Search results for: wave function
4813 Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks
Authors: Theodore Halnon, Martin Bojowald
Abstract:
In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply.Keywords: cosmology, deparameterization, general relativity, quantum mechanics
Procedia PDF Downloads 3084812 Signal On-Off Ratio and Output Frequency Analysis of Semiconductor Electron-Interference Device
Authors: Tomotaka Aoki, Isao Tomita
Abstract:
We examined the on-off ratio and frequency components of output signals from an electron-interference device made of GaAs/AlₓGa₁₋ₓAs by solving the time-dependent Schrödinger's equation on conducting electrons in the channel waveguide of the device. For electron-wave modulation, a periodic voltage of frequency f was applied to the channel. Furthermore, we examined the voltage-amplitude dependence of the signals in time and frequency domains and found that large applied voltage deformed the output-signal waveform and created additional side modes (frequencies) near the modulation frequency f and that there was a trade-off between on-off ratio and side-mode creation.Keywords: electrical conduction, electron interference, frequency spectrum, on-off ratio
Procedia PDF Downloads 1214811 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 444810 The Structural, Elastic, Thermal, Electronic, and Magnetic Properties of Intermetallic rmn₂ge₂ (R=CA, Y, ND)
Authors: I. Benkaddour, Y. Benkaddour, A. Benk Addour
Abstract:
The structural, elastic, Thermal, electronic, and magnetic properties of intermetallic RMn₂Ge₂ (R= Ca, Y, Nd) are investigated by density functional theory (DFT), using the full potential –linearised augmented plane wave method (FP-LAPW). In this approach, the local-density approximation (LDA) is used for the exchange-correlation (XC) potential. The equilibrium lattice constant and magnetic moment agree well with the experiment. The density of states shows that these phases are conductors, with contribution predominantly from the R and Mn d states. We have determined the elastic constants C₁₁, C₁₂, C₁₃, C₄₄, C₃₃, andC₆₆ at ambient conditions in, which have not been established neither experimentally nor theoretically. Thermal properties, including the relative expansion coefficients and the heat capacity, have been estimated using a quasi-harmonic Debye model.Keywords: RMn₂Ge₂, intermetallic, first-principles, density of states, mechanical properties
Procedia PDF Downloads 894809 Executive Function and Attention Control in Bilingual and Monolingual Children: A Systematic Review
Authors: Zihan Geng, L. Quentin Dixon
Abstract:
It has been proposed that early bilingual experience confers a number of advantages in the development of executive control mechanisms. Although the literature provides empirical evidence for bilingual benefits, some studies also reported null or mixed results. To make sense of these contradictory findings, the current review synthesize recent empirical studies investigating bilingual effects on children’s executive function and attention control. The publication time of the studies included in the review ranges from 2010 to 2017. The key searching terms are bilingual, bilingualism, children, executive control, executive function, and attention. The key terms were combined within each of the following databases: ERIC (EBSCO), Education Source, PsycINFO, and Social Science Citation Index. Studies involving both children and adults were also included but the analysis was based on the data generated only by the children group. The initial search yielded 137 distinct articles. Twenty-eight studies from 27 articles with a total of 3367 participants were finally included based on the selection criteria. The selective studies were then coded in terms of (a) the setting (i.e., the country where the data was collected), (b) the participants (i.e., age and languages), (c) sample size (i.e., the number of children in each group), (d) cognitive outcomes measured, (e) data collection instruments (i.e., cognitive tasks and tests), and (f) statistic analysis models (e.g., t-test, ANOVA). The results show that the majority of the studies were undertaken in western countries, mainly in the U.S., Canada, and the UK. A variety of languages such as Arabic, French, Dutch, Welsh, German, Spanish, Korean, and Cantonese were involved. In relation to cognitive outcomes, the studies examined children’s overall planning and problem-solving abilities, inhibition, cognitive complexity, working memory (WM), and sustained and selective attention. The results indicate that though bilingualism is associated with several cognitive benefits, the advantages seem to be weak, at least, for children. Additionally, the nature of the cognitive measures was found to greatly moderate the results. No significant differences are observed between bilinguals and monolinguals in overall planning and problem-solving ability, indicating that there is no bilingual benefit in the cooperation of executive function components at an early age. In terms of inhibition, the mixed results suggest that bilingual children, especially young children, may have better conceptual inhibition measured in conflict tasks, but not better response inhibition measured by delay tasks. Further, bilingual children showed better inhibitory control to bivalent displays, which resembles the process of maintaining two language systems. The null results were obtained for both cognitive complexity and WM, suggesting no bilingual advantage in these two cognitive components. Finally, findings on children’s attention system associate bilingualism with heightened attention control. Together, these findings support the hypothesis of cognitive benefits for bilingual children. Nevertheless, whether these advantages are observable appears to highly depend on the cognitive assessments. Therefore, future research should be more specific about the cognitive outcomes (e.g., the type of inhibition) and should report the validity of the cognitive measures consistently.Keywords: attention, bilingual advantage, children, executive function
Procedia PDF Downloads 1854808 Advances in Fiber Optic Technology for High-Speed Data Transmission
Authors: Salim Yusif
Abstract:
Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors
Procedia PDF Downloads 614807 Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves
Authors: Sanjit Kumar Paul, A. A. Mamun, M. R. Amin
Abstract:
The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation.Keywords: dust acoustic waves, dusty plasma, Boltzmann distributed electrons, charge fluctuation
Procedia PDF Downloads 6394806 Theoretical Prediction of the Structural, Elastic, Electronic, Optical, and Thermal Properties of Cubic Perovskites CsXF3 (X = Ca, Sr, and Hg) under Pressure Effect
Authors: M. A. Ghebouli, A. Bouhemadou, H. Choutri, L. Louaila
Abstract:
Some physical properties of the cubic perovskites CsXF3 (X = Sr, Ca, and Hg) have been investigated using pseudopotential plane–wave (PP-PW) method based on the density functional theory (DFT). The calculated lattice constants within GGA (PBE) and LDA (CA-PZ) agree reasonably with the available experiment data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus, Poisson’s ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr, and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacities CV, CP, and Debye temperature was predicted.Keywords: perovskite, PP-PW method, elastic constants, electronic band structure
Procedia PDF Downloads 4374805 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model
Authors: Mostafa Zandi, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function
Procedia PDF Downloads 774804 A Case Study on Barriers in Total Productive Maintenance Implementation in the Abu Dhabi Power Industry
Authors: A. Alseiari, P. Farrell
Abstract:
Maintenance has evolved into an imperative function, and contributes significantly to efficient and effective equipment performance. Total Productive Maintenance (TPM) is an ideal approach to support the development and implementation of operation performance improvement. It systematically aims to understand the function of equipment, the service quality relationship with equipment and the probable critical equipment failure conditions. Implementation of TPM programmes need strategic planning and there has been little research applied in this area within Middle-East power plants. In the power sector of Abu Dhabi, technologically and strategically, the power industry is extremely important, and it thus needs effective and efficient equipment management support. The aim of this paper is to investigate barriers to successful TPM implementation in the Abu Dhabi power industry. The study has been conducted in the context of a leading power company in the UAE. Semi-structured interviews were conducted with 16 employees, including maintenance and operation staff, and senior managers. The findings of this research identified seven key barriers, thus: managerial; organisational; cultural; financial; educational; communications; and auditing. With respect to the understanding of these barriers and obstacles in TPM implementation, the findings can contribute towards improved equipment operations and maintenance in power organisations.Keywords: Abu Dhabi Power Industry, TPM implementation, key barriers, organisational culture, critical success factors
Procedia PDF Downloads 2454803 A PROMETHEE-BELIEF Approach for Multi-Criteria Decision Making Problems with Incomplete Information
Abstract:
Multi-criteria decision aid methods consider decision problems where numerous alternatives are evaluated on several criteria. These methods are used to deal with perfect information. However, in practice, it is obvious that this information requirement is too much strict. In fact, the imperfect data provided by more or less reliable decision makers usually affect decision results since any decision is closely linked to the quality and availability of information. In this paper, a PROMETHEE-BELIEF approach is proposed to help multi-criteria decisions based on incomplete information. This approach solves problems with incomplete decision matrix and unknown weights within PROMETHEE method. On the base of belief function theory, our approach first determines the distributions of belief masses based on PROMETHEE’s net flows and then calculates weights. Subsequently, it aggregates the distribution masses associated to each criterion using Murphy’s modified combination rule in order to infer a global belief structure. The final action ranking is obtained via pignistic probability transformation. A case study of real-world application concerning the location of a waste treatment center from healthcare activities with infectious risk in the center of Tunisia is studied to illustrate the detailed process of the BELIEF-PROMETHEE approach.Keywords: belief function theory, incomplete information, multiple criteria analysis, PROMETHEE method
Procedia PDF Downloads 1674802 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer
Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack
Abstract:
We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.Keywords: machine learning control, mixing layer, feedback control, model-free control
Procedia PDF Downloads 2234801 Implementation of Quality Function Development to Incorporate Customer’s Value in the Conceptual Design Stage of a Construction Projects
Authors: Ayedh Alqahtani
Abstract:
Many construction firms in Saudi Arabia dedicated to building projects agree that the most important factor in the real estate market is the value that they can give to their customer. These firms understand the value of their client in different ways. Value can be defined as the size of the building project in relationship to the cost or the design quality of the materials utilized in finish work or any other features of building rooms such as the bathroom. Value can also be understood as something suitable for the money the client is investing for the new property. A quality tool is required to support companies to achieve a solution for the building project and to understand and manage the customer’s needs. Quality Function Development (QFD) method will be able to play this role since the main difference between QFD and other conventional quality management tools is QFD a valuable and very flexible tool for design and taking into the account the VOC. Currently, organizations and agencies are seeking suitable models able to deal better with uncertainty, and that is flexible and easy to use. The primary aim of this research project is to incorporate customer’s requirements in the conceptual design of construction projects. Towards this goal, QFD is selected due to its capability to integrate the design requirements to meet the customer’s needs. To develop QFD, this research focused upon the contribution of the different (significantly weighted) input factors that represent the main variables influencing QFD and subsequent analysis of the techniques used to measure them. First of all, this research will review the literature to determine the current practice of QFD in construction projects. Then, the researcher will review the literature to define the current customers of residential projects and gather information on customers’ requirements for the design of the residential building. After that, qualitative survey research will be conducted to rank customer’s needs and provide the views of stakeholder practitioners about how these needs can affect their satisfy. Moreover, a qualitative focus group with the members of the design team will be conducted to determine the improvements level and technical details for the design of residential buildings. Finally, the QFD will be developed to establish the degree of significance of the design’s solution.Keywords: quality function development, construction projects, Saudi Arabia, quality tools
Procedia PDF Downloads 1244800 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data
Authors: Flavia Smarrazzo
Abstract:
Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures
Procedia PDF Downloads 2814799 Numerical Solutions of Fredholm Integral Equations by B-Spline Wavelet Method
Authors: Ritu Rani
Abstract:
In this paper, we apply minimalistically upheld linear semi-orthogonal B-spline wavelets, exceptionally developed for the limited interim to rough the obscure function present in the integral equations. Semi-orthogonal wavelets utilizing B-spline uniquely developed for the limited interim and these wavelets can be spoken to in a shut frame. This gives a minimized help. Semi-orthogonal wavelets frame the premise in the space L²(R). Utilizing this premise, an arbitrary function in L²(R) can be communicated as the wavelet arrangement. For the limited interim, the wavelet arrangement cannot be totally introduced by utilizing this premise. This is on the grounds that backings of some premise are truncated at the left or right end purposes of the interim. Subsequently, an uncommon premise must be brought into the wavelet development on the limited interim. These functions are alluded to as the limit scaling functions and limit wavelet functions. B-spline wavelet method has been connected to fathom linear and nonlinear integral equations and their systems. The above method diminishes the integral equations to systems of algebraic equations and afterward these systems can be illuminated by any standard numerical methods. Here, we have connected Newton's method with suitable starting speculation for solving these systems.Keywords: semi-orthogonal, wavelet arrangement, integral equations, wavelet development
Procedia PDF Downloads 1744798 Assessment of Serum Osteopontin, Osteoprotegerin and Bone-Specific Alp as Markers of Bone Turnover in Patients with Disorders of Thyroid Function in Nigeria, Sub-Saharan Africa
Authors: Oluwabori Emmanuel Olukoyejo, Ogra Victor Ogra, Bosede Amodu, Tewogbade Adeoye Adedeji
Abstract:
Background: Disorders of thyroid function are the second most common endocrine disorders worldwide, with a direct relationship with metabolic bone diseases. These metabolic bone complications are often subtle but manifest as bone pains and an increased risk of fractures. The gold standard for diagnosis, Dual Energy X-ray Absorptiometry (DEXA), is limited in this environment due to unavailability, cumbersomeness and cost. However, bone biomarkers have shown prospects in assessing alterations in bone remodeling, which has not been studied in this environment. Aim: This study evaluates serum levels of bone-specific alkaline phosphatase (bone-specific ALP), osteopontin and osteoprotegerin biomarkers of bone turnover in patients with disorders of thyroid function. Methods: This is a cross-sectional study carried out over a period of one and a half years. Forty patients with thyroid dysfunctions, aged 20 to 50 years, and thirty-eight age and sex-matched healthy euthyroid controls were included in this study. Patients were further stratified into hyperthyroid and hypothyroid groups. Bone-specific ALP, osteopontin, and osteoprotegerin, alongside serum total calcium, ionized calcium and inorganic phosphate, were assayed for all patients and controls. A self-administered questionnaire was used to obtain data on sociodemographic and medical history. Then, 5 ml of blood was collected in a plain bottle and serum was harvested following clotting and centrifugation. Serum samples were assayed for B-ALP, osteopontin, and osteoprotegerin using the ELISA technique. Total calcium and ionized calcium were assayed using an ion-selective electrode, while the inorganic phosphate was assayed with automated photometry. Results: The hyperthyroid and hypothyroid patient groups had significantly increased median serum B-ALP (30.40 and 26.50) ng/ml and significantly lower median OPG (0.80 and 0.80) ng/ml than the controls (10.81 and 1.30) ng/ml respectively, p < 0.05. However, serum osteopontin in the hyperthyroid group was significantly higher and significantly lower in the hypothyroid group when compared with the controls (11.00 and 2.10 vs 3.70) ng/ml, respectively, p < 0.05. Both hyperthyroid and hypothyroid groups had significantly higher mean serum total calcium, ionized calcium and inorganic phosphate than the controls (2.49 ± 0.28, 1.27 ± 0.14 and 1.33 ± 0.33) mmol/l and (2.41 ± 0.04, 1.20 ± 0.04 and 1.15 ± 0.16) mmol/l vs (2.27 ± 0.11, 1.17 ± 0.06 and 1.08 ± 0.16) mmol/l respectively, p < 0.05. Conclusion: Patients with disorders of thyroid function have metabolic imbalances of all the studied bone markers, suggesting a higher bone turnover. The routine bone markers will be an invaluable tool for monitoring bone health in patients with thyroid dysfunctions, while the less readily available markers can be introduced as supplementary tools. Moreover, bone-specific ALP, osteopontin and osteoprotegerin were found to be the strongest independent predictors of metabolic bone markers’ derangements in patients with thyroid dysfunctions.Keywords: metabolic bone diseases, biomarker, bone turnover, hyperthyroid, hypothyroid, euthyroid
Procedia PDF Downloads 374797 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna
Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov
Abstract:
This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna
Procedia PDF Downloads 2834796 The Osteocutaneous Distal Tibia Turn-over Fillet Flap: A Novel Spare-parts Orthoplastic Surgery Option for Functional Below-knee Amputation
Authors: Harry Burton, Alexios Dimitrios Iliadis, Neil Jones, Aaron Saini, Nicola Bystrzonowski, Alexandros Vris, Georgios Pafitanis
Abstract:
This article portrays the authors’ experience with a complex lower limb bone and soft tissue defect, following chronic osteomyelitis and pathological fracture, which was managed by the multidisciplinary orthoplastic team. The decision for functional amputation versus limb salvage was deemed necessary, enhanced by the principles of “spares parts” in reconstructive microsurgery. This case describes a successful use of the osteocutaneous distal tibia turn-over fillet flap that allowed ‘lowering the level of the amputation’ from a through knee to the conventional level of a below-knee amputation to preserve the knee joint function. This case demonstrates the value of ‘spare-parts’ surgery principles and how these concepts refine complex orthoplastic approaches when limb salvage is not possible to enhance function. The osteocutaneous distal tibia turn-over fillet flap is a robust technique for modified BKA reconstructions that provides sufficient bone length to achieve a tough, sensate stump and functional knee joint.Keywords: osteocutaneous flap, fillet flap, spare-parts surgery, Below knee amputation
Procedia PDF Downloads 1664795 Application of Hyperbinomial Distribution in Developing a Modified p-Chart
Authors: Shourav Ahmed, M. Gulam Kibria, Kais Zaman
Abstract:
Control charts graphically verify variation in quality parameters. Attribute type control charts deal with quality parameters that can only hold two states, e.g., good or bad, yes or no, etc. At present, p-control chart is most commonly used to deal with attribute type data. In construction of p-control chart using binomial distribution, the value of proportion non-conforming must be known or estimated from limited sample information. As the probability distribution of fraction non-conforming (p) is considered in hyperbinomial distribution unlike a constant value in case of binomial distribution, it reduces the risk of false detection. In this study, a statistical control chart is proposed based on hyperbinomial distribution when prior estimate of proportion non-conforming is unavailable and is estimated from limited sample information. We developed the control limits of the proposed modified p-chart using the mean and variance of hyperbinomial distribution. The proposed modified p-chart can also utilize additional sample information when they are available. The study also validates the use of modified p-chart by comparing with the result obtained using cumulative distribution function of hyperbinomial distribution. The study clearly indicates that the use of hyperbinomial distribution in construction of p-control chart yields much accurate estimate of quality parameters than using binomial distribution.Keywords: binomial distribution, control charts, cumulative distribution function, hyper binomial distribution
Procedia PDF Downloads 2794794 Invalidation of the Start of Lunar Calendars Based on Sighting of Crescent: A Survey of 101 Years of Data between 1938 and 2038
Authors: Rafik Ouared
Abstract:
The purpose of this paper is to invalidate decisions made by the Islamic conference led at Istanbul in 2016, which had defined two basic criteria to determine the start of the lunar month: (1)they are all based on the sighting of the crescent, be it observed or computed with modern methods, and (2) they've strongly recommended the adoption of the principle of 'unification of sighting', by which any occurrence of sighting anywhere would be applicable everywhere. To demonstrate the invalidation of those statements, a survey of 101 years of data, from 1938 to 2038, have been analyzed to compare the probability density function (PDF) of time difference between different types of fajr and new moon. Two groups of fajr have been considered: the 'natural fajr', which is the very first fajr following new moon, and the 'biased fajr', which is defined by human being inclusively of all chosen definitions. The parametric and non-parametric statistical comparisons between the different groups have shown the all the biased PDFs are significantly different from the unbiased (natural) PDF with probability value (p-value) less than 0.001. The significance level was fixed to 0.05. Conclusion: the on-going reference to sighting of crescent is inducing an significant bias in defining lunar calendar. Therefore, 'natural' calendar would be more applicable requiring a more contextualized revision of issue in fiqh.Keywords: biased fajr, lunar calendar, natural fajr, probability density function, sighting of crescent, time difference between fajr and new moon
Procedia PDF Downloads 2124793 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction
Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto
Abstract:
Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.Keywords: mechanical measurement, nanomaterials, optical coating, thermal noise
Procedia PDF Downloads 4234792 The Assessment of Nephrotoxic Effects of Peganum Harmala In Rat
Authors: Amal Yamani, Jaber Elgtou, Aziz Mohammed, Lazaar Jamila, Elachouri Mostafa
Abstract:
Peganum harmala used traditionally as an emenagogue and abortifacient agent in Morocco phytotherapy. Even thought its benefits effects, Peganum harmala remained severely toxic for the organism especially in strong doses. The present study was initiated to evaluate the nephrotoxic effects of aqueous extract of Peganum harmala seeds (PHS). The solution containing aqueous extract of PHS was administered orally by gavage at the dose of 2g/kg body weight during twenty days. Rats were used in this study, two groups were considered, a treated group received an extract of PHS at dose 2g/kg bodyweight and control group received an amount of tap water equivalent to the volume of the vehicle used for the dose of PHS extract. The data we collected showed that aqueous extracts of PHS administered during twenty days induced a significant changes in renal function expressed in decreases of diuresis (from 10 ± 0,58 to 5,33 ± 0,33 ml/24 hours) and the same profile for mean arterial blood pressure (from 125 ± 2,89 to 96,67 ± 6,01 mmHg). The histopathological study showed an alteration of kidney cells in treated group with regard the control group which is not affected. In conclusion: our results indicate that the aqueous extract of PHS induces toxicity may affect severely kidney function and causes renal histopathology.Keywords: peganum harmala seeds, nephrotoxic, diuresi, histpathology, kidney
Procedia PDF Downloads 2994791 Analysis of the Lung Microbiome in Cystic Fibrosis Patients Using 16S Sequencing
Authors: Manasvi Pinnaka, Brianna Chrisman
Abstract:
Cystic fibrosis patients often develop lung infections that range anywhere in severity from mild to life-threatening due to the presence of thick and sticky mucus that fills their airways. Since many of these infections are chronic, they not only affect a patient’s ability to breathe but also increase the chances of mortality by respiratory failure. With a publicly available dataset of DNA sequences from bacterial species in the lung microbiome of cystic fibrosis patients, the correlations between different microbial species in the lung and the extent of deterioration of lung function were investigated. 16S sequencing technologies were used to determine the microbiome composition of the samples in the dataset. For the statistical analyses, referencing helped distinguish between taxonomies, and the proportions of certain taxa relative to another were determined. It was found that the Fusobacterium, Actinomyces, and Leptotrichia microbial types all had a positive correlation with the FEV1 score, indicating the potential displacement of these species by pathogens as the disease progresses. However, the dominant pathogens themselves, including Pseudomonas aeruginosa and Staphylococcus aureus, did not have statistically significant negative correlations with the FEV1 score as described by past literature. Examining the lung microbiology of cystic fibrosis patients can help with the prediction of the current condition of lung function, with the potential to guide doctors when designing personalized treatment plans for patients.Keywords: bacterial infections, cystic fibrosis, lung microbiome, 16S sequencing
Procedia PDF Downloads 994790 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test
Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany
Abstract:
Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution
Procedia PDF Downloads 1684789 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection
Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili
Abstract:
The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).Keywords: EM induction sensing, detector, plastic mines, remote sensing
Procedia PDF Downloads 1494788 Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties
Authors: Jaehyug Lee, Tae-Ho Song
Abstract:
Vacuum insulation panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agree well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus, the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs.Keywords: combined conduction and radiation, discrete ordinates interpolation method, scattering phase function, vacuum insulation panel
Procedia PDF Downloads 3664787 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1494786 Estimation of Optimum Parameters of Non-Linear Muskingum Model of Routing Using Imperialist Competition Algorithm (ICA)
Authors: Davood Rajabi, Mojgan Yazdani
Abstract:
Non-linear Muskingum model is an efficient method for flood routing, however, the efficiency of this method is influenced by three applied parameters. Therefore, efficiency assessment of Imperialist Competition Algorithm (ICA) to evaluate optimum parameters of non-linear Muskingum model was addressed through this study. In addition to ICA, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) were also used aiming at an available criterion to verdict ICA. In this regard, ICA was applied for Wilson flood routing; then, routing of two flood events of DoAab Samsami River was investigated. In case of Wilson flood that the target function was considered as the sum of squared deviation (SSQ) of observed and calculated discharges. Routing two other floods, in addition to SSQ, another target function was also considered as the sum of absolute deviations of observed and calculated discharge. For the first floodwater based on SSQ, GA indicated the best performance, however, ICA was on first place, based on SAD. For the second floodwater, based on both target functions, ICA indicated a better operation. According to the obtained results, it can be said that ICA could be used as an appropriate method to evaluate the parameters of Muskingum non-linear model.Keywords: Doab Samsami river, genetic algorithm, imperialist competition algorithm, meta-exploratory algorithms, particle swarm optimization, Wilson flood
Procedia PDF Downloads 5054785 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator
Authors: Wedad Albalawi
Abstract:
The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator
Procedia PDF Downloads 954784 The Effect of Acute Rejection and Delayed Graft Function on Renal Transplant Fibrosis in Live Donor Renal Transplantation
Authors: Wisam Ismail, Sarah Hosgood, Michael Nicholson
Abstract:
The research hypothesis is that early post-transplant allograft fibrosis will be linked to donor factors and that acute rejection and/or delayed graft function in the recipient will be independent risk factors for the development of fibrosis. This research hypothesis is to explore whether acute rejection/delay graft function has an effect on the renal transplant fibrosis within the first year post live donor kidney transplant between 1998 and 2009. Methods: The study has been designed to identify five time points of the renal transplant biopsies [0 (pre-transplant), 1 month, 3 months, 6 months and 12 months] for 300 live donor renal transplant patients over 12 years period between March 1997 – August 2009. Paraffin fixed slides were collected from Leicester General Hospital and Leicester Royal Infirmary. These were routinely sectioned at a thickness of 4 Micro millimetres for standardization. Conclusions: Fibrosis at 1 month after the transplant was found significantly associated with baseline fibrosis (p<0.001) and HTN in the transplant recipient (p<0.001). Dialysis after the transplant showed a weak association with fibrosis at 1 month (p=0.07). The negative coefficient for HTN (-0.05) suggests a reduction in fibrosis in the absence of HTN. Fibrosis at 1 month was significantly associated with fibrosis at baseline (p 0.01 and 95%CI 0.11 to 0.67). Fibrosis at 3, 6 or 12 months was not found to be associated with fibrosis at baseline (p=0.70. 0.65 and 0.50 respectively). The amount of fibrosis at 1 month is significantly associated with graft survival (p=0.01 and 95%CI 0.02 to 0.14). Rejection and severity of rejection were not found to be associated with fibrosis at 1 month. The amount of fibrosis at 1 month was significantly associated with graft survival (p=0.02) after adjusting for baseline fibrosis (p=0.01). Both baseline fibrosis and graft survival were significant predictive factors. The amount of fibrosis at 1 month was not found to be significantly associated with rejection (p=0.64) after adjusting for baseline fibrosis (p=0.01). The amount of fibrosis at 1 month was not found to be significantly associated with rejection severity (p=0.29) after adjusting for baseline fibrosis (p=0.04). Fibrosis at baseline and HTN in the recipient were found to be predictive factors of fibrosis at 1 month. (p 0.02, p <0.001 respectively). Age of the donor, their relation to the patient, the pre-op Creatinine, artery, kidney weight and warm time were not found to be significantly associated with fibrosis at 1 month. In this complex model baseline fibrosis, HTN in the recipient and cold time were found to be predictive factors of fibrosis at 1 month (p=0.01,<0.001 and 0.03 respectively). Donor age was found to be a predictive factor of fibrosis at 6 months. The above analysis was repeated for 3, 6 and 12 months. No associations were detected between fibrosis and any of the explanatory variables with the exception of the donor age which was found to be a predictive factor of fibrosis at 6 months.Keywords: fibrosis, transplant, renal, rejection
Procedia PDF Downloads 230