Search results for: fabrication errors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1676

Search results for: fabrication errors

266 Role of Maternal Astaxanthin Supplementation on Brain Derived Neurotrophic Factor and Spatial Learning Behavior in Wistar Rat Offspring’s

Authors: K. M. Damodara Gowda

Abstract:

Background: Maternal health and nutrition are considered as the predominant factors influencing brain functional development. If the mother is free of illness and genetic defects, maternal nutrition would be one of the most critical factors affecting the brain development. Calorie restrictions cause significant impairment in spatial learning ability and the levels of Brain Derived Neurotrophic Factor (BDNF) in rats. But, the mechanism by which the prenatal under-nutrition leads to impairment in brain learning and memory function is still unclear. In the present study, prenatal Astaxanthin supplementation on BDNF level, spatial learning and memory performance in the offspring’s of normal, calorie restricted and Astaxanthin supplemented rats was investigated. Methodology: The rats were administered with 6mg and 12 mg of astaxanthin /kg bw for 21 days following which acquisition and retention of spatial memory was tested in a partially-baited eight arm radial maze. The BDNF level in different regions of the brain (cerebral cortex, hippocampus and cerebellum) was estimated by ELISA method. Results: Calorie restricted animals treated with astaxanthin made significantly more correct choices (P < 0.05), and fewer reference memory errors (P < 0.05) on the tenth day of training compared to offsprings of calorie restricted animals. Calorie restricted animals treated with astaxanthin also made significantly higher correct choices (P < 0.001) than untreated calorie restricted animals in a retention test 10 days after the training period. The mean BDNF level in cerebral cortex, Hippocampus and cerebellum in Calorie restricted animals treated with astaxanthin didnot show significant variation from that of control animals. Conclusion: Findings of the study indicated that memory and learning was impaired in the offspring’s of calorie restricted rats which was effectively modulated by astaxanthin at the dosage of 12 mg/kg body weight. In the same way the BDNF level at cerebral cortex, Hippocampus and Cerebellum was also declined in the offspring’s of calorie restricted animals, which was also found to be effectively normalized by astaxanthin.

Keywords: calorie restiction, learning, Memory, Cerebral cortex, Hippocampus, Cerebellum, BDNF, Astaxanthin

Procedia PDF Downloads 216
265 An Easy Approach for Fabrication of Macroporous Apatite-Based Bone Cement Used As Potential Trabecular Bone Substitute

Authors: Vimal Kumar Dewangan, T. S. Sampath Kumar, Mukesh Doble, Viju Daniel Varghese

Abstract:

The apatite-based, i.e., calcium-deficient hydroxyapatite (CDHAp) bone cement is well-known potential bone graft/substitute in orthopaedics due to its similar chemical composition with natural bone minerals. Therefore, an easy approach was attempted to fabricate the apatite-based (CDHAp) bone cement with improved injectability, bioresorbability, and macroporosity. In this study, the desired bone cement was developed by mixing the solid phase (consisting of wet chemically synthesized nanocrystalline hydroxyapatite and commercially available (synthetic) tricalcium phosphate) and the liquid phase (consisting of cement binding accelerator with few biopolymers in a dilute acidic solution) along with a liquid porogen as polysorbate or a solid porogen as mannitol (for comparison) in an optimized liquid-to-powder ratio. The fabricated cement sets within clinically preferred setting time (≤20 minutes) are better injectable (>70%) and also stable at ~7.3-7.4 (physiological pH). The CDHAp phased bone cement was resulted by immersing the fabricated after-set cement in phosphate buffer solution and other similar artificial body fluids and incubated at physiological conditions for seven days, confirmed through the X-ray diffraction and Fourier transform-infrared spectroscopy analyses. The so-formed synthetic apatite-based bone cement holds the acceptable compressive strength (within the range of trabecular bone) with average interconnected pores size falls in a macropores range (~50-200μm) inside the cement, verified by scanning electron microscopy (SEM), mercury intrusion porosimetry and micro-CT analysis techniques. Also, it is biodegradable (degrades ~19-22% within 10-12 weeks) when incubated in artificial body fluids under physiological conditions. The biocompatibility study of the bone cement, when incubated with MG63 cells, shows a significant increase in the cell viability after 3rd day of incubation compared with the control, and the cells were well-attached and spread completely on the surface of the bone cement, confirmed through SEM and fluorescence microscopy analyses. With this all, we can conclude that the developed synthetic macroporous apatite-based bone cement may have the potential to become promising material used as a trabecular bone substitute.

Keywords: calcium deficient hydroxyapatite, synthetic apatite-based bone cement, injectability, macroporosity, trabecular bone substitute

Procedia PDF Downloads 71
264 Hardness map of Human Tarsals, Meta Tarsals and Phalanges of Toes

Authors: Irfan Anjum Manarvi, Zahid Ali kaimkhani

Abstract:

Predicting location of the fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation, and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers, therefore, have proposed further studies due to inaccuracies in measurement methods, testing machines, and experimental errors. Advancement and availability of hardware, measuring instrumentation, and testing machines can now provide remedies to these limitations. The human foot is a critical part of the body exposed to various forces throughout its life. A number of products are developed for using it for protection and care, which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Mechanical properties of Tarsals, Metatarsals, and phalanges are, therefore, the primary area of consideration for all such design applications. Hardness is one of the mechanical properties which are considered very important to establish the mechanical resistance behavior of a material against applied loads. Past researchers have worked in the areas of investigating mechanical properties of these bones. However, their results were based on a limited number of experiments and taking average values of hardness due to either limitation of samples or testing instruments. Therefore, they proposed further studies in this area. The present research has been carried out to develop a hardness map of the human foot by measuring micro hardness at various locations of these bones. Results are compiled in the form of distance from a reference point on a bone and the hardness values for each surface. The number of test results is far more than previous studies and are spread over a typical bone to give a complete hardness map of these bones. These results could also be used to establish other properties such as stress and strain distribution in the bones. Also, industrial engineers could use it for design and development of various accessories for human feet health care and comfort and further research in the same areas.

Keywords: tarsals, metatarsals, phalanges, hardness testing, biomechanics of human foot

Procedia PDF Downloads 408
263 Interlanguage Acquisition of a Postposition ‘e’ in Korean: Analysis of the Korean Novice Learners’ Output

Authors: Eunjung Lee

Abstract:

This study aims to analyze the sentences generated by the beginners who learn ‘e,’ a postposition in Korean and to find out the regularity of learners’ interlanguage upon investigating the usages of ‘e’ that appears by meanings and functions in their interlanguage, and conditions that ‘e’ is used. This study was conducted with mainly two assumptions; first, the learner’s language has the specific type of interlanguage; and second, there is the regularity of interlanguage when students produce ‘e’ under the specific conditions. Learners’ output has various values and can be used as the useful data to understand interlanguage. Therefore, all the sentences containing a postposition ‘e’ by English speaking learners were searched in ‘Learners’ corpus sharing center in The National Institute of Korean Language’ in Korea, and the data were collected upon limiting the levels of learners with Level 1 and 2. 789 sentences that were used with ‘e’ were selected as the final subjects of the analysis. First, to understand the environmental characteristics to be used with a postposition, ‘e’ after summarizing 13 meaning and functions of ‘e’ appeared in three books of Korean dictionary that summarized the Korean grammar, 1) meaning function of ‘e’ that were used in each sentence was classified; 2) the nouns that were combined with ‘e,’ keywords of the sentences, and the characteristics of modifiers, linkers, and predicates appeared in front of ‘e’ were analyzed; 3) the regularity by the novice learners’ meaning and functions were reviewed; and 4) the differences of the regularity by level 1 and 2 learners’ meaning and functions were found. Upon the study results, the novice learners showed 1) they used the nouns related to ‘time(시간), before(전), after(후), next(다음), the next(그다음), then(때), day of the week(요일), and season(계절)’ mainly in front of ‘e’ when they used ‘e’ as the meaning function of time; 2) they used mainly the verbs of ‘go(가다),’ ‘come(오다),’ and ‘go round(다니다)’ as the predicate to match with ‘e’ that was the meaning function of direction and destination; and 3) they used mainly the nouns related to ‘locations or countries’ in front of ‘e,’ a meaning function postposition of ‘place,’ used mainly the verbs ‘be(있다), not be(없다), live(살다), be many(많다)’ after ‘e,’ and ‘i(이) or ka(가)’ was combined mainly in the subject words in case of ‘be(있다), not be(없다)’ or ‘be many(많다),’ and ‘eun(은) or nun(는)’ was combined mainly in the subject words in front of ‘live at’ In addition, 4) they used ‘e’ which indicates ‘cause or reason’ in the form of ‘because( 때문에),’ and 5) used ‘e’ of the subjects as the predicates to match with the predicates such as ‘treat(대하다), like(들다), and catch(걸리다).’ From these results, ‘e’ usage patterns of the Korean novice learners demonstrated very differently by the meaning functions and the learners’ interlanguage regularity could be deducted. However, little difference was found in interlanguage regularity between level 1 and 2. This study has the meaning to try to understand the interlanguage system and regularity in the learners’ acquisition process of postposition ‘e’ and this can be utilized to lessen their errors.

Keywords: interlanguage, interlagnage anaylsis, postposition ‘e’, Korean acquisition

Procedia PDF Downloads 111
262 A Measurement and Motor Control System for Free Throw Shots in Basketball Using Gyroscope Sensor

Authors: Niloofar Zebarjad

Abstract:

This research aims at finding a tool to provide basketball players with real-time audio feedback on their shooting form in free throw shots. Free throws played a pivotal role in taking the lead in fierce competitions. The major problem in performing an accurate free throw seems to be improper training. Since the arm movement during the free throw shot is complex, the coach or the athlete might miss the movement details during practice. Hence, there is a necessity to create a system that measures arm movements' critical characteristics and control for improper kinematics. The proposed setup in this study quantifies arm kinematics and provides real-time feedback as an audio signal consisting of a gyroscope sensor. Spatial shoulder angle data are transmitted in a mobile application in real-time and can be saved and processed for statistical and analysis purposes. The proposed system is easy to use, inexpensive, portable, and real-time applicable. Objectives: This research aims to modify and control the free throw using audio feedback and determine if and to what extent the new setup reduces errors in arm formations during throws and finally assesses the successful throw rate. Methods: One group of elite basketball athletes and two novice athletes (control and study group) participated in this study. Each group contains 5 participants being studied in three separate sessions over a week. Results: Empirical results showed enhancements in the free throw shooting style, shot pocket (SP), and locked position (LP). The mean values of shoulder angle were controlled on 25° and 45° for SP and LP, respectively, recommended by valid FIBA references. Conclusion: Throughout the experiments, the system helped correct and control the shoulder angles toward the targeted pattern of shot pocket (SP) and locked position (LP). According to the desired results for arm motion, adding another sensor to measure and control the elbow angle is recommended.

Keywords: audio-feedback, basketball, free-throw, locked-position, motor-control, shot-pocket

Procedia PDF Downloads 267
261 Comparison of Extended Kalman Filter and Unscented Kalman Filter for Autonomous Orbit Determination of Lagrangian Navigation Constellation

Authors: Youtao Gao, Bingyu Jin, Tanran Zhao, Bo Xu

Abstract:

The history of satellite navigation can be dated back to the 1960s. From the U.S. Transit system and the Russian Tsikada system to the modern Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), performance of satellite navigation has been greatly improved. Nowadays, the navigation accuracy and coverage of these existing systems have already fully fulfilled the requirement of near-Earth users, but these systems are still beyond the reach of deep space targets. Due to the renewed interest in space exploration, a novel high-precision satellite navigation system is becoming even more important. The increasing demand for such a deep space navigation system has contributed to the emergence of a variety of new constellation architectures, such as the Lunar Global Positioning System. Apart from a Walker constellation which is similar to the one adopted by GPS on Earth, a novel constellation architecture which consists of libration point satellites in the Earth-Moon system is also available to construct the lunar navigation system, which can be called accordingly, the libration point satellite navigation system. The concept of using Earth-Moon libration point satellites for lunar navigation was first proposed by Farquhar and then followed by many other researchers. Moreover, due to the special characteristics of Libration point orbits, an autonomous orbit determination technique, which is called ‘Liaison navigation’, can be adopted by the libration point satellites. Using only scalar satellite-to-satellite tracking data, both the orbits of the user and libration point satellites can be determined autonomously. In this way, the extensive Earth-based tracking measurement can be eliminated, and an autonomous satellite navigation system can be developed for future space exploration missions. The method of state estimate is an unnegligible factor which impacts on the orbit determination accuracy besides type of orbit, initial state accuracy and measurement accuracy. We apply the extended Kalman filter(EKF) and the unscented Kalman filter(UKF) to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The simulation results illustrate that UKF can improve the accuracy and z-axis convergence to some extent.

Keywords: extended Kalman filter, autonomous orbit determination, unscented Kalman filter, navigation constellation

Procedia PDF Downloads 267
260 Speaking Anxiety: Sources, Coping Mechanisms and Teacher Management

Authors: Mylene T. Caytap-Milan

Abstract:

This study was materialized with the purpose of determining the anxieties of students towards spoken English, sources of the specified anxiety, coping mechanisms to counter the apprehensions, and teacher management to reduce the anxiety within the classroom. Being qualitative in nature, interview as the data gathering tool was utilized with an audio-recorder. Participants of the study included thirteen teachers and students of speech classes in a state university in Region I, Philippines. Data elicited were transcribed in verbatim, confirmed by the participants, coded and categorized, and themed accordingly. A triangulation method was applied to establish the stronger validity of the data. Findings confirmed teachers’ and students’ awareness of the existence of Anxiety in speaking English (ASE). Based on the data gathered from the teachers, the following themes on students’ ASE were identified: (1) No Brain and Mouth Coordination, (2) Center of Attention, and (3) Acting Out Loud. However, the following themes were formulated based on the responses made by the students themselves: (1) The Common Feeling, (2) The Incompetent Me, and (3) The Limelight. With regard the sources of students’ ASE according to teachers are the following: (1) It Began at Home, (2) It Continued in School, (3) It’s not for me at all. On the other hand, the sources of students’ ASE according to students themselves are: (1) It Comes from Within, (2) It wasn’t Nursed Well, and (3) They’re Looking for Errors. In terms of coping with ASE, students identified the following mechanisms, which were themed into: (1) Acceptance, (2) Application, and (3) Apathy. Moreover, to reduce the ASE phenomenon within the classroom, the teachers demonstrate the following roles according to themes: (1) The Compass, (2) The Counselor, (3) The Referee, (4) The Polyglot, and (5) The English Nazi. Based on the findings, the following conclusions were drawn: (1) ASE can both serve positive and negative influences to the English speaking skills of students, (2) ASE can be reduced with teachers’ provision of more English speaking opportunities and with students’ initiative of personal training, (3) ASE can be reduced when English is introduced and practiced by children at an early age, and (4) ASE is inevitable in the affective domain thus teachers are encouraged to apply psychological positivism in the classroom. Studies related to the present undertaking may refer to the succeeding recommendations: (1) experiment on activities that will reduce anxiety ASE, (2) involve a psychologist for more critical but reliable results and recommendations, and (3) conduct the study among high school and primary students.

Keywords: coping mechanisms, sources, speaking anxiety, teacher management

Procedia PDF Downloads 103
259 An Educational Electronic Health Record with a Configurable User Interface

Authors: Floriane Shala, Evangeline Wagner, Yichun Zhao

Abstract:

Background: Proper educational training and support are proven to be major components of EHR (Electronic Health Record) implementation and use. However, the majority of health providers are not sufficiently trained in EHR use, leading to adverse events, errors, and decreased quality of care. In response to this, students studying Health Information Science, Public Health, Nursing, and Medicine should all gain a thorough understanding of EHR use at different levels for different purposes. The design of a usable and safe EHR system that accommodates the needs and workflows of different users, user groups, and disciplines is required for EHR learning to be efficient and effective. Objectives: This project builds several artifacts which seek to address both the educational and usability aspects of an educational EHR. The artifacts proposed are models for and examples of such an EHR with a configurable UI to be learned by students who need a background in EHR use during their degrees. Methods: Review literature and gather professional opinions from domain experts on usability, the use of workflow patterns, UI configurability and design, and the educational aspect of EHR use. Conduct interviews in a semi-casual virtual setting with open discussion in order to gain a deeper understanding of the principal aspects of EHR use in educational settings. Select a specific task and user group to illustrate how the proposed solution will function based on the current research. Develop three artifacts based on the available research, professional opinions, and prior knowledge of the topic. The artifacts capture the user task and user’s interactions with the EHR for learning. The first generic model provides a general understanding of the EHR system process. The second model is a specific example of performing the task of MRI ordering with a configurable UI. The third artifact includes UI mock-ups showcasing the models in a practical and visual way. Significance: Due to the lack of educational EHRs, medical professionals do not receive sufficient EHR training. Implementing an educational EHR with a usable and configurable interface to suit the needs of different user groups and disciplines will help facilitate EHR learning and training and ultimately improve the quality of patient care.

Keywords: education, EHR, usability, configurable

Procedia PDF Downloads 143
258 Frequency of Consonant Production Errors in Children with Speech Sound Disorder: A Retrospective-Descriptive Study

Authors: Amulya P. Rao, Prathima S., Sreedevi N.

Abstract:

Speech sound disorders (SSD) encompass the major concern in younger population of India with highest prevalence rate among the speech disorders. Children with SSD if not identified and rehabilitated at the earliest, are at risk for academic difficulties. This necessitates early identification using screening tools assessing the frequently misarticulated speech sounds. The literature on frequently misarticulated speech sounds is ample in English and other western languages targeting individuals with various communication disorders. Articulation is language specific, and there are limited studies reporting the same in Kannada, a Dravidian Language. Hence, the present study aimed to identify the frequently misarticulated consonants in Kannada and also to examine the error type. A retrospective, descriptive study was carried out using secondary data analysis of 41 participants (34-phonetic type and 7-phonemic type) with SSD in the age range 3-to 12-years. All the consonants of Kannada were analyzed by considering three words for each speech sound from the Kannada Diagnostic Photo Articulation test (KDPAT). Picture naming task was carried out, and responses were audio recorded. The recorded data were transcribed using IPA 2018 broad transcription. A criterion of 2/3 or 3/3 error productions was set to consider the speech sound to be an error. Number of error productions was calculated for each consonant in each participant. Then, the percentage of participants meeting the criteria were documented for each consonant to identify the frequently misarticulated speech sound. Overall results indicated that velar /k/ (48.78%) and /g/ (43.90%) were frequently misarticulated followed by voiced retroflex /ɖ/ (36.58%) and trill /r/ (36.58%). The lateral retroflex /ɭ/ was misarticulated by 31.70% of the children with SSD. Dentals (/t/, /n/), bilabials (/p/, /b/, /m/) and labiodental /v/ were produced correctly by all the participants. The highly misarticulated velars /k/ and /g/ were frequently substituted by dentals /t/ and /d/ respectively or omitted. Participants with SSD-phonemic type had multiple substitutions for one speech sound whereas, SSD-phonetic type had consistent single sound substitutions. Intra- and inter-judge reliability for 10% of the data using Cronbach’s Alpha revealed good reliability (0.8 ≤ α < 0.9). Analyzing a larger sample by replicating such studies will validate the present study results.

Keywords: consonant, frequently misarticulated, Kannada, SSD

Procedia PDF Downloads 107
257 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: electric propulsion, mass gauging, propellant, PVT, xenon

Procedia PDF Downloads 327
256 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria

Authors: O. O. Aiyelokun, O. A. Agbede

Abstract:

Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.

Keywords: boundary condition, goodness of fit, groundwater, satellite-based data

Procedia PDF Downloads 111
255 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 35
254 Teaching Neuroscience from Neuroscience: an Approach Based on the Allosteric Learning Model, Pathfinder Associative Networks and Teacher Professional Knowledge

Authors: Freddy Rodriguez Saza, Erika Sanabria, Jair Tibana

Abstract:

Currently, the important role of neurosciences in the professional training of the physical educator is known, highlighting in the teaching-learning process aspects such as the nervous structures involved in the adjustment of posture and movement, the neurophysiology of locomotion, the process of nerve impulse transmission, and the relationship between physical activity, learning, and cognition. The teaching-learning process of neurosciences is complex, due to the breadth of the contents, the diversity of teaching contexts required, and the demanding ability to relate concepts from different disciplines, necessary for the correct understanding of the function of the nervous system. This text presents the results of the application of a didactic environment based on the Allosteric Learning Model in morphophysiology students of the Faculty of Military Physical Education, Military School of Cadets of the Colombian Army (Bogotá, Colombia). The research focused then, on analyzing the change in the cognitive structure of the students on neurosciences. Methodology. [1] The predominant learning styles were identified. [2] Students' cognitive structure, core concepts, and threshold concepts were analyzed through the construction of Pathfinder Associative Networks. [3] Didactic Units in Neuroscience were designed to favor metacognition, the development of Executive Functions (working memory, cognitive flexibility, and inhibitory control) that led students to recognize their errors and conceptual distortions and to overcome them. [4] The Teacher's Professional Knowledge and the role of the assessment strategies applied were taken into account, taking into account the perspective of the Dynamizer, Obstacle, and Questioning axes. In conclusion, the study found that physical education students achieved significant learning in neuroscience, favored by the development of executive functions and by didactic environments oriented with the predominant learning styles and focused on increasing cognitive networks and overcoming difficulties, neuromyths and neurophobia.

Keywords: allosteric learning model, military physical education, neurosciences, pathfinder associative networks, teacher professional knowledge

Procedia PDF Downloads 213
253 Energy Security and Sustainable Development: Challenges and Prospects

Authors: Abhimanyu Behera

Abstract:

Over the past few years, energy security and sustainable development have moved rapidly into the global agenda. There are two main reasons: first, the impact of high and often volatile energy prices; second, concerns over environmental sustainability particularly about the global climate. Both issues are critically important in which impressive economic growth has boosted the demand for energy and put corresponding strains on the environment. Energy security is a broad concept that focuses on energy availability and pricing. Specifically, it refers to the ability of the energy supply system i.e. suppliers, transporters, distributors and regulatory, financial and R&D institutions to deliver the amount of competitively priced energy that customers demand, within accepted standards of reliability, timeliness, quality, safety. Traditionally, energy security has been defined in the context of the geopolitical risks to external oil supplies but today it is encompassing all energy forms, all the external and internal links bringing the energy to the final consumer, and all the many ways energy supplies can be disrupted including equipment malfunctions, system design flaws, operator errors, malicious computer activities, deficient market and regulatory frameworks, corporate financial problems, labour actions, severe weather and natural events, aggressive acts (e.g. war, terrorism and sabotage), and geopolitical disruptions. In practice, the most challenging disruptions are those linked to: 1) extreme weather events; 2) mismatched electricity supply and demand; 3) regulatory failures; and 4) concentration of oil and gas resources in certain regions of the world. However, insecure energy supplies inhibit development by raising energy costs and imposing expensive cuts in services when disruptions actually occur. The energy supply sector can best advance sustainable development by producing and delivering secure and environmentally-friendly sources of energy and by increasing the efficiency of energy use. With this objective, this paper seeks to highlight the significance of energy security and sustainable development in today’s world. Moreover, it critically overhauls the major challenges towards sustainability of energy security and what are the major policies are taken to overcome these challenges by Government is lucidly explicated in this paper.

Keywords: energy, policies, security, sustainability

Procedia PDF Downloads 367
252 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)

Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky

Abstract:

The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.

Keywords: sutures, biomaterials, silk, Ramie

Procedia PDF Downloads 295
251 Building on Previous Microvalving Approaches for Highly Reliable Actuation in Centrifugal Microfluidic Platforms

Authors: Ivan Maguire, Ciprian Briciu, Alan Barrett, Dara Kervick, Jens Ducrèe, Fiona Regan

Abstract:

With the ever-increasing myriad of applications of which microfluidic devices are capable, reliable fluidic actuation development has remained fundamental to the success of these microfluidic platforms. There are a number of approaches which can be taken in order to integrate liquid actuation on microfluidic platforms, which can usually be split into two primary categories; active microvalves and passive microvalves. Active microvalves are microfluidic valves which require a physical parameter change by external, or separate interaction, for actuation to occur. Passive microvalves are microfluidic valves which don’t require external interaction for actuation due to the valve’s natural physical parameters, which can be overcome through sample interaction. The purpose of this paper is to illustrate how further improvements to past microvalve solutions can largely enhance systematic reliability and performance, with both novel active and passive microvalves demonstrated. Covered within this scope will be two alternative and novel microvalve solutions for centrifugal microfluidic platforms; a revamped pneumatic-dissolvable film active microvalve (PAM) strategy and a spray-on Sol-Gel based hydrophobic passive microvalve (HPM) approach. Both the PAM and the HPM mechanisms were demonstrated on a centrifugal microfluidic platform consisting of alternating layers of 1.5 mm poly(methyl methacrylate) (PMMA) (for reagent storage) sheets and ~150 μm pressure sensitive adhesive (PSA) (for microchannel fabrication) sheets. The PAM approach differs from previous SOLUBON™ dissolvable film methods by introducing a more reliable and predictable liquid delivery mechanism to microvalve site, thus significantly reducing premature activation. This approach has also shown excellent synchronicity when performed in a multiplexed form. The HPM method utilises a new spray-on and low curing temperature (70°C) sol-gel material. The resultant double layer coating comprises a PMMA adherent sol-gel as the bottom layer and an ultra hydrophobic silica nano-particles (SNPs) film as the top layer. The optimal coating was integrated to microfluidic channels with varying cross-sectional area for assessing microvalve burst frequencies consistency. It is hoped that these microvalving solutions, which can be easily added to centrifugal microfluidic platforms, will significantly improve automation reliability.

Keywords: centrifugal microfluidics, hydrophobic microvalves, lab-on-a-disc, pneumatic microvalves

Procedia PDF Downloads 175
250 Exploring the Potential of Bio-Inspired Lattice Structures for Dynamic Applications in Design

Authors: Axel Thallemer, Aleksandar Kostadinov, Abel Fam, Alex Teo

Abstract:

For centuries, the forming processes in nature served as a source of inspiration for both architects and designers. It seems as most human artifacts are based on ideas which stem from the observation of the biological world and its principles of growth. As a fact, in the cultural history of Homo faber, materials have been mostly used in their solid state: From hand axe to computer mouse, the principle of employing matter has not changed ever since the first creation. In the scope of history only recently and by the help of additive-generative fabrication processes through Computer Aided Design (CAD), designers were enabled to deconstruct solid artifacts into an outer skin and an internal lattice structure. The intention behind this approach is to create a new topology which reduces resources and integrates functions into an additively manufactured component. However, looking at the currently employed lattice structures, it is very clear that those lattice structure geometries have not been thoroughly designed, but rather taken out of basic-geometry libraries which are usually provided by the CAD. In the here presented study, a group of 20 industrial design students created new and unique lattice structures using natural paragons as their models. The selected natural models comprise both the animate and inanimate world, with examples ranging from the spiraling of narwhal tusks, off-shooting of mangrove roots, minimal surfaces of soap bubbles, up to the rhythmical arrangement of molecular geometry, like in the case of SiOC (Carbon-Rich Silicon Oxicarbide). This ideation process leads to a design of a geometric cell, which served as a basic module for the lattice structure, whereby the cell was created in visual analogy to its respective natural model. The spatial lattices were fabricated additively in mostly [X]3 by [Y]3 by [Z]3 units’ volumes using selective powder bed melting in polyamide with (z-axis) 50 mm and 100 µm resolution and subdued to mechanical testing of their elastic zone in a biomedical laboratory. The results demonstrate that additively manufactured lattice structures can acquire different properties when they are designed in analogy to natural models. Several of the lattices displayed the ability to store and return kinetic energy, while others revealed a structural failure which can be exploited for purposes where a controlled collapse of a structure is required. This discovery allows for various new applications of functional lattice structures within industrially created objects.

Keywords: bio-inspired, biomimetic, lattice structures, additive manufacturing

Procedia PDF Downloads 132
249 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects

Authors: Muhammad Khairi bin Sulaiman

Abstract:

The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.

Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning

Procedia PDF Downloads 67
248 Comparison of Cognitive Load in Virtual Reality and Conventional Simulation-Based Training: A Randomized Controlled Trial

Authors: Michael Wagner, Philipp Steinbauer, Andrea Katharina Lietz, Alexander Hoffelner, Johannes Fessler

Abstract:

Background: Cardiopulmonary resuscitations are stressful situations in which vital decisions must be made within seconds. Lack of routine due to the infrequency of pediatric emergencies can lead to serious medical and communication errors. Virtual reality can fundamentally change the way simulation training is conducted in the future. It appears to be a useful learning tool for technical and non-technical skills. It is important to investigate the use of VR in providing a strong sense of presence within simulations. Methods: In this randomized study, we will enroll doctors and medical students from the Medical University of Vienna, who will receive learning material regarding the resuscitation of a one-year-old child. The study will be conducted in three phases. In the first phase, 20 physicians and 20 medical students from the Medical University of Vienna will be included. They will perform simulation-based training with a standardized scenario of a critically ill child with a hypovolemic shock. The main goal of this phase is to establish a baseline for the following two phases to generate comparative values regarding cognitive load and stress. In phase 2 and 3, the same participants will perform the same scenario in a VR setting. In both settings, on three set points of progression, one of three predefined events is triggered. For each event, three different stress levels (easy, medium, difficult) will be defined. Stress and cognitive load will be analyzed using the NASA Task Load Index, eye-tracking parameters, and heart rate. Subsequently, these values will be compared between VR training and traditional simulation-based training. Hypothesis: We hypothesize that the VR training and the traditional training groups will not differ in physiological response (cognitive load, heart rate, and heart rate variability). We further assume that virtual reality training can be used as cost-efficient additional training. Objectives: The aim of this study is to measure cognitive load and stress level during a real-life simulation training and compare it with VR training in order to show that VR training evokes the same physiological response and cognitive load as real-life simulation training.

Keywords: virtual reality, cognitive load, simulation, adaptive virtual reality training

Procedia PDF Downloads 98
247 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing

Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.

Abstract:

Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.

Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target

Procedia PDF Downloads 310
246 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 147
245 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time

Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen

Abstract:

Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.

Keywords: 4C/ID model, virtual patients, education, dental, instructional design

Procedia PDF Downloads 63
244 Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements

Authors: Mohamad Molavi Nojumi, Xiaodong Wang

Abstract:

In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements.

Keywords: finite element, fracture mechanics, functionally graded materials, graded element

Procedia PDF Downloads 158
243 Apollo Quality Program: The Essential Framework for Implementing Patient Safety

Authors: Anupam Sibal

Abstract:

Apollo Quality Program(AQP) was launched across the Apollo Group of Hospitals to address the four patient safety areas; Safety during Clinical Handovers, Medication Safety, Surgical Safety and the six International Patient Safety Goals(IPSGs) of JCI. A measurable, online, quality dashboard covering 20 process and outcome parameters was devised for monthly monitoring. The expected outcomes were also defined and categorized into green, yellow and red ranges. An audit methodology was also devised to check the processes for the measurable dashboard. Documented clinical handovers were introduced for the first time at many locations for in-house patient transfer, nursing-handover, and physician-handover. Prototype forms using the SBAR format were made. Patient-identifiers, read-back for verbal orders, safety of high-alert medications, site marking and time-outs and falls risk-assessment were introduced for all hospitals irrespective of accreditation status. Measurement of Surgical-Site-Infection (SSI) for 30 days postoperatively, was done. All hospitals now tracked the time of administration of antimicrobial prophylaxis before surgery. Situations with high risk of retention of foreign body were delineated and precautionary measures instituted. Audit of medications prescribed in the discharge summaries was made uniform. Formularies, prescription-audits and other means for reduction of medication errors were implemented. There is a marked increase in the compliance to processes and patient safety outcomes. Compliance to read-back for verbal orders rose from 86.83% in April’11 to 96.95% in June’15, to policy for high alert medications from 87.83% to 98.82%, to use of measures to prevent wrong-site, wrong-patient, wrong procedure surgery from 85.75% to 97.66%, to hand-washing from 69.18% to 92.54%, to antimicrobial prophylaxis within one hour before incision from 79.43% to 93.46%. Percentage of patients excluded from SSI calculation due to lack of follow-up for the requisite time frame decreased from 21.25% to 10.25%. The average AQP scores for all Apollo Hospitals improved from 62 in April’11 to 87.7 in Jun’15.

Keywords: clinical handovers, international patient safety goals, medication safety, surgical safety

Procedia PDF Downloads 243
242 Integration of Technology into Nursing Education: A Collaboration between College of Nursing and University Research Center

Authors: Lori Lioce, Gary Maddux, Norven Goddard, Ishella Fogle, Bernard Schroer

Abstract:

This paper presents the integration of technologies into nursing education. The collaborative effort includes the College of Nursing (CoN) at the University of Alabama in Huntsville (UAH) and the UAH Systems Management and Production Center (SMAP). The faculty at the CoN conducts needs assessments to identify education and training requirements. A team of CoN faculty and SMAP engineers then prioritize these requirements and establish improvement/development teams. The development teams consist of nurses to evaluate the models and to provide feedback and of undergraduate engineering students and their senior staff mentors from SMAP. The SMAP engineering staff develops and creates the physical models using 3D printing, silicone molds and specialized molding mixtures and techniques. The collaboration has focused on developing teaching and training, or clinical, simulators. In addition, the onset of the Covid-19 pandemic has intensified this relationship, as 3D modeling shifted to supplied personal protection equipment (PPE) to local health care providers. A secondary collaboration has been introducing students to clinical benchmarking through the UAH Center for Management and Economic Research. As a result of these successful collaborations the Model Exchange & Development of Nursing & Engineering Technology (MEDNET) has been established. MEDNET seeks to extend and expand the linkage between engineering and nursing to K-12 schools, technical schools and medical facilities in the region to the resources available from the CoN and SMAP. As an example, stereolithography (STL) files of the 3D printed models, along with the specifications to fabricate models, are available on the MEDNET website. Ten 3D printed models have been developed and are currently in use by the CoN. The following additional training simulators are currently under development:1) suture pads, 2) gelatin wound models and 3) printed wound tattoos. Specification sheets have been written for these simulations that describe the use, fabrication procedures and parts list. These specifications are available for viewing and download on MEDNET. Included in this paper are 1) descriptions of CoN, SMAP and MEDNET, 2) collaborative process used in product improvement/development, 3) 3D printed models of training and teaching simulators, 4) training simulators under development with specification sheets, 5) family care practice benchmarking, 6) integrating the simulators into the nursing curriculum, 7) utilizing MEDNET as a pandemic response, and 8) conclusions and lessons learned.

Keywords: 3D printing, nursing education, simulation, trainers

Procedia PDF Downloads 110
241 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform

Procedia PDF Downloads 283
240 Analytical Performance of Cobas C 8000 Analyzer Based on Sigma Metrics

Authors: Sairi Satari

Abstract:

Introduction: Six-sigma is a metric that quantifies the performance of processes as a rate of Defects-Per-Million Opportunities. Sigma methodology can be applied in chemical pathology laboratory for evaluating process performance with evidence for process improvement in quality assurance program. In the laboratory, these methods have been used to improve the timeliness of troubleshooting, reduce the cost and frequency of quality control and minimize pre and post-analytical errors. Aim: The aim of this study is to evaluate the sigma values of the Cobas 8000 analyzer based on the minimum requirement of the specification. Methodology: Twenty-one analytes were chosen in this study. The analytes were alanine aminotransferase (ALT), albumin, alkaline phosphatase (ALP), Amylase, aspartate transaminase (AST), total bilirubin, calcium, chloride, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, lactate dehydrogenase (LDH), magnesium, potassium, protein, sodium, triglyceride, uric acid and urea. Total error was obtained from Clinical Laboratory Improvement Amendments (CLIA). The Bias was calculated from end cycle report of Royal College of Pathologists of Australasia (RCPA) cycle from July to December 2016 and coefficient variation (CV) from six-month internal quality control (IQC). The sigma was calculated based on the formula :Sigma = (Total Error - Bias) / CV. The analytical performance was evaluated based on the sigma, sigma > 6 is world class, sigma > 5 is excellent, sigma > 4 is good and sigma < 4 is satisfactory and sigma < 3 is poor performance. Results: Based on the calculation, we found that, 96% are world class (ALT, albumin, ALP, amylase, AST, total bilirubin, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, LDH, magnesium, potassium, triglyceride and uric acid. 14% are excellent (calcium, protein and urea), and 10% ( chloride and sodium) require more frequent IQC performed per day. Conclusion: Based on this study, we found that IQC should be performed frequently for only Chloride and Sodium to ensure accurate and reliable analysis for patient management.

Keywords: sigma matrics, analytical performance, total error, bias

Procedia PDF Downloads 154
239 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis

Authors: H. Jung, N. Kim, B. Kang, J. Choe

Abstract:

History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.

Keywords: history matching, principal component analysis, reservoir modelling, support vector machine

Procedia PDF Downloads 142
238 Nurse-Led Codes: Practical Application in the Emergency Department during a Global Pandemic

Authors: F. DelGaudio, H. Gill

Abstract:

Resuscitation during cardiopulmonary (CPA) arrest is dynamic, high stress, high acuity situation, which can easily lead to communication breakdown, and errors. The care of these high acuity patients has also been shown to increase physiologic stress and task saturation of providers, which can negatively impact the care being provided. These difficulties are further complicated during a global pandemic and pose a significant safety risk to bedside providers. Nurse-led codes are a relatively new concept that may be a potential solution for alleviating some of these difficulties. An experienced nurse who has completed advanced cardiac life support (ACLS), and additional training, assumed the responsibility of directing the mechanics of the appropriate ACLS algorithm. This was done in conjunction with a physician who also acted as a physician leader. The additional nurse-led code training included a multi-disciplinary in situ simulation of a CPA on a suspected COVID-19 patient. During the CPA, the nurse leader’s responsibilities include: ensuring adequate compression depth and rate, minimizing interruptions in chest compressions, the timing of rhythm/pulse checks, and appropriate medication administration. In addition, the nurse leader also functions as a last line safety check for appropriate personal protective equipment and limiting exposure of staff. The use of nurse-led codes for CPA has shown to decrease the cognitive overload and task saturation for the physician, as well as limiting the number of staff being exposed to a potentially infectious patient. The real-world application has allowed physicians to perform and oversee high-risk procedures such as intubation, line placement, and point of care ultrasound, without sacrificing the integrity of the resuscitation. Nurse-led codes have also given the physician the bandwidth to review pertinent medical history, advanced directives, determine reversible causes, and have the end of life conversations with family. While there is a paucity of research on the effectiveness of nurse-led codes, there are many potentially significant benefits. In addition to its value during a pandemic, it may also be beneficial during complex circumstances such as extracorporeal cardiopulmonary resuscitation.

Keywords: cardiopulmonary arrest, COVID-19, nurse-led code, task saturation

Procedia PDF Downloads 130
237 Educating the Educators: Interdisciplinary Approaches to Enhance Science Teaching

Authors: Denise Levy, Anna Lucia C. H. Villavicencio

Abstract:

In a rapid-changing world, science teachers face considerable challenges. In addition to the basic curriculum, there must be included several transversal themes, which demand creative and innovative strategies to be arranged and integrated to traditional disciplines. In Brazil, nuclear science is still a controversial theme, and teachers themselves seem to be unaware of the issue, most often perpetuating prejudice, errors and misconceptions. This article presents the authors’ experience in the development of an interdisciplinary pedagogical proposal to include nuclear science in the basic curriculum, in a transversal and integrating way. The methodology applied was based on the analysis of several normative documents that define the requirements of essential learning, competences and skills of basic education for all schools in Brazil. The didactic materials and resources were developed according to the best practices to improve learning processes privileging constructivist educational techniques, with emphasis on active learning process, collaborative learning and learning through research. The material consists of an illustrated book for students, a book for teachers and a manual with activities that can articulate nuclear science to different disciplines: Portuguese, mathematics, science, art, English, history and geography. The content counts on high scientific rigor and articulate nuclear technology with topics of interest to society in the most diverse spheres, such as food supply, public health, food safety and foreign trade. Moreover, this pedagogical proposal takes advantage of the potential value of digital technologies, implementing QR codes that excite and challenge students of all ages, improving interaction and engagement. The expected results include the education of the educators for nuclear science communication in a transversal and integrating way, demystifying nuclear technology in a contextualized and significant approach. It is expected that the interdisciplinary pedagogical proposal contributes to improving attitudes towards knowledge construction, privileging reconstructive questioning, fostering a culture of systematic curiosity and encouraging critical thinking skills.

Keywords: science education, interdisciplinary learning, nuclear science, scientific literacy

Procedia PDF Downloads 118