Search results for: socio-scientific issues-based learning method
23134 Instructional Game in Teaching Algebra for High School Students: Basis for Instructional Intervention
Authors: Jhemson C. Elis, Alvin S. Magadia
Abstract:
Our world is full of numbers, shapes, and figures that illustrate the wholeness of a thing. Indeed, this statement signifies that mathematics is everywhere. Mathematics in its broadest sense helps people in their everyday life that is why in education it is a must to be taken by the students as a subject. The study aims to determine the profile of the respondents in terms of gender and age, performance of the control and experimental groups in the pretest and posttest, impact of the instructional game used as instructional intervention in teaching algebra for high school students, significant difference between the level of performance of the two groups of respondents in their pre–test and post–test results, and the instructional intervention can be proposed. The descriptive method was also utilized in this study. The use of the certain approach was to that it corresponds to the main objective of this research that is to determine the effectiveness of the instructional game used as an instructional intervention in teaching algebra for high school students. There were 30 students served as respondents, having an equal size of the sample of 15 each while a greater number of female teacher respondents which totaled 7 or 70 percent and male were 3 or 30 percent. The study recommended that mathematics teacher should conceptualize instructional games for the students to learn mathematics with fun and enjoyment while learning. Mathematics education program supervisor should give training for teachers on how to conceptualize mathematics intervention for the students learning. Meaningful activities must be provided to sustain the student’s interest in learning. Students must be given time to have fun at the classroom through playing while learning since mathematics for them was considered as difficult. Future researcher must continue conceptualizing some mathematics intervention to suffice the needs of the students, and teachers should inculcate more educational games so that the discussion will be successful and joyful.Keywords: instructional game in algebra, mathematical intervention, joyful, successful
Procedia PDF Downloads 59723133 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization
Authors: Y. Alrubyli
Abstract:
Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter
Procedia PDF Downloads 17423132 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics
Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel
Abstract:
Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics
Procedia PDF Downloads 24323131 A New Measurement for Assessing Constructivist Learning Features in Higher Education: Lifelong Learning in Applied Fields (LLAF) Tempus Project
Authors: Dorit Alt, Nirit Raichel
Abstract:
Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities.This form of instruction is criticized for encouraging students to acquire inert knowledge that can be used in instructional settings at best, however cannot be transferred into real-life complex problem settings. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools, based on the constructivist approach for learning that put a premium on adaptability to the emerging requirements of present society. This presentation will be limited to teachers' education only and to the contribution of the project in providing a scale designed to measure the extent to which the constructivist activities are efficiently applied in the learning environment. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.Keywords: constructivist learning, higher education, mix-methodology, structural equation modeling
Procedia PDF Downloads 31523130 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model
Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano
Abstract:
Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology
Procedia PDF Downloads 13523129 Muscle: The Tactile Texture Designed for the Blind
Authors: Chantana Insra
Abstract:
The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The Bangkok School for the Blind. The method in choosing the population in the study was purposive sampling. The methodology of the research includes collecting data related to visually impaired people, the production of the tactile texture media, human anatomy and Thai traditional massage from literature reviews and field studies. This information was used for analyzing and designing 14 tactile texture pictures presented to experts to evaluate and test the media.Keywords: blind, tactile texture, muscle, visual arts and design
Procedia PDF Downloads 26923128 Promoting Early Learning of Children under Five Years in an Economically Disadvantaged Community in Sri Lanka through Health Promotion Approach
Authors: Najith Duminda Galmangoda Guruge, Nadeeka Rathnayake, Vinodani Wimalasena, Dinesha Wijesooriya
Abstract:
Investing in Early Learning can improve children’ interests for education and makes them ready for school. Children in economically disadvantaged communities may have reduced readiness for schools. Health Promotion approach enables communities including disadvantaged to control over their health. Mothers of children under the age five in ‘Alapathwewa’ community (n=40) were selected as the sample with the aim to promote early learning of children to improve their school readiness. Mothers in ‘Morakeewa’ community (n=40) were the control. Interventions were for a period of 2 years and children of these mothers were followed up to school entry. Importance of early learning and possibility of providing quality learning environments for children at a low cost was discussed with mothers in an experimental setting by facilitators. Mothers were enabled to make age-appropriate baby rooms which provide learning opportunities. Collective community playhouses and play areas were developed by mothers to provide opportunities for children to interact and learn with each other. Mothers started discussing with each other and sharing experiences. The progress was monitored by mothers at regular intervals. Data regarding school competencies of children were obtained from school teachers. School teachers measured thirteen competencies of children on a scale of ‘very good, good, moderate and weak’. All children in the experimental group were in ‘very good’ level in two competencies, ‘communicate friendly with others’ and ‘express ideas well’. Children in the experimental group reported a significantly higher achievement of all thirteen competencies (p < .05) than children in control. Providing quality early learning environments for children even in economically disadvantaged settings makes them ready for schools. Through a Health Promotion approach, early learning experiences for children can be provided at a low cost.Keywords: disadvantaged, early learning, economically, health promotion
Procedia PDF Downloads 25823127 Enhancing Student Learning Experience Online through Collaboration with Pre-Service Teachers
Authors: Jessica Chakowa
Abstract:
Learning a foreign language requires practice that needs to be undertaken beyond the classroom. Nowadays, learners can find a lot of resources online, but it can be challenging for them to find suitable material, receive timely and effective feedback on their progress, and, more importantly practice the target language with native speakers. This paper focuses on the development of interactive activities combined with online tutoring sessions to consolidate and enhance the learning experience of beginner students of French at * University. This project is based on collaboration with four pre-service teachers from a French university. It calls for authentic language learning material, real-life situations, cultural awareness, and aims for the sustainability of learning and teaching. The paper will first present the design of the project as part of a holistic approach. It will then provide some examples of activities before commenting on the learners and the teachers’ experiences based on quantitative and qualitative data obtained through activity reports, surveys and focus groups. The main findings of the study lie in the tension between the willingness to achieve pedagogical goals and to be involved in authentic interactions, highlighting the complementary between the role of the learner and the role of teacher. The paper will conclude on benefits, challenges and recommendations when implementing such educational projects.Keywords: authenticity, language teaching and learning, online interaction, sustainability
Procedia PDF Downloads 12123126 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 16223125 Predictive Maintenance of Electrical Induction Motors Using Machine Learning
Authors: Muhammad Bilal, Adil Ahmed
Abstract:
This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures
Procedia PDF Downloads 11723124 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 15723123 The Impact of Online Learning on Visual Learners
Authors: Ani Demetrashvili
Abstract:
As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.Keywords: online learning, visual learners, digital education, technology in learning
Procedia PDF Downloads 3823122 Enhancing Students’ Performance in Basic Science and Technology in Nigeria Using Moodle LMS
Authors: Olugbade Damola, Adekomi Adebimbo, Sofowora Olaniyi Alaba
Abstract:
One of the major problems facing education in Nigeria is the provision of quality Science and Technology education. Inadequate teaching facilities, non-usage of innovative teaching strategies, ineffective classroom management, lack of students’ motivation and poor integration of ICT has resulted in the increase in percentage of students who failed Basic Science and Technology in Junior Secondary Certification Examination for National Examination Council in Nigeria. To address these challenges, the Federal Government came up with a road map on education. This was with a view of enhancing quality education through integration of modern technology into teaching and learning, enhancing quality assurance through proper monitoring and introduction of innovative methods of teaching. This led the researcher to investigate how MOODLE LMS could be used to enhance students’ learning outcomes in BST. A sample of 120 students was purposively selected from four secondary schools in Ogbomoso. The experimental group was taught using MOODLE LMS, while the control group was taught using the conventional method. Data obtained were analyzed using mean, standard deviation and t-test. The result showed that MOODLE LMS was an effective learning platform in teaching BST in junior secondary schools (t=4.953, P<0.05). Students’ attitudes towards BST was also enhanced through MOODLE LMS (t=15.632, P<0.05). The use of MOODLE LMS significantly enhanced students’ retention (t=6.640, P<0.05). In conclusion, the Federal Government efforts at enhancing quality assurance through integration of modern technology and e-learning in Secondary schools proved to have yielded good result has students found MOODLE LMS to be motivating and interactive. Attendance was improved.Keywords: basic science and technology, MOODLE LMS, performance, quality assurance
Procedia PDF Downloads 30323121 The Reality of the Digital Inequality and Its Negative Impact on Virtual Learning during the COVID-19 Pandemic: The South African Perspective
Authors: Jacob Medupe
Abstract:
Life as we know it has changed since the global outbreak of Coronavirus Disease 2019 (COVID-19) and business as usual will not continue. The human impact of the COVID-19 crisis is already immeasurable. Moreover, COVID-19 has already negatively impacted economies, livelihoods and disrupted food systems around the world. The disruptive nature of the Corona virus has affected every sphere of life including the culture and teaching and learning. Right now the majority of education research is based around classroom management techniques that are no longer necessary with digital delivery. Instead there is a great need for new data about how to make the best use of the one-on-one attention that is now becoming possible (Diamandis & Kotler, 2014). The COVID-19 pandemic has necessitated an environment where the South African learners are focused to adhere to social distancing in order to minimise the wild spread of the Corona virus. This arrangement forces the student to utilise the online classroom technologies to continue with the lessons. The historical reality is that the country has not made much strides on the closing of the digital divide and this is particularly a common status quo in the deep rural areas. This will prove to be a toll order for most of the learners affected by the Corona Virus to be able to have a seamless access to the online learning facilities. The paper will seek to look deeply into this reality and how the Corona virus has brought us to the reality that South Africa remains a deeply unequal society in every sphere of life. The study will also explore the state of readiness for education system around the online classroom environment.Keywords: virtual learning, virtual classroom, COVID-19, Corona virus, internet connectivity, blended learning, online learning, distance education, e-learning, self-regulated Learning, pedagogy, digital literacy
Procedia PDF Downloads 12723120 Aligning Informatics Study Programs with Occupational and Qualifications Standards
Authors: Patrizia Poscic, Sanja Candrlic, Danijela Jaksic
Abstract:
The University of Rijeka, Department of Informatics participated in the Stand4Info project, co-financed by the European Union, with the main idea of an alignment of study programs with occupational and qualifications standards in the field of Informatics. A brief overview of our research methodology, goals and deliverables is shown. Our main research and project objectives were: a) development of occupational standards, qualification standards and study programs based on the Croatian Qualifications Framework (CROQF), b) higher education quality improvement in the field of information and communication sciences, c) increasing the employability of students of information and communication technology (ICT) and science, and d) continuously improving competencies of teachers in accordance with the principles of CROQF. CROQF is a reform instrument in the Republic of Croatia for regulating the system of qualifications at all levels through qualifications standards based on learning outcomes and following the needs of the labor market, individuals and society. The central elements of CROQF are learning outcomes - competences acquired by the individual through the learning process and proved afterward. The place of each acquired qualification is set by the level of the learning outcomes belonging to that qualification. The placement of qualifications at respective levels allows the comparison and linking of different qualifications, as well as linking of Croatian qualifications' levels to the levels of the European Qualifications Framework and the levels of the Qualifications framework of the European Higher Education Area. This research has made 3 proposals of occupational standards for undergraduate study level (System Analyst, Developer, ICT Operations Manager), and 2 for graduate (master) level (System Architect, Business Architect). For each occupational standard employers have provided a list of key tasks and associated competencies necessary to perform them. A set of competencies required for each particular job in the workplace was defined and each set of competencies as described in more details by its individual competencies. Based on sets of competencies from occupational standards, sets of learning outcomes were defined and competencies from the occupational standard were linked with learning outcomes. For each learning outcome, as well as for the set of learning outcomes, it was necessary to specify verification method, material, and human resources. The task of the project was to suggest revision and improvement of the existing study programs. It was necessary to analyze existing programs and determine how they meet and fulfill defined learning outcomes. This way, one could see: a) which learning outcomes from the qualifications standards are covered by existing courses, b) which learning outcomes have yet to be covered, c) are they covered by mandatory or elective courses, and d) are some courses unnecessary or redundant. Overall, the main research results are: a) completed proposals of qualification and occupational standards in the field of ICT, b) revised curricula of undergraduate and master study programs in ICT, c) sustainable partnership and association stakeholders network, d) knowledge network - informing the public and stakeholders (teachers, students, and employers) about the importance of CROQF establishment, and e) teachers educated in innovative methods of teaching.Keywords: study program, qualification standard, occupational standard, higher education, informatics and computer science
Procedia PDF Downloads 14323119 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 29223118 Chinese Fantasy Novel: New Word Teaching for Non-Native Learners
Authors: Bok Check Meng, Goh Ying Soon
Abstract:
Giving additional learning materials such as Chinese fantasy novel to non-native learners can be strenuous. Instructors have to understand the underpinning theories about cognitive theory for new word instruction. This paper discusses the underpinning theories. Relevant literature reviews are given. There are basically five major areas of cognitive related theories mentioned in this article. These include motivational learning theory, Affective theory of learning, Cognitive psychology theory, Vocabulary acquisition theory and Bloom’s cognitive levels theory. A theoretical framework has been constructed. Thus, this will give a hand in ensuring non-native learners might gain positive outcomes in the instruction process. Instructors who are interested in teaching new word from Chinese fantasy novel in specific to support additional learning might be able to get insights from this article.Keywords: Chinese fantasy novel, new word teaching, non-native learners, cognitive theory, bloom
Procedia PDF Downloads 73523117 A Systematic Review on Lifelong Learning Programs for Community-Dwelling Older Adults
Authors: Xi Vivien Wu, Emily Neo Kim Ang, Yi Jung Tung, Wenru Wang
Abstract:
Background and Objective: The increase in life expectancy and emphasis on self-reliance for the older adults are global phenomena. As such, lifelong learning in the community is considered a viable means of promoting successful and active aging. This systematic review aims to examine various lifelong learning programs for community-dwelling older adults and to synthesize the contents and outcomes of these lifelong learning programs. Methods: A systematic search was conducted in July to December 2016. Two reviewers were engaged in the process to ensure creditability of the selection process. Narrative description and analysis were applied with the support of a tabulation of key data including study design, interventions, and outcomes. Results: Eleven articles, which consisted of five randomized controlled trials and six quasi-experimental studies, were included in this review. Interventions included e-health literacy programs with the aid of computers and the Internet (n=4), computer and Internet training (n=3), physical fitness programs (n=2), music program (n=1), and intergenerational program (n=1). All studies used objective measurement tools to evaluate the outcomes of the study. Conclusion: The systematic review indicated lifelong learning programs resulted in positive outcomes in terms of physical health, mental health, social behavior, social support, self-efficacy and confidence in computer usage, and increased e-health literacy efficacy. However, the lifelong learning programs face challenges such as funding shortages, program cuts, and increasing costs. A comprehensive lifelong learning program could be developed to enhance the well-being of the older adults at a more holistic level. Empirical research can be done to explore the effectiveness of this comprehensive lifelong learning program.Keywords: community-dwelling older adults, e-health literacy program, lifelong learning program, the wellbeing of the older adults
Procedia PDF Downloads 16423116 Teaching English to Students with Hearing Impairments - A Preliminary Study
Authors: Jane O`Halloran
Abstract:
This research aims to identify the issues and challenges of teaching English as a Foreign Language to Japanese university students who have special learning needs. This study sought to investigate factors influencing the academic performance of students with special or additional needs in an inclusive education context. This study will focus on a consideration of the methods available to support those with hearing impairments. While the study population is limited, it is important to give classes to be inclusive places where all students receive equal access to content. Hearing impairments provide an obvious challenge to language learning and, therefore, second-language learning. However, strategies and technologies exist to support the instructor without specialist training. This paper aims to identify these and present them to other teachers of English as a second language who wish to provide the best possible learning experience for every student. Two case studies will be introduced to compare and contrast the experience of in-class teaching and the online option and to share the positives and negatives of the two approaches. While the study focuses on the situation in a university in Japan, the lessons learned by the author may have universal value to any classroom with a student with a hearing disability.Keywords: inclusive learning, special needs, hearing impairments, teaching strategies
Procedia PDF Downloads 13223115 Developing New Academics: So What Difference Does It Make?
Authors: Nalini Chitanand
Abstract:
Given the dynamic nature of the higher education landscape, induction programmes for new academics has become the norm nowadays to support academics negotiate these rough terrain. This study investigates an induction programme for new academics in a higher education institution to establish what difference it has made to participants. The findings revealed that the benefits ranged from creating safe spaces for collaboration and networking to fostering reflective practice and contributing to the scholarship of teaching and learning. The study also revealed that some of the intentions of the programme may not have been achieved, for example transformative learning. This led to questioning whether this intention is an appropriate one given the short duration of the programme and the long, drawn out process of transformation. It may be concluded that the academic induction programme in this study serves to sow the seeds for transformative learning through fostering critically reflective practice. Recommendations for further study could include long term impact of the programme on student learning and success, these being the core business of higher education. It is also recommended that in addition to an induction programme, the university invests in a mentoring programme for new staff and extend the support for academics in order to sustain critical reflection and which may contribute to transformative educational practice.Keywords: induction programme, reflective practice, scholarship of teaching, transformative learning
Procedia PDF Downloads 31623114 Drama in the Classroom: Work and Experience with Standardized Patients and Classroom Simulation of Difficult Clinical Scenarios
Authors: Aliyah Dosani, Kerri Alderson
Abstract:
Two different simulations using standardized patients were developed to reinforce content and foster undergraduate nursing students’ practice and development of interpersonal skills in difficult clinical situations in the classroom. The live actor simulations focused on fostering interpersonal skills, traditionally considered by students to be simple and easy. However, seemingly straightforward interactions can be very stressful, particularly in women’s complex social/emotional situations. Supporting patients in these contexts is fraught with complexity and high emotion, requiring skillful support, assessment and intervention by a registered nurse. In this presentation, the personal and professional perspectives of the development, incorporation, and execution of the live actor simulations will be discussed, as well as the inclusion of student perceptions, and the learning gained by the involved faculty.Keywords: adult learning, interpersonal skill development, simulation learning, teaching and learning
Procedia PDF Downloads 14323113 Knowledge Management Best Practice Model in Higher Learning Institution: A Systematic Literature Review
Authors: Ismail Halijah, Abdullah Rusli
Abstract:
Introduction: This systematic literature review aims to identify the Knowledge Management Best Practice components in the Knowledge Management Model for Higher Learning Institutions environment. Study design: Systematic literature review. Methods: A systematic literature re-view of Knowledge Management Best Practice to identify and define the components of Best Practice from the Knowledge Management models was conducted recently. Results: This review of published papers of conference and journals’ articles shows the components of Best Practice in Knowledge Management are basically divided into two aspect which is the soft aspect and the hard aspect. The lacks of combination of these two aspects into an integrated model decelerate Knowledge Management Best Practice to fully throttle. Evidence from the literature shows the lack of integration of this two aspects leads to the immaturity of the Higher Learning Institution (HLI) towards the implementation of Knowledge Management System. Conclusion: The first steps of identifying the attributes to measure the Knowledge Management Best Practice components from the models in the literature will led to the definition of the Knowledge Management Best Practice component for the higher learning environment.Keywords: knowledge management, knowledge management system, knowledge management best practice, knowledge management higher learning institution
Procedia PDF Downloads 59223112 The Environmental Influence on Slow Learners' Learning Achievement
Authors: Niphattha Hannapha
Abstract:
This paper examines how the classroom environment influences slow learners’ learning achievement; it focuses on how seating patterns affect students’ behaviours and which patterns best contribute to students’ learning performance. The researcher studied how slow learners’ characteristics and seating patterns influenced their behaviours and performance at Ban Hin Lad School. As a nonparticipant observation, the target groups included 15 slow learners from Prathomsueksa (Grades) 4 and 5. Students’ behaviours were recorded during their learning activities in order to minimize their reading and written expression disorder in Thai language tutorials. The result showed four seating patterns and two behaviors which obstructed students’ learning. The average of both behaviours mostly occurred when students were seated with patterns 1 (the seat facing the door, with the corridor alongside) and 3 (the seat alongside the door, facing the aisle) respectively. Seating patterns 1 and 3 demonstrated visibility (the front and side) of a walking path with two-way movement. However, seating patterns 2 (seating with the door alongside and the aisle at the back) and 4 (sitting with the door at the back and the aisle alongside) demonstrated visibility (the side) of a walking path with one-way movement. In Summary, environmental design is important to enhance concentration in slow learners who have reading and writing disabilities. This study suggests that students should be seated where they can have the least visibility of movement to help them increase continuous learning. That means they can have a better chance of developing reading and writing abilities in comparison with other patterns of seating.Keywords: slow learning, interior design, interior environment, classroom
Procedia PDF Downloads 21423111 Evaluating Distance and Blended Learning during COVID-19: Experiences and Innovations from High School and Secondary Educators
Authors: Azzeddine Atibi, Khadija El Kababi, Salim Ahmed, Mohamed Radid
Abstract:
The primary aim of the present study is to undertake an extensive comparative examination of distance learning and blended learning modalities, with a particular focus on assessing their efficacy during the period of confinement imposed by the COVID-19 pandemic. This investigation is grounded in the firsthand experiences of educators at the high school and secondary levels across both private and public educational institutions. To gather the necessary data, we designed and distributed a meticulously crafted survey to these educators, soliciting detailed accounts of their professional experiences throughout this challenging period. The survey's objectives include elucidating the specific difficulties faced by teachers, as well as highlighting the innovative pedagogical strategies they developed in response to these challenges. By synthesizing the insights gained from this survey, we aim to foster an exchange of experiences among educators and to generate informed recommendations that will guide future educational reforms. Ultimately, this study aspires to contribute to the ongoing discourse on optimizing educational practices in the face of unprecedented disruptions.Keywords: distance learning, blended learning, covid 19, secondary/ high school, teachingperformance, evaluation
Procedia PDF Downloads 3423110 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: distributed control, game theory, multi-agent learning, reinforcement learning
Procedia PDF Downloads 45923109 Information and Communication Technology (ICT) Education Improvement for Enhancing Learning Performance and Social Equality
Authors: Heichia Wang, Yalan Chao
Abstract:
Social inequality is a persistent problem. One of the ways to solve this problem is through education. At present, vulnerable groups are often less geographically accessible to educational resources. However, compared with educational resources, communication equipment is easier for vulnerable groups. Now that information and communication technology (ICT) has entered the field of education, today we can accept the convenience that ICT provides in education, and the mobility that it brings makes learning independent of time and place. With mobile learning, teachers and students can start discussions in an online chat room without the limitations of time or place. However, because liquidity learning is quite convenient, people tend to solve problems in short online texts with lack of detailed information in a lack of convenient online environment to express ideas. Therefore, the ICT education environment may cause misunderstanding between teachers and students. Therefore, in order to better understand each other's views between teachers and students, this study aims to clarify the essays of the analysts and classify the students into several types of learning questions to clarify the views of teachers and students. In addition, this study attempts to extend the description of possible omissions in short texts by using external resources prior to classification. In short, by applying a short text classification, this study can point out each student's learning problems and inform the instructor where the main focus of the future course is, thus improving the ICT education environment. In order to achieve the goals, this research uses convolutional neural network (CNN) method to analyze short discussion content between teachers and students in an ICT education environment. Divide students into several main types of learning problem groups to facilitate answering student problems. In addition, this study will further cluster sub-categories of each major learning type to indicate specific problems for each student. Unlike most neural network programs, this study attempts to extend short texts with external resources before classifying them to improve classification performance. In short, by applying the classification of short texts, we can point out the learning problems of each student and inform the instructors where the main focus of future courses will improve the ICT education environment. The data of the empirical process will be used to pre-process the chat records between teachers and students and the course materials. An action system will be set up to compare the most similar parts of the teaching material with each student's chat history to improve future classification performance. Later, the function of short text classification uses CNN to classify rich chat records into several major learning problems based on theory-driven titles. By applying these modules, this research hopes to clarify the main learning problems of students and inform teachers that they should focus on future teaching.Keywords: ICT education improvement, social equality, short text analysis, convolutional neural network
Procedia PDF Downloads 12823108 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System
Authors: Christian Luarca
Abstract:
The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.Keywords: cloud platform, e-Training, efficiency, onboarding
Procedia PDF Downloads 15023107 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 12223106 The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics
Authors: Dorottya Horváth, Tímea Harmath-Tánczos
Abstract:
Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders.Keywords: ADHD, attention functions, executive functions, learning disabilities, working memory
Procedia PDF Downloads 9523105 Pre-Service Teachers’ Experiences and Attitude towards Children’s Problem Solving Strategies in Early Mathematics Learning
Authors: Temitayo Ogunsanwo
Abstract:
Problem-solving is an important way of learning way of learning because it propels children to use previous experiences to deal with new situations. The purpose of this study is to find out the attitude of pre-service teachers to problem-solving as a strategy for promoting early mathematics learning in children. This qualitative study employed a descriptive design to investigate the experiences of twenty second-year undergraduate early childhood education Pre-service teachers in a teaching practice and their attitude towards five-year-old children’s problem-solving strategies in mathematics. Pre-service teachers were exposed to different strategies for teaching children how to solve problems in mathematics. They were taken through a micro teaching in class using different strategies to teach problem-solving in different topics in the five-year-old mathematics curriculum. The students were then made to teach five-year-olds in neighbouring schools for three weeks, working in pairs, observing and recording children’s problem-solving activities and strategies. After the three weeks exercise, their experiences and attitude towards children’s problem-solving strategies were collected using open-ended questions and analysed in themes. Findings were discussed.Keywords: attitude, early mathematics learning, experience, pre-service teachers, problem-solving, strategies
Procedia PDF Downloads 348