biomarkers and/or treatments for neurodegenerative diseases. Objectives: To determine if olfactory dysfunction predicts future cognitive impairment in the aging population and to characterize the olfactory system in a murine model expressing a genetic factor of AD. Method: For the human study, quantitative olfactory tests (UPSIT and OMT) have been done on 93 subjects (aged 80 to 94 years) from the Quebec Longitudinal Study on Nutrition and Successful Aging (NuAge) cohort accepting to participate in the ORCA secondary study. The telephone Modified Mini Mental State examination (t-MMSE) was used to assess cognition levels, and an olfactory self-report was also collected. In a separate cohort, olfactory cortical volume was calculated using MRI results from healthy old adults (n=25) and patients with AD (n=18) using the AAL single-subject atlas and performed with the PNEURO tool (PMOD 3.7). For the murine study, we are using Western blotting, RT-PCR and immunohistochemistry. Result: Human Study: Based on the self-report, 81% of the participants claimed to not suffer from any problem with olfaction. However, based on the UPSIT, 94% of those subjects showed a poor olfactory performance and different forms of microsmia. Moreover, the results confirm that olfactory function declines with age. We also detected a significant decrease in olfactory cortical volume in AD individuals compared to controls. Murine study: Preliminary data demonstrate there is a significant decrease in expression levels of the proform of caspase-3 and the caspase substrate STK3, in the olfactory bulb of mice expressing human APOE4 compared with controls. In addition, there is a significant decrease in the expression level of the caspase-9 proform and caspase-8 active fragment. Analysis of the mature neuron marker, NeuN, shows decreased expression levels of both isoforms. The data also suggest that Iba-1 immunostaining is increased in the olfactory bulb of APOE4 mice compared to wild type mice. Conclusions: The activation of caspase-3 may be the cause of the decreased levels of STK3 through caspase cleavage and may play role in the inflammation observed. In the clinical study, our results suggest that seniors are unaware of their olfactory function status and therefore it is not sufficient to measure olfaction using the self-report in the elderly. Studying olfactory function and cognitive performance in the aging population will help to discover biomarkers in the early stage of the AD.

Keywords: Alzheimer's disease, APOE4, cognition, caspase, brain atrophy, neurodegenerative, olfactory dysfunction

Procedia PDF Downloads 258
4094 Designing a Robust Controller for a 6 Linkage Robot

Authors: G. Khamooshian

Abstract:

One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.

Keywords: 3-RRS, 6 linkage, parallel robot, control

Procedia PDF Downloads 159
4093 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 172
4092 Basket Option Pricing under Jump Diffusion Models

Authors: Ali Safdari-Vaighani

Abstract:

Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.

Keywords: basket option, jump diffusion, ‎radial basis function, RBF-PUM

Procedia PDF Downloads 354
4091 STEM Curriculum Development Using Robotics with K-12 Students in Brazil

Authors: Flavio Campos

Abstract:

This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly.

Keywords: STEM curriculum, educational robotics, constructionist approach, education and technology

Procedia PDF Downloads 342
4090 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications

Authors: Andrés Gomez-Casseres, Rubén Contreras

Abstract:

In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.

Keywords: average current control, boost converter, electrical tuning, energy harvesting

Procedia PDF Downloads 762
4089 Sustainable Tourism from a Multicriteria Analysis Perspective

Authors: Olga Blasco-Blasco, Vicente Liern

Abstract:

The development of tourism since the mid-20th century has raised problems of overcrowding, indiscriminate construction in seaside areas and gentrification. Increasingly, the World Tourism Organisation and public institutions are promoting policies that encourage sustainability. From the perspective of sustainability, three types of tourism can be established: traditional tourism, sustainable tourism and sustainable impact tourism. Measuring sustainability is complex due to its multiple dimensions of different relative importance and diversity in nature. In order to try to answer this problem and to identify the benefits of applying policies that promote sustainable tourism, a decision-making analysis will be carried out through the application of a multicriteria analysis method. The proposal is applied to hotel reservations and to the evaluation and management of tourism sustainability in the Spanish Autonomous Communities.

Keywords: sustainable tourism, multicriteria analysis, flexible optimization, composite indicators

Procedia PDF Downloads 311
4088 The Role of Identifications in Women Psychopathology

Authors: Mary Gouva, Elena Dragioti, Evangelia Kotrsotsiou

Abstract:

Family identification has the potential to play a very decisive role in psychopathology. In this study we aimed to investigate the impact of family identifications on female psychopathology. A community sample of 101 women (mean age 20.81 years, SD = 0.91 ranged 20-25) participated to the present study. The girls completed a) the Symptom Check-List Revised (SCL-90) and b) questionnaire concerning socio-demographic information and questions for family identifications. The majority of women reported that they matched to the father in terms of identifications (47.1%). Age and birth order were not contributed on family identifications (F(5) =2.188, p=.062 and F(3)=1.244, p=.299 respectively). Multivariate analysis by using MANCOVA found statistical significant associations between family identifications and domains of psychopathology as provided by SCL-90 (P<05). Our results highlight the role of identifications especially on father and female psychopathology as well as replicate the Freudian perception about the female Oedipus complex.

Keywords: family identification, psychoanalysis, psychopathology, women

Procedia PDF Downloads 323
4087 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems

Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick

Abstract:

This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.

Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms

Procedia PDF Downloads 231
4086 Genomics of Aquatic Adaptation

Authors: Agostinho Antunes

Abstract:

The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of selected marine animal species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

Keywords: comparative genomics, adaptive evolution, bioinformatics, phylogenetics, genome mining

Procedia PDF Downloads 533
4085 High Temperature in Caustic Pretreatment of Gold Locked in the Residue after Filtration from Gold Cyanidation Leaching

Authors: K. L. Kabemba, R. F. Sandenberg

Abstract:

The usual way to desorb gold is by elution with a hot concentrated alkaline solution of sodium cyanide. The high temperature is necessary because the dielectric constant of water decreases with increasing temperature hence the electrostatic forces between charcoal and the gold cyanide complex decreases. High alkalinity and a high concentration of cyanide are necessary for gold desorption because both OH- and CN- ions are preferentially adsorbed. The rate of elution increases with increasing anion concentration but decreases with increasing cation concentration that means the rate of elution passes through a maximum as the concentration of the eluting salt (NaCN, for example) is increased. The anion that gives the best results, the cyanide ion, decomposes fairly rapidly at elevated temperatures (40% in 6 hours, 90% in 24 hours at 95°C).

Keywords: caustic, cyanide, gold, temperature

Procedia PDF Downloads 387
4084 Synthesis and Application of Oligosaccharides Representing Plant Cell Wall Polysaccharides

Authors: Mads H. Clausen

Abstract:

Plant cell walls are structurally complex and contain a larger number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins such as enzymes, cell surface lectins and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from our group and provide examples from studies of their interactions with proteins.

Keywords: oligosaccharides, carbohydrate chemistry, plant cell walls, carbohydrate-acting enzymes

Procedia PDF Downloads 312