Search results for: Staebler-Wronski (S-W) degradation effect
1688 Cyclic Etching Process Using Inductively Coupled Plasma for Polycrystalline Diamond on AlGaN/GaN Heterostructure
Authors: Haolun Sun, Ping Wang, Mei Wu, Meng Zhang, Bin Hou, Ling Yang, Xiaohua Ma, Yue Hao
Abstract:
Gallium nitride (GaN) is an attractive material for next-generation power devices. It is noted that the performance of GaN-based high electron mobility transistors (HEMTs) is always limited by the self-heating effect. In response to the problem, integrating devices with polycrystalline diamond (PCD) has been demonstrated to be an efficient way to alleviate the self-heating issue of the GaN-based HEMTs. Among all the heat-spreading schemes, using PCD to cap the epitaxial layer before the HEMTs process is one of the most effective schemes. Now, the mainstream method of fabricating the PCD-capped HEMTs is to deposit the diamond heat-spreading layer on the AlGaN surface, which is covered by a thin nucleation dielectric/passivation layer. To achieve the pattern etching of the diamond heat spreader and device preparation, we selected SiN as the hard mask for diamond etching, which was deposited by plasma-enhanced chemical vapor deposition (PECVD). The conventional diamond etching method first uses F-based etching to remove the SiN from the special window region, followed by using O₂/Ar plasma to etch the diamond. However, the results of the scanning electron microscope (SEM) and focused ion beam microscopy (FIB) show that there are lots of diamond pillars on the etched diamond surface. Through our study, we found that it was caused by the high roughness of the diamond surface and the existence of the overlap between the diamond grains, which makes the etching of the SiN hard mask insufficient and leaves micro-masks on the diamond surface. Thus, a cyclic etching method was proposed to solve the problem of the residual SiN, which was left in the F-based etching. We used F-based etching during the first step to remove the SiN hard mask in the specific region; then, the O₂/Ar plasma was introduced to etch the diamond in the corresponding region. These two etching steps were set as one cycle. After the first cycle, we further used cyclic etching to clear the pillars, in which the F-based etching was used to remove the residual SiN, and then the O₂/Ar plasma was used to etch the diamond. Whether to take the next cyclic etching depends on whether there are still SiN micro-masks left. By using this method, we eventually achieved the self-terminated etching of the diamond and the smooth surface after the etching. These results demonstrate that the cyclic etching method can be successfully applied to the integrated preparation of polycrystalline diamond thin films and GaN HEMTs.Keywords: AlGaN/GaN heterojunction, O₂/Ar plasma, cyclic etching, polycrystalline diamond
Procedia PDF Downloads 1341687 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses
Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal
Abstract:
Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality
Procedia PDF Downloads 2861686 The Effects on Hand Function with Robot-Assisted Rehabilitation for Children with Cerebral Palsy: A Pilot Study
Authors: Fen-Ling Kuo, Hsin-Chieh Lee, Han-Yun Hsiao, Jui-Chi Lin
Abstract:
Background: Children with cerebral palsy (CP) usually suffered from mild to maximum upper limb dysfunction such as having difficulty in reaching and picking up objects, which profoundly affects their participation in activities of daily living (ADLs). Robot-assisted rehabilitation provides intensive physical training in improving sensorimotor function of the hand. Many researchers have extensively studied the effects of robot-assisted therapy (RT) for the paretic upper limb in patients with stroke in recent years. However, few studies have examined the effect of RT on hand function in children with CP. The purpose of this study is to investigate the effectiveness of Gloreha Sinfonia, a robotic device with a dynamic arm support system mainly focus on distal upper-limb training, on improvements of hand function and ADLs in children with CP. Methods: Seven children with moderate CP were recruited in this case series study. RT using Gloreha Sinfonia was performed 2 sessions per week, 60 min per session for 6 consecutive weeks, with 12 times in total. Outcome measures included the Fugl-Meyer Assessment-upper extremity (FMA-UE), the Box and Block Test, the electromyography activity of the extensor digitorum communis muscle (EDC) and brachioradialis (BR), a grip dynamometer for motor evaluation, and the ABILHAND-Kids for measuring manual ability to manage daily activities, were performed at baseline, after 12 sessions (end of treatment) and at the 1-month follow-up. Results: After 6 weeks of robot-assisted treatment of hand function, there were significant increases in FMA-UE shoulder/elbow scores (p=0.002), FMA-UE wrist/hand scores (p=0.002), and FMA-UE total scores (p=0.002). There were also significant improvements in the BR mean value (p = 0.015) and electrical agonist-antagonist muscle ratio (p=0.041) in grasping a 1-inch cube task. These gains were maintained for a month after the end of the intervention. Conclusion: RT using Gloreha Sinfonia for hand function training may contribute toward the improvement of upper extremity function and efficacy in recruiting BR muscle in children with CP. The results were maintained at one month after intervention.Keywords: activities of daily living, cerebral palsy, hand function, robotic rehabilitation
Procedia PDF Downloads 1141685 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis
Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu
Abstract:
Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter
Procedia PDF Downloads 1681684 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.Keywords: QFN packages, exposed pads, junction temperature, thermal management and measurements
Procedia PDF Downloads 2561683 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis
Authors: Asif Arshid, Ying Huang, Denver Tolliver
Abstract:
Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade
Procedia PDF Downloads 1391682 Identification and Optimisation of South Africa's Basic Access Road Network
Authors: Diogo Prosdocimi, Don Ross, Matthew Townshend
Abstract:
Road authorities are mandated within limited budgets to both deliver improved access to basic services and facilitate economic growth. This responsibility is further complicated if maintenance backlogs and funding shortfalls exist, as evident in many countries including South Africa. These conditions require authorities to make difficult prioritisation decisions, with the effect that Road Asset Management Systems with a one-dimensional focus on traffic volumes may overlook the maintenance of low-volume roads that provide isolated communities with vital access to basic services. Given these challenges, this paper overlays the full South African road network with geo-referenced information for population, primary and secondary schools, and healthcare facilities to identify the network of connective roads between communities and basic service centres. This connective network is then rationalised according to the Gross Value Added and number of jobs per mesozone, administrative and functional road classifications, speed limit, and road length, location, and name to estimate the Basic Access Road Network. A two-step floating catchment area (2SFCA) method, capturing a weighted assessment of drive-time to service centres and the ratio of people within a catchment area to teachers and healthcare workers, is subsequently applied to generate a Multivariate Road Index. This Index is used to assign higher maintenance priority to roads within the Basic Access Road Network that provide more people with better access to services. The relatively limited incidence of Basic Access Roads indicates that authorities could maintain the entire estimated network without exhausting the available road budget before practical economic considerations get any purchase. Despite this fact, a final case study modelling exercise is performed for the Namakwa District Municipality to demonstrate the extent to which optimal relocation of schools and healthcare facilities could minimise the Basic Access Road Network and thereby release budget for investment in roads that best promote GDP growth.Keywords: basic access roads, multivariate road index, road prioritisation, two-step floating catchment area method
Procedia PDF Downloads 2311681 The Effect of Parathyroid Hormone on Aldosterone Secretion in Patients with Primary Hyperparathyroidism
Authors: Branka Milicic Stanic, Romana Mijovic
Abstract:
In primary hyperparathyroidism, an increased risk of developing cardiovascular disease may exist due to increased activity of the renin-angiotensin-aldosterone system (RAAS). In adenomatous altered tissue of parathyroid gland, compared to normal tissue, there are two to fourfold increase in the expression of type 1 angiotensin II receptors. As there is a clear evidence of the independent role of aldosterone on the cardiovascular system, the aim of this study was to evaluate the existence of an association between aldosterone secretion and parathyroid hormone in patients with primary hyperparathyroidism. This study included 48 patients with elevated parathyroid hormone who had come to the Departement of Nuclear Medicine, Clinical Center of Vojvodina, for Parathyroid Scintigraphy. The control group consisted of 30 healthy subjects who matched age and gender to the study group. All the results were statistically processed by statistical package STATISTICA 14 (Statsoft Inc,Tulsa, OK, USA). The survey was conducted between February 2017 and April 2018 at the Departement of Nuclear Medicine and at the Departement for Endocinology Diagnoistics, in Clinical Center of Vojvodina, Novi Sad. Compared to the control group, the study group had statistically significantly higher values of aldosterone (p=0.028), total calcium (p=0.01), ionized calcium (p=0.003) and parathyroid hormone (N-TACT PTH) (p=0.00), while statistically a significant lower levels in the study group were for phosphorus (p=0.003) and vitamin D (p=0.04). A linear correlation analysis in the study group revealed a statistically significant degree of positive correlation between renin and N-TACT PTH (r=0.688, p<0.05); renin and calcium (r=0.673, p<0.05) and renin and ionized calcium (r=0.641, p<0.05). Serum aldosterone and parathyroid hormone levels (N-TACT) were correlated positively in patients with primary hyperparathyroidism (r=0.509, p<0.05). According to the linear correlation analysis in the control group, aldosterone showed no positive correlation with N-TACT PTH (r=-0.285, p>0.05), as well as total and ionized calcium (r=-0.200, p>0.05; r=-0.313, p>0.05). In multivariate regression analysis of the study group, the strongest predictive variable of aldosterone secretion was N-TACT PTH (p=0.011). Aldosterone correlated positively to PTH levels in patients with primary hyperparathyroidism, and the fact is that in these patients aldosterone might be a key mediator of cardiovascular symptoms. All this knowledge should help to find new treatments to prevent cardiovascular disease.Keywords: aldosterone, hyperparathyroidism, parathyroid hormone, parathyroid gland
Procedia PDF Downloads 1401680 Diagrid Structural System
Authors: K. Raghu, Sree Harsha
Abstract:
The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation.Keywords: diagrid, bracings, structural, building
Procedia PDF Downloads 3861679 Effects of Post-sampling Conditions on Ethanol and Ethyl Glucuronide Formation in the Urine of Diabetes Patients
Authors: Hussam Ashwi, Magbool Oraiby, Ali Muyidi, Hamad Al-Oufi, Mohammed Al-Oufi, Adel Al-Juhani, Salman Al-Zemaa, Saeed Al-Shahrani, Amal Abuallah, Wedad Sherwani, Mohammed Alattas, Ibraheem Attafi
Abstract:
Ethanol must be accurately identified and quantified to establish their use and contribution in criminal cases and forensic medicine. In some situations, it may be necessary to reanalyze an old specimen; therefore, it is essential to comprehend the effect of storage conditions and how long the result of a reanalyzed specimen can be reliable and reproducible. Additionally, ethanol can be produced via multiple in vivo and in vitro processes, particularly in diabetic patients, and the results can be affected by storage conditions and time. In order to distinguish between in vivo and in vitro alcohol generation in diabetes patient urine samples, various factors should be considered. This study identifies and quantifies ethanol and EtG in diabetic patients' urine samples stored in two different settings over time. Ethanol levels were determined using gas chromatography-headspace (GC-HS), and ethyl glucuronide (EtG) levels were determined using the immunoassay (RANDOX) technique. Ten urine specimens were collected and placed in a standard container. Each specimen was separated into two containers. The specimens were divided into two groups: those kept at room temperature (25 °C) and those kept cold (2-8 °C). Ethanol and EtG levels were determined serially over a two-week period. Initial results showed that none of the specimens tested positive for ethanol or EtG. At room temperature (15-25 °C), 7 and 14 days after the sample was taken, the average concentration of ethanol increased from 1.7 mg/dL to 2 mg/dL, and the average concentration of EtG increased from 108 ng/mL to 186 ng/mL. At 2–8 °C, the average ethanol concentration was 0.4 and 0.5 mg/dL, and the average EtG concentration was 138 and 124 ng/mL seven and fourteen days after the sample was collected, respectively. When ethanol and EtG levels were determined 14 days post collection, they were considerably lower than when stored at room temperature. A considerable increase in EtG concentrations (14-day range 0–186 ng/mL) is produced during room-temperature storage, although negative initial results for all specimens. Because EtG might be produced after a sampling collection, it is not a reliable indicator of recent alcohol consumption. Given the possibility of misleading EtG results due to in vitro EtG production in the urine of diabetic patients.Keywords: ethyl glucuronide, ethanol, forensic toxicology, diabetic
Procedia PDF Downloads 1231678 Investigation Two Polymorphism of hTERT Gene (Rs 2736098 and Rs 2736100) and miR- 146a rs2910164 Polymorphism in Cervical Cancer
Authors: Hossein Rassi, Alaheh Gholami Roud-Majany, Zahra Razavi, Massoud Hoshmand
Abstract:
Cervical cancer is multi step disease that is thought to result from an interaction between genetic background and environmental factors. Human papillomavirus (HPV) infection is the leading risk factor for cervical intraepithelial neoplasia (CIN)and cervical cancer. In other hand, some of hTERT and miRNA polymorphism may plays an important role in carcinogenesis. This study attempts to clarify the relation of hTERT genotypes and miR-146a genotypes in cervical cancer. Forty two archival samples with cervical lesion retired from Khatam hospital and 40 sample from healthy persons used as control group. A simple and rapid method was used to detect the simultaneous amplification of the HPV consensus L1 region and HPV-16,-18, -11, -31, 33 and -35 along with the b-globin gene as an internal control. We use Multiplex PCR for detection of hTERT and miR-146a rs2910164 genotypes in our lab. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Cervix lesions were collected from 42 patients with Squamous metaplasia, cervical intraepithelial neoplasia, and cervical carcinoma. Successful DNA extraction was assessed by PCR amplification of b-actin gene (99bp). According to the results, hTERT ( rs 2736098) GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of cervical cancer in the study population. In this study, we detected 13 HPV 18 from 42 cervical cancer. The connection between several SNP polymorphism and human virus papilloma in rare researches were seen. The reason of these differences in researches' findings can result in different kinds of races and geographic situations and also differences in life grooves in every region. The present study provided preliminary evidence that a p53 GG genotype and miR-146a rs2910164 CC genotype may effect cervical cancer risk in the study population, interacting synergistically with HPV 18 genotype. Our results demonstrate that the testing of hTERT rs 2736098 genotypes and miR-146a rs2910164 genotypes in combination with HPV18 can serve as major risk factors in the early identification of cervical cancers. Furthermore, the results indicate the possibility of primary prevention of cervical cancer by vaccination against HPV18 in Iran.Keywords: polymorphism of hTERT gene, miR-146a rs2910164 polymorphism, cervical cancer, virus
Procedia PDF Downloads 3211677 Transformational Leadership and Self-Efficacy of Academic Heads in the Implementation of a Customized English Language Curriculum
Authors: Sonia Arradaza-Pajaron
Abstract:
This study examined the relationship between transformational leadership (TL) and self-efficacy (SE) of academic heads in the implementation of a customized English language curriculum (CELC) among technological state universities and colleges in Leyte provinces and Biliran, Philippines. Results manifested that academic leaders practiced transformational leadership and are self-efficacious enough but with only moderate level in the effectiveness of CELC implementation. It was found out; further, that of the four identified transformational leadership components, except idealized influence, three of which demonstrated a significant relationship with CELC component variables, although in varying degree. Moreover, self-efficacy sources, especially vicarious experiences and verbal persuasion manifested moderate to high significant relationships with effective CELC curriculum implementation. Further, verbal persuasion and physiological/emotional condition manifested significant relationship with CELC-resource and CELC-contextual/community influence, respectively. Regression analysis showed that TL-individualized consideration component explained wider extent when correlated with CELC contextual/community components, while self-efficacy source-verbal persuasion demonstrated a wider extent with the three CELC components, namely; resource, process and physiological/emotional condition. Results further revealed that TL-individualized consideration manifested lesser influence with CELC implementation, while SE-verbal persuasion demonstrated stronger influence or effect on CELC-process, CELC-physiological/emotional, while lesser influence with CELC-resource. This implies that academic leaders, in order to carry out effective curriculum implementation, should provide more emphasis on school culture, its beliefs, practices and academic atmosphere but most of all empower human resources who are considered the backbone of the work place and can be directly affected by any curriculum shifts and challenges. To realize this, more values-skilled training programs must be designed for academic heads are needed to equip them with the necessary leadership skills, beliefs in their capacity to lead and their own enhance emotional well-being in leading subordinates and facilitating curriculum implementation.Keywords: Customized English Language curriculum, CELC, self-efficacy, transformational leadership, values-skilled training
Procedia PDF Downloads 1221676 Desirable Fatty Acids in Meat of Cattle Fed Different Levels of Lipid-Based Diets
Authors: Tiago N. P. Valente, Erico S. Lima, Roberto O. Roça
Abstract:
Introduction: Research has stimulated animal production studies on solutions to decrease the level of saturated fatty acids and increase unsaturated in foods of animal origin. The objective of this study was to determine the effect of the dietary inclusion of lipid-based diets on the fatty acid profiles from finishing cattle. Materials and Methods: The study was carried out in the Chapéu de Couro Farm in Aguaí/SP, Brazil. A group of 39 uncastrated Nellore cattle. Mean age of the animals was 36 months, and initial mean live weight was 494.1 ± 10.1. Animals were randomly assigned to one of three treatments, based on dry matter: feed with control diet 2.50% cottonseed, feed with 11.50% cottonseed, and feed with 3.13% cottonseed added of 1.77% protected lipid. Forage:concentrate ratio was 50:50 on a dry matter basis. Sugar cane chopped was used as forage. After 63 days mean final live weight was 577.01 kg ± 11.34. After slaughter, carcasses were identified and divided into two halves that were kept in a cold chamber for 24 hours at 2°C. Then, part of the M. longissimus thoracis of each animal was removed between the 12th and 13th rib of the left half carcass. The samples steaks were 2.5 cm thick and were identified and stored frozen in a freezer at -18°C. The analysis of methyl esters of fatty acids was carried out in a gas chromatograph. Desirable fatty acids (FADes) were determined by the sum of unsaturated fatty acids and stearic acid (C18:0). Results and Discussion: No differences (P>0.05) between the diets for the proportion of FADes in the meat of the animals in this study, according to the lipid sources used. The inclusion of protected fat or cottonseed in the diet did not change the proportion of FADes in the meat. The proportion mean of FADes in meat in the present study were: as pentadecanoic acid (C15:1 = 0.29%), palmitoleic acid (C16:1 = 4.26%), heptadecanoic acid (C17:1 = 0.07%), oleic acid (C18:1n9c = 37.32%), γ-linolenic acid (0.94%) and α-linolenic acid (1.04%), elaidic acid (C18:1n9t = 0.50%), eicosatrienoic acid (C20:3n3 = 0.03%), eicosapentaenoic acid (C20:5n3 = 0.04%), erucic acid (C22:1n9 = 0.89%), docosadienoic acid (C22:2 = 0.04%) and stearic acid (C18:0 = 21.53%). Conclusions: The add the cottonseed or protected lipid in diet is not affected fatty acids profiles the desirable fatty acids in meat. Acknowledgements: IFGoiano, FAPEG and CNPq (Brazil).Keywords: beef quality, cottonseed, protected fat, unsaturated fatty acids
Procedia PDF Downloads 2911675 Effect of Tissue Preservation Chemicals on Decomposition in Different Soil Types
Authors: Onyekachi Ogbonnaya Iroanya, Taiye Abdullahi Gegele, Frank Tochukwu Egwuatu
Abstract:
Introduction: Forensic taphonomy is a multifaceted area that incorporates decomposition, chemical and biological cadaver exposure in post-mortem event chronology and reconstruction to predict the Post Mortem Interval (PMI). The aim of this study was to evaluate the integrity of DNA extracted from the remains of embalmed decomposed Sus domesticus tissues buried in different soil types. Method: A total of 12 limbs of Sus domesticus weighing between 0.7-1.4 kg were used. Each of the samples across the groups was treated with 10% formaldehyde, absolute methanol and 50% Pine oil for 24 hours before burial except the control samples, which were buried immediately. All samples were buried in shallow simulated Clay, Sandy and Loamy soil graves for 12 months. The DNA for each sample was extracted and quantified with Nanodrop Spectrophotometer (6305 JENWAY spectrometers). The rate of decomposition was examined through the modified qualitative decomposition analysis. Extracted DNA was amplified through PCR and bands visualized via gel electrophoresis. A biochemical enzyme assay was done for each burial grave soil. Result: The limbs in all burial groups had lost weight over the burial period. There was a significant increase in the soil urease level in the samples preserved in formaldehyde across the 3 soil type groups (p≤0.01). Also, the control grave soils recorded significantly higher alkaline phosphatase, dehydrogenase and calcium carbonate values compared to experimental grave soils (p≤0.01). The experimental samples showed a significant decrease in DNA concentration and purity when compared to the control groups (p≤0.01). Obtained findings of the soil biochemical analysis showed the embalming treatment altered the relationship between organic matter decomposition and soil biochemical properties as observed in the fluctuations that were recorded in the soil biochemical parameters. The PCR amplified DNA showed no bands on the gel electrophoresis plates. Conclusion: In criminal investigations, factors such as burial grave soil, grave soil biochemical properties, antemortem exposure to embalming chemicals should be considered in post-mortem interval (PMI) determination.Keywords: forensic taphonomy, post-mortem interval (PMI), embalmment, decomposition, grave soil
Procedia PDF Downloads 1661674 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki
Abstract:
Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control
Procedia PDF Downloads 1531673 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids
Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho
Abstract:
In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model
Procedia PDF Downloads 1151672 Comparison of Computerized Dynamic Posturography and Functional Head Impulse Test Scores after of Hatha Yoga Practice and Resistance-Based Aerobic Exercise in Adult Female Yoga Practitioners
Authors: Çağla Aras, Kübra Bi̇nay, Aysberg Şamil önlü, Mine Baydan Aran, Dicle Aras
Abstract:
The purpose of the present research was to investigate the acute effects of 30-min hatha yoga and 30-min resistance-based aerobic exercise (RBAE) on computerized dynamic posturography (CDP) and functional head impulse test (fHIT) scores in adult female yoga practitioners. To reach this aim, ten participants executed CDP and fHIT three times in total: at rest, after yoga, and after RBAE. The yoga practice lasted a total of 30 minutes, including 25 min of asanas and 5 minutes of savasana. RBAE lasted a total of 30 minutes with an intensity of 70-75% of the heart rate reserve method. When the results were examined, no change was observed in any parameters of the fHIT scores due to resting or exercise implementation. On the contrary, some changes were observed in CDP test results depending on the type of exercise. The post-RBAE somatosensory and visual systems values were higher than resting (p<0.05). The composite balance score derived after RBAE was found to be improved when compared to post-yoga and resting values (p<0.01). Lastly, the post-RBAE vestibular system score was found to be statistically significantly higher than the post-Yoga values. In addition, it was observed that body composition parameters, especially decreasing BW, LBM, PBF, MBF and TBW, were associated with improved postural stability values. According to the results, it can be stated that neither hatha yoga nor resistance-based aerobic exercise has an acute effect on functional vestibulo-ocular reflex. In addition, although there was no change in balance level after yoga, it was observed that RBAE performed at 70-75% of the heart rate reserve and for 30 minutes had positive acute effects on postural stability and balance.Keywords: hatha yoga, resistance training, aerobic training, high intensity training, computerized dynamic posturography, functional head impulse test
Procedia PDF Downloads 541671 Women’s Empowerment on Modern Contraceptive Use in Poor-Rich Segment of Population: Evidence From South Asian Countries
Authors: Muhammad Asim, Mehvish Amjad
Abstract:
Background: Less than half of women in South Asia (SA) use any modern contraceptive method which leads to a huge burden of unintended pregnancies, unsafe abortions, maternal deaths, and socioeconomic loss. Women empowerment plays a pivotal role in improving various health seeking behaviours, including contraceptive use. The objective of this study to explore the association between women's empowerment and modern contraceptive, among rich and poor segment of population in SA. Methods: We used the most recent, large-scale, demographic health survey data of five South Asian countries, namely Afghanistan, Pakistan, Bangladesh, India, and Nepal. The outcome variable was the current use of modern contraceptive methods. The main exposure variable was a combination (interaction) of socio-economic status (SES) and women’s level of empowerment (low, medium, and high), where SES was bifurcated into poor and rich; and women empowerment was divided into three categories: decision making, attitude to violence and social independence. Moreover, overall women empowerment indicator was also created by using three dimensions of women empowerment. We applied both descriptive statistics and multivariable logistic regression techniques for data analyses. Results: Most of the women possessed ‘medium’ level of empowerment across South Asian Countries. The lowest attitude to violence empowerment was found in Afghanistan, and the lowest social independence empowerment was observed in Bangladesh across SA. However, Pakistani women have the lowest decision-making empowerment in the region. The lowest modern contraceptive use (22.1%) was found in Afghanistan and the highest (53.2%) in Bangladesh. The multivariate results depict that the overall measure of women empowerment does not affect modern contraceptive use among poor and rich women in most of South Asian countries. However, the decision-making empowerment plays a significant role among both poor and rich women to use modern contraceptive methods across South Asian countries. Conclusions: The effect of women’s empowerment on modern contraceptive use is not consistent across countries, and among poor and rich segment of population. Of the three dimensions of women’s empowerment, the autonomy of decision making in household affairs emerged as a stronger determinant of mCPR as compared with social independence and attitude towards violence against women.Keywords: women empowerment, modern contraceptive use, South Asia, socio economic status
Procedia PDF Downloads 801670 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity
Procedia PDF Downloads 1811669 Passive Aeration of Wastewater: Analytical Model
Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy
Abstract:
Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.Keywords: aeration, analytical, passive, wastewater
Procedia PDF Downloads 2091668 Lateral Capacity of Helical-Pile Groups Subjected to Bearing Combined Loads
Authors: Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Azizb, Mona Fawzy Aldaghma
Abstract:
Helical piles have earned considerable attention as an effective deep foundation alternative due to their rapid installation process and their dual purpose in compression and tension. These piles find common uses as foundations for structures like solar panels, wind turbines, offshore platforms, and some kinds of retaining walls. These structures usually transfer different combinations of loads to their helical-pile foundations in the form of axial and lateral loads. Extensive research has been conducted to investigate and understand the behavior of these piles under the influence of either axial or lateral loads. However, the impacts of loading patterns that may act on the helical piles as combinations of axial compression and lateral loads still need more efforts of research work. This paper presents the results of an experimental (Lab tests) and numerical (PLAXIS-3D) study performed on vertical helical-pile groups under the action of combined loads as axial compression (bearing loads), acting successively with lateral (horizontal) loads. The study aims to clarify the effects of key factors, like helix location and direction of lateral load, on the lateral capacity of helical-pile groups and, consequently, on group efficiency. Besides the variation of helix location and lateral load direction, three patterns of successive bearing combined loads were considered, in which the axial vertical compression load was either zero, V1 or V2, whereas the lateral horizontal loads were varied under each vertical compression load. The study concluded that the lateral capacity of the helical-pile group is significantly affected by helix location within the length of the pile shaft. The optimal lateral performance is achieved with helices at a depth ratio of H/L = 0.4. Furthermore, groups of rectangular plan distribution exhibit greater lateral capacity if subjected to lateral horizontal load in the direction of its long axis. Additionally, the research emphasizes that the presence of vertical compression loading can enhance the lateral capacity of the group. This enhancement depends on the value of the vertical compression load, lateral load direction, and helix location, which highlights the complex interaction effect of these factors on the efficiency of helical-pile groups.Keywords: helical piles, experimental, numerical, lateral loading, group efficiency
Procedia PDF Downloads 321667 The Ratio of Second to Fourth Digit Length Correlates with Cardiorespiratory Fitness in Male College Students Men but Not in Female
Authors: Cheng-Chen Hsu
Abstract:
Background: The ratio of the length of the second finger (index finger, 2D) to the fourth finger (ring finger, 4D) (2D:4D) is a putative marker of prenatal hormones. A low 2D:4D ratio is related to high prenatal testosterone (PT) levels. Physiological research has suggested that a low 2D:4D ratio is correlated with high sports ability. Aim: To examine the association between cardiorespiratory fitness and 2D:4D. Methods: Assessment of 2D:4D; Images of hands were collected from participants using a computer scanner. Hands were placed lightly on the surface of the plate. Image analysis was performed using Image-Pro Plus 5.0 software. Feature points were marked at the tip of the finger and at the center of the proximal crease on the second and fourth digits. Actual measurement was carried out automatically, 2D:4D was calculated by dividing 2nd by 4th digit length. YMCA 3-min Step Test; The test involves stepping up and down at a rate of 24 steps/min for 3 min; a tape recording of the correct cadence (96 beats/min) is played to assist the participant in keeping the correct pace. Following the step test, the participant immediately sits down and, within 5 s, the tester starts counting the pulse for 1 min. The score for the test, the total 1-min postexercise heart rate, reflects the heart’s ability to recover quickly. Statistical Analysis ; Pearson’s correlation (r) was used for assessing the relationship between age, physical measurements, one-minute heart rate after YMCA 3-minute step test (HR) and 2D:4D. An independent-sample t-test was used for determining possible differences in HR between subjects with low and high values of 2D:4D. All statistical analyses were carried out with SPSS 18 for Window. All P-values were two-tailed at P = 0.05, if not reported otherwise. Results: A median split by 2D:4D was applied, resulting in a high and a low group. One-minute heart rate after YMCA 3-minute step test was significantly difference between groups of male right-hand 2D:4D (p = 0.024). However, no difference in left-hand 2D:4D values between groups in male, and no digit ratio difference between groups in female. Conclusion: The results showed that cardiopulmonary fitness is related to right 2D:4D, only in men. We argue that prenatal testosterone may have an effect on cardiorespiratory fitness in male but not in female.Keywords: college students, digit ratio, finger, step test, fitness
Procedia PDF Downloads 2751666 Emergency Multidisciplinary Continuing Care Case Management
Authors: Mekroud Amel
Abstract:
Emergency departments are known for the workload, the variety of pathologies and the difficulties in their management with the continuous influx of patients The role of our service in the management of patients with two or three mild to moderate organ failures, involving several disciplines at the same time, as well as the effect of this management on the skills and efficiency of our team has been demonstrated Borderline cases between two or three or even more disciplines, with instability of a vital function, which have been successfully managed in the emergency room, the therapeutic procedures adopted, the consequences on the quality and level of care delivered by our team, as well as that the logistical consequences, and the pedagogical consequences are demonstrated. The consequences found are Positive on the emergency teams, in rare situations are negative Regarding clinical situations, it is the entanglement of hemodynamic distress with right, left or global participation, tamponade, low flow with acute pulmonary edema, and/or state of shock With respiratory distress with more or less profound hypoxemia, with haematosis disorder related to a bacterial or viral lung infection, pleurisy, pneumothorax, bronchoconstrictive crisis. With neurological disorders such as recent stroke, comatose state, or others With metabolic disorders such as hyperkalaemia renal insufficiency severe ionic disorders with accidents with anti vitamin K With or without septate effusion of one or more serous membranes with or without tamponade It’s a Retrospective, monocentric, descriptive study Period 05.01.2022 to 10.31.2022 the purpose of our work: Search for a statistically significant link between the type of moderate to severe pathology managed in the emergency room whose problems are multivisceral on the efficiency of the healthcare team and its level of care and optional care offered for patients Statistical Test used: Chi2 test to prove the significant link between the resolution of serious multidisciplinary cases in the emergency room and the effectiveness of the team in the management of complicated cases Search for a statistically significant link : The management of the most difficult clinical cases for organ specialties has given general practitioner emergency teams a great perspective and has been able to improve their efficiency in the face of emergencies receivedKeywords: emergency care teams, management of patients with dysfunction of more than one organ, learning curve, quality of care
Procedia PDF Downloads 801665 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents
Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri
Abstract:
The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC
Procedia PDF Downloads 3521664 A Simulated Evaluation of Model Predictive Control
Authors: Ahmed AlNouss, Salim Ahmed
Abstract:
Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)
Procedia PDF Downloads 4071663 Empirical Investigation of Barriers to Industrial Energy Conservation Measures in the Manufacturing Small and Medium Enterprises (SME's) of Pakistan
Authors: Muhammad Tahir Hassan, Stas Burek, Muhammad Asif, Mohamed Emad
Abstract:
Industrial sector in Pakistan accounts for 25% of total energy consumption in the country. The performance of this sector has been severely affected due to the adverse effect of current energy crises in the country. Energy conservation potentials of Pakistan’s industrial sectors through energy management can save wasted energy which would ultimately leads to economic and environmental benefits. However due to lack of financial incentives of energy efficiency and absence of energy benchmarking within same industrial sectors are some of the main challenges in the implementation of energy management. In Pakistan, this area has not been adequately explored, and there is a lack of focus on the need for industrial energy efficiency and proper management. The main objective of this research is to evaluate the current energy management performance of Pakistani industrial sector and empirical investigation of the existence of various barriers to industrial energy efficiency. Data was collected from the respondents of 192 small and medium-sized enterprises (SME’s) of Pakistan i.e. foundries, textile, plastic industries, light engineering, auto and spare parts and ceramic manufacturers and analysed using Statistical Package for the Social Sciences (SPSS) software. Current energy management performance of manufacturing SME’s in Pakistan has been evaluated by employing two significant indicators, ‘Energy Management Matrix’ and ‘pay-off criteria’, with modified approach. Using the energy management matrix, energy management profiles of overall industry and the individual sectors have been drawn to assess the energy management performance and identify the weak and strong areas as well. Results reveal that, energy management practices in overall surveyed industries are at very low level. Energy management profiles drawn against each sector suggest that performance of textile sector is better among all the surveyed manufacturing SME’s. The empirical barriers to industrial energy efficiency have also been ranked according to the overall responses. The results further reveal that there is a significant relationship exists among the industrial size, sector type and nature of barriers to industrial energy efficiency for the manufacturing SME’s in Pakistan. The findings of this study may help the industries and policy makers in Pakistan to formulate a sustainable energy policy to support industrial energy efficiency keeping in view the actual existing energy efficiency scenario in the industrial sector.Keywords: barriers, energy conservation, energy management profile, environment, manufacturing SME's of Pakistan
Procedia PDF Downloads 2901662 Determination of the Toxicity of a Lunar Dust Simulant on Human Alveolar Epithelial Cells and Macrophages in vitro
Authors: Agatha Bebbington, Terry Tetley, Kathryn Hadler
Abstract:
Background: Astronauts will set foot on the Moon later this decade, and are at high risk of lunar dust inhalation. Freshly-fractured lunar dust produces reactive oxygen species in solution, which are known to cause cellular damage and inflammation. Cytotoxicity and inflammatory mediator release was measured in pulmonary alveolar epithelial cells (cells that line the gas-exchange zone of the lung) exposed to a lunar dust simulant, LMS-1. It was hypothesised that freshly-fractured LMS-1 would result in increased cytotoxicity and inflammatory mediator release, owing to the angular morphology and high reactivity of fractured particles. Methods: A human alveolar epithelial type 1-like cell line (TT1) and a human macrophage-like cell line (THP-1) were exposed to 0-200μg/ml of unground, aged-ground, and freshly-ground LMS-1 (screened at <22μm). Cell viability, cytotoxicity, and inflammatory mediator release (IL-6, IL-8) were assessed using MMT, LDH, and ELISA assays, respectively. LMS-1 particles were characterised for their size, surface area, and morphology before and after grinding. Results: Exposure to LMS-1 particles did not result in overt cytotoxicity in either TT1 epithelial cells or THP-1 macrophage-like cells. A dose-dependent increase in IL-8 release was observed in TT1 cells, whereas THP-1 cell exposure, even at low particle concentrations, resulted in increased IL-8 release. Both cytotoxic and pro-inflammatory responses were most marked and significantly greater in TT1 and THP-1 cells exposed to freshly-fractured LMS-1. Discussion: LMS-1 is a novel lunar dust simulant; this is the first study to determine its toxicological effects on respiratory cells in vitro. An increased inflammatory response in TT1 and THP-1 cells exposed to ground LMS-1 suggests that low particle size, increased surface area, and angularity likely contribute to toxicity. Conclusions: Evenlow levels of exposure to LMS-1 could result in alveolar inflammation. This may have pathological consequences for astronauts exposed to lunar dust on future long-duration missions. Future research should test the effect of low-dose, intermittent lunar dust exposure on the respiratory system.Keywords: lunar dust, LMS-1, lunar dust simulant, long-duration space travel, lunar dust toxicity
Procedia PDF Downloads 2141661 Public Health Emergency Management (PHEM) to COVID-19 Pandemic in North-Eastern Part of Thailand
Authors: Orathai Srithongtham, Ploypailin Mekathepakorn, Tossaphong Buraman, Pontida Moonpradap, Rungrueng Kitpati, Chulapon Kratet, Worayuth Nak-ai, Suwaree Charoenmukkayanan, Peeranuch Keawkanya
Abstract:
The COVID-19 pandemic was effect to the health security of the Thai people. The PHEM principle was essential to the surveillance, prevention, and control of COVID-19. This study aimed to present the process of prevention and control of COVID-19 from February 29, 2021- April 30, 2022, and the factors and conditions influent the successful outcome. The study areas were three provinces. The target group was 37 people, composed of public health personnel. The data was collected in-depth, and group interviews followed the non-structure interview guide and were analyzed by content analysis. The components of COVID-19 prevention and control were found in the process of PHEM as follows; 1) Emergency Operation Center (EOC) with an incidence command system (ICS) from the district to provincial level and to propose the provincial measure, 2) Provincial Communicable Disease Committee (PCDC) to decide the provincial measure 3) The measure for surveillance, prevention, control, and treatment of COVID-19, and 4) outcomes and best practices for surveillance and control of COVID-19. The success factors of 4S and EC were as follows; Space: prepare the quarantine (HQ, LQ), Cohort Ward (CW), field hospital, and community isolation and home isolation to face with the patient and risky group, Staff network from various organization and group cover the community leader and Health Volunteer (HV), Stuff the management and sharing of the medical and non-medical equipment, System of Covid-19 respond were EOC, ICS, Joint Investigation Team (JIT) and Communicable Disease Control Unit (CDCU) for monitoring the real-time of surveillance and control of COVID-19 output, Environment management in hospital and the community with Infections Control (IC) principle, and Culture in term of social capital on “the relationship of Isan people” supported the patient provide the good care and support. The structure of PHEM, Isan’s Culture, and good preparation was a significant factor in the three provinces.Keywords: public health, emergency management, covid-19, pandemic
Procedia PDF Downloads 811660 Computer-Aided Drug Repurposing for Mycobacterium Tuberculosis by Targeting Tryptophanyl-tRNA Synthetase
Authors: Neslihan Demirci, Serdar Durdağı
Abstract:
Mycobacterium tuberculosis is still a worldwide disease-causing agent that, according to WHO, led to the death of 1.5 million people from tuberculosis (TB) in 2020. The bacteria reside in macrophages located specifically in the lung. There is a known quadruple drug therapy regimen for TB consisting of isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Over the past 60 years, there have been great contributions to treatment options, such as recently approved delamanid (OPC67683) and bedaquiline (TMC207/R207910), targeting mycolic acid and ATP synthesis, respectively. Also, there are natural compounds that can block the tryptophanyl-tRNA synthetase (TrpRS) enzyme, chuangxinmycin, and indolmycin. Yet, already the drug resistance is reported for those agents. In this study, the newly released TrpRS enzyme structure is investigated for potential inhibitor drugs from already synthesized molecules to help the treatment of resistant cases and to propose an alternative drug for the quadruple drug therapy of tuberculosis. Maestro, Schrodinger is used for docking and molecular dynamic simulations. In-house library containing ~8000 compounds among FDA-approved indole-containing compounds, a total of 57 obtained from the ChemBL were used for both ATP and tryptophan binding pocket docking. Best of indole-containing 57 compounds were subjected to hit expansion and compared later with virtual screening workflow (VSW) results. After docking, VSW was done. Glide-XP docking algorithm was chosen. When compared, VSW alone performed better than the hit expansion module. Best scored compounds were kept for ten ns molecular dynamic simulations by Desmond. Further, 100 ns molecular dynamic simulation was performed for elected molecules according to Z-score. The top three MMGBSA-scored compounds were subjected to steered molecular dynamic (SMD) simulations by Gromacs. While SMD simulations are still being conducted, ponesimod (for multiple sclerosis), vilanterol (β₂ adrenoreceptor agonist), and silodosin (for benign prostatic hyperplasia) were found to have a significant affinity for tuberculosis TrpRS, which is the propulsive force for the urge to expand the research with in vitro studies. Interestingly, top-scored ponesimod has been reported to have a side effect that makes the patient prone to upper respiratory tract infections.Keywords: drug repurposing, molecular dynamics, tryptophanyl-tRNA synthetase, tuberculosis
Procedia PDF Downloads 1231659 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater
Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig
Abstract:
The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant
Procedia PDF Downloads 257