Search results for: discrete element modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5143

Search results for: discrete element modelling

3733 An Analytical Study of FRP-Concrete Bridge Superstructures

Authors: Wael I. Alnahhal

Abstract:

It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber reinforced polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.

Keywords: bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis

Procedia PDF Downloads 328
3732 Patronage Network and Ideological Manipulations in Translation of Literary Texts: A Case Study of George Orwell's “1984” in Persian Translation in the Period 1980 to 2015

Authors: Masoud Hassanzade Novin, Bahloul Salmani

Abstract:

The process of the translation is not merely the linguistic aspects. It is also considered in the cultural framework of both the source and target text cultures. The translation process and translated texts are confronted the new aspect in 20th century which is considered mostly in the patronage framework and ideological grillwork of the target language. To have these factors scrutinized in the process of the translation both micro-element factors and macro-element factors can be taken into consideration. For the purpose of this study through a qualitative type of research based on critical discourse analysis approach, the case study of the novel “1984” written by George Orwell was chosen as the corpus of the study to have the contrastive analysis by its Persian translated texts. Results of the study revealed some distortions embedded in the target texts which were overshadowed by ideological aspect and patronage network. The outcomes of the manipulated terms were different in various categories which revealed the manipulation aspects in the texts translated.

Keywords: critical discourse analysis, ideology, patronage network, translated texts

Procedia PDF Downloads 315
3731 Behaviour of an RC Circuit near Extreme Point

Authors: Tribhuvan N. Soorya

Abstract:

Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor.

Keywords: charging, discharging, RC Circuit, capacitor

Procedia PDF Downloads 437
3730 Identification Algorithm of Critical Interface, Modelling Perils on Critical Infrastructure Subjects

Authors: Jiří. J. Urbánek, Hana Malachová, Josef Krahulec, Jitka Johanidisová

Abstract:

The paper deals with crisis situations investigation and modelling within the organizations of critical infrastructure. Every crisis situation has an origin in the emergency event occurrence in the organizations of energetic critical infrastructure especially. Here, the emergency events can be both the expected events, then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping or the unexpected event (Black Swan effect) – without pre-prepared scenario, but it needs operational coping of crisis situations as well. The forms, characteristics, behaviour and utilization of crisis scenarios have various qualities, depending on real critical infrastructure organization prevention and training processes. An aim is always better organizational security and continuity obtainment. This paper objective is to find and investigate critical/ crisis zones and functions in critical situations models of critical infrastructure organization. The DYVELOP (Dynamic Vector Logistics of Processes) method is able to identify problematic critical zones and functions, displaying critical interfaces among actors of crisis situations on the DYVELOP maps named Blazons. Firstly, for realization of this ability is necessary to derive and create identification algorithm of critical interfaces. The locations of critical interfaces are the flags of crisis situation in real organization of critical infrastructure. Conclusive, the model of critical interface will be displayed at real organization of Czech energetic crisis infrastructure subject in Black Out peril environment. The Blazons need live power Point presentation for better comprehension of this paper mission.

Keywords: algorithm, crisis, DYVELOP, infrastructure

Procedia PDF Downloads 404
3729 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: dynamic response, nonlinear impact response, finite element analysis, numerical analysis

Procedia PDF Downloads 427
3728 Association of Phytomineral Supplementation with the Seasonal Prevalence of Gastrointestinal Parasites of Grazing Sheep in the Scenario of Climate Change

Authors: Muhammad Sohail Sajid, Hafiz Muhammad Rizwan, Ashfaq Ahmad Chatta, Zafar Iqbal, Muhammad Saqib

Abstract:

Changes in the climate are posing threats to the livestock community throughout the globe. Agro-grazing animals and natural vegetation as their forages are the most important components of animal production. Climate and local conditions not only determine the nature and kind of plants, their distribution, composition and nutritive value in different cropping belts and grazing sites but also influence number and kinds of grazing animals. Phytomineral supplementation can act as an indirect tool to boost-up immunological profile of animals leading to the development of resilience against parasitic infections. The present study correlates the trace element (Cu, Co, Mn, Zn) profile of grazing sheep, feedstuffs, respective soils and their GI helminths in a selected district of Sialkot, Punjab, Pakistan. Ten species of GI helminths were found during the survey. A significant (P < 0.05) variation in the concentrations (conc.) of Zn, Cu, Mn and Co was recorded in a total of 16 collected forages. During autumn, mean conc. of Cu, Zn and Co in sera were inversely proportional to the GI helminth burden; while, during spring, only Zn was inversely proportional to the GI helminth burden in grazing sheep. During autumn the highest conc. of Zn, Cu, Mn and Co were recorded in Echinochloa colona, Amaranthus viridis, Cannabis sativa, and Brachiaria ramose and during spring in Cichorium intybus, Cynodon dactylon, Parthenium hysterophorus and Coronopus didymus respectively. The trace element-rich forages, preferably Zn, found effective against helminth infection are advisable supplemental remedies to improve the trace element profile in grazing sheep. This mitigation strategy may ultimately improve the resilience against GI helminth infections especially in the resource poor countries like Pakistan.

Keywords: coprological examination, Trace elements, Sheep, Gastro-intestinal parasites, Prevalence, Sialkot, Pakistan

Procedia PDF Downloads 389
3727 Hydrogen Induced Fatigue Crack Growth in Pipeline Steel API 5L X65: A Combined Experimental and Modelling Approach

Authors: H. M. Ferreira, H. Cockings, D. F. Gordon

Abstract:

Climate change is driving a transition in the energy sector, with low-carbon energy sources such as hydrogen (H2) emerging as an alternative to fossil fuels. However, the successful implementation of a hydrogen economy requires an expansion of hydrogen production, transportation and storage capacity. The costs associated with this transition are high but can be partly mitigated by adapting the current oil and natural gas networks, such as pipeline, an important component of the hydrogen infrastructure, to transport pure or blended hydrogen. Steel pipelines are designed to withstand fatigue, one of the most common causes of pipeline failure. However, it is well established that some materials, such as steel, can fail prematurely in service when exposed to hydrogen-rich environments. Therefore, it is imperative to evaluate how defects (e.g. inclusions, dents, and pre-existing cracks) will interact with hydrogen under cyclic loading and, ultimately, to what extent hydrogen induced failure will limit the service conditions of steel pipelines. This presentation will explore how the exposure of API 5L X65 to a hydrogen-rich environment and cyclic loads will influence its susceptibility to hydrogen induced failure. That evaluation will be performed by a combination of several techniques such as hydrogen permeation testing (ISO 17081:2014), fatigue crack growth (FCG) testing (ISO 12108:2018 and AFGROW modelling), combined with microstructural and fractographic analysis. The development of a FCG test setup coupled with an electrochemical cell will be discussed, along with the advantages and challenges of measuring crack growth rates in electrolytic hydrogen environments. A detailed assessment of several electrolytic charging conditions will also be presented, using hydrogen permeation testing as a method to correlate the different charging settings to equivalent hydrogen concentrations and effective diffusivity coefficients, not only on the base material but also on the heat affected zone and weld of the pipelines. The experimental work is being complemented with AFGROW, a useful FCG modelling software that has helped inform testing parameters and which will also be developed to ultimately help industry experts perform structural integrity analysis and remnant life characterisation of pipeline steels under representative conditions. The results from this research will allow to conclude if there is an acceleration of the crack growth rate of API 5L X65 under the influence of a hydrogen-rich environment, an important aspect that needs to be rectified instandards and codes of practice on pipeline integrity evaluation and maintenance.

Keywords: AFGROW, electrolytic hydrogen charging, fatigue crack growth, hydrogen, pipeline, steel

Procedia PDF Downloads 98
3726 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications

Authors: Júlio Cesar Lopes de Oliveira, Carlos Henrique Gonçalves Treviso

Abstract:

The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.

Keywords: DC-DC power converters, converters, power conversion, pulse width modulation converters

Procedia PDF Downloads 373
3725 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule

Authors: Leyla Noroozbabaee, David Nickerson

Abstract:

We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.

Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling

Procedia PDF Downloads 79
3724 Location Uncertainty – A Probablistic Solution for Automatic Train Control

Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland

Abstract:

New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.

Keywords: ERTMS, CBTC, ATP, ATO

Procedia PDF Downloads 407
3723 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure

Authors: Nosakhare Enoma, Alphose Zingoni

Abstract:

The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.

Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis

Procedia PDF Downloads 315
3722 Large Amplitude Free Vibration of a Very Sag Marine Cable

Authors: O. Punjarat, S. Chucheepsakul, T. Phanyasahachart

Abstract:

This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented.

Keywords: axial deformation, free vibration, Galerkin finite element method, large amplitude, variational method

Procedia PDF Downloads 249
3721 Electrocardiogram Signal Denoising Using a Hybrid Technique

Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim

Abstract:

This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.

Keywords: hybrid technique, ADTF, DWT, thresholding, ECG signal

Procedia PDF Downloads 312
3720 Building Information Modelling: A Solution to the Limitations of Prefabricated Construction

Authors: Lucas Peries, Rolla Monib

Abstract:

The construction industry plays a vital role in the global economy, contributing billions of dollars annually. However, the industry has been struggling with persistently low productivity levels for years, unlike other sectors that have shown significant improvements. Modular and prefabricated construction methods have been identified as potential solutions to boost productivity in the construction industry. These methods offer time advantages over traditional construction methods. Despite their potential benefits, modular and prefabricated construction face hindrances and limitations that are not present in traditional building systems. Building information modelling (BIM) has the potential to address some of these hindrances, but barriers are preventing its widespread adoption in the construction industry. This research aims to enhance understanding of the shortcomings of modular and prefabricated building systems and develop BIM-based solutions to alleviate or eliminate these hindrances. The research objectives include identifying and analysing key issues hindering the use of modular and prefabricated building systems, investigating the current state of BIM adoption in the construction industry and factors affecting its successful implementation, proposing BIM-based solutions to address the issues associated with modular and prefabricated building systems, and assessing the effectiveness of the developed solutions in removing barriers to their use. The research methodology involves conducting a critical literature review to identify the key issues and challenges in modular and prefabricated construction and BIM adoption. Additionally, an online questionnaire will be used to collect primary data from construction industry professionals, allowing for feedback and evaluation of the proposed BIM-based solutions. The data collected will be analysed to evaluate the effectiveness of the solutions and their potential impact on the adoption of modular and prefabricated building systems. The main findings of the research indicate that the identified issues from the literature review align with the opinions of industry professionals, and the proposed BIM-based solutions are considered effective in addressing the challenges associated with modular and prefabricated construction. However, the research has limitations, such as a small sample size and the need to assess the feasibility of implementing the proposed solutions. In conclusion, this research contributes to enhancing the understanding of modular and prefabricated building systems' limitations and proposes BIM-based solutions to overcome these limitations. The findings are valuable to construction industry professionals and BIM software developers, providing insights into the challenges and potential solutions for implementing modular and prefabricated construction systems in future projects. Further research should focus on addressing the limitations and assessing the feasibility of implementing the proposed solutions from technical and legal perspectives.

Keywords: building information modelling, modularisation, prefabrication, technology

Procedia PDF Downloads 88
3719 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects

Procedia PDF Downloads 321
3718 Towards Law Data Labelling Using Topic Modelling

Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran

Abstract:

The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.

Keywords: courts of accounts, data labelling, document similarity, topic modeling

Procedia PDF Downloads 169
3717 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers

Authors: H. Ozbasaran

Abstract:

IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.

Keywords: cantilever, IPN, IPE, lateral torsional buckling

Procedia PDF Downloads 535
3716 Determination of Weld Seam Thickness in Welded Connection Subjected to Local Buckling Effects

Authors: Tugrul Tulunay, Iyas Devran Celik

Abstract:

When the materials used in structural steel industry are evaluated, box beam profiles are considerably preferred. As a result of the cross-sectional properties that these profiles possess, the connection of these profiles to each other and to profiles having different types of cross sections is becoming viable by means of additional measures. An important point to note in such combinations is continuous transfer of internal forces from element to element. At the beginning to ensure this continuity, header plate is needed to use. The connection of the plates to the elements works mainly through welds. In this study, it is aimed to determine the ideal welding thickness in box beam under bending effect and the joints exposed to local buckles that will form in the column. The connection with box column and box beam designed in this context was made by means of corner and circular filler welds. Corner welds of different thickness and analysis by types with different lengths depending on plate dimensions in numerical models were made with the help of ANSYS Workbench program and examined behaviours.

Keywords: welding thickness, box beam-column joints, design of steel structures, calculation and construction principles 2016, welded joints under local buckling

Procedia PDF Downloads 159
3715 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements

Authors: K. Sandjak, B. Tiliouine

Abstract:

This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.

Keywords: 3-D numerical investigation, asphalt pavements, dual and wide base tires, Infinite elements

Procedia PDF Downloads 211
3714 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number

Authors: Amit K. Singh, Subhankar Sen

Abstract:

The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.

Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element

Procedia PDF Downloads 337
3713 Error Estimation for the Reconstruction Algorithm with Fan Beam Geometry

Authors: Nirmal Yadav, Tanuja Srivastava

Abstract:

Shannon theory is an exact method to recover a band limited signals from its sampled values in discrete implementation, using sinc interpolators. But sinc based results are not much satisfactory for band-limited calculations so that convolution with window function, having compact support, has been introduced. Convolution Backprojection algorithm with window function is an approximation algorithm. In this paper, the error has been calculated, arises due to this approximation nature of reconstruction algorithm. This result will be defined for fan beam projection data which is more faster than parallel beam projection.

Keywords: computed tomography, convolution backprojection, radon transform, fan beam

Procedia PDF Downloads 482
3712 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing

Authors: Redha Yeghnem, Laid Boulefrakh, Sid Ahmed Meftah, Abdelouahed Tounsi, El Abbas Adda Bedia

Abstract:

In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed finite element method (FEM). The anisotropic damage model is adopted to describe the damage extent of the RC shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.

Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method

Procedia PDF Downloads 354
3711 Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study

Authors: M. Ali, K. Alam, E. Ohioma

Abstract:

This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup.

Keywords: thermal, mechanical, composites, square tubes

Procedia PDF Downloads 380
3710 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 400
3709 Wildlife Habitat Corridor Mapping in Urban Environments: A GIS-Based Approach Using Preliminary Category Weightings

Authors: Stefan Peters, Phillip Roetman

Abstract:

The global loss of biodiversity is threatening the benefits nature provides to human populations and has become a more pressing issue than climate change and requires immediate attention. While there have been successful global agreements for environmental protection, such as the Montreal Protocol, these are rare, and we cannot rely on them solely. Thus, it is crucial to take national and local actions to support biodiversity. Australia is one of the 17 countries in the world with a high level of biodiversity, and its cities are vital habitats for endangered species, with more of them found in urban areas than in non-urban ones. However, the protection of biodiversity in metropolitan Adelaide has been inadequate, with over 130 species disappearing since European colonization in 1836. In this research project we conceptualized, developed and implemented a framework for wildlife Habitat Hotspots and Habitat Corridor modelling in an urban context using geographic data and GIS modelling and analysis. We used detailed topographic and other geographic data provided by a local council, including spatial and attributive properties of trees, parcels, water features, vegetated areas, roads, verges, traffic, and census data. Weighted factors considered in our raster-based Habitat Hotspot model include parcel size, parcel shape, population density, canopy cover, habitat quality and proximity to habitats and water features. Weighted factors considered in our raster-based Habitat Corridor model include habitat potential (resulting from the Habitat Hotspot model), verge size, road hierarchy, road widths, human density, and presence of remnant indigenous vegetation species. We developed a GIS model, using Python scripting and ArcGIS-Pro Model-Builder, to establish an automated reproducible and adjustable geoprocessing workflow, adaptable to any study area of interest. Our habitat hotspot and corridor modelling framework allow to determine and map existing habitat hotspots and wildlife habitat corridors. Our research had been applied to the study case of Burnside, a local council in Adelaide, Australia, which encompass an area of 30 km2. We applied end-user expertise-based category weightings to refine our models and optimize the use of our habitat map outputs towards informing local strategic decision-making.

Keywords: biodiversity, GIS modeling, habitat hotspot, wildlife corridor

Procedia PDF Downloads 104
3708 Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches

Authors: Guerich Mohamed, Assaf Samir

Abstract:

The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage.

Keywords: finite element model, damping treatment, viscoelastic materials, sandwich beam

Procedia PDF Downloads 145
3707 An Analytical Approach of Computational Complexity for the Method of Multifluid Modelling

Authors: A. K. Borah, A. K. Singh

Abstract:

In this paper we deal building blocks of the computer simulation of the multiphase flows. Whole simulation procedure can be viewed as two super procedures; The implementation of VOF method and the solution of Navier Stoke’s Equation. Moreover, a sequential code for a Navier Stoke’s solver has been studied.

Keywords: Bi-conjugate gradient stabilized (Bi-CGSTAB), ILUT function, krylov subspace, multifluid flows preconditioner, simple algorithm

Procedia PDF Downloads 523
3706 Mecano-Reliability Coupled of Reinforced Concrete Structure and Vulnerability Analysis: Case Study

Authors: Kernou Nassim

Abstract:

The current study presents a vulnerability and a reliability-mechanical approach that focuses on evaluating the seismic performance of reinforced concrete structures to determine the probability of failure. In this case, the performance function reflecting the non-linear behavior of the structure is modeled by a response surface to establish an analytical relationship between the random variables (strength of concrete and yield strength of steel) and mechanical responses of the structure (inter-floor displacement) obtained by the pushover results of finite element simulations. The push over-analysis is executed by software SAP2000. The results acquired prove that properly designed frames will perform well under seismic loads. It is a comparative study of the behavior of the existing structure before and after reinforcement using the pushover method. The coupling indirect mechanical reliability by response surface avoids prohibitive calculation times. Finally, the results of the proposed approach are compared with Monte Carlo Simulation. The comparative study shows that the structure is more reliable after the introduction of new shear walls.

Keywords: finite element method, surface response, reliability, reliability mechanical coupling, vulnerability

Procedia PDF Downloads 115
3705 Video Materials as a Persuasive Strategy in Tourism Discourse

Authors: Ganna Zakharova

Abstract:

The persuasive influence of tourism promotional materials is very much experienced nowadays. In order to attract the attention of viewers, marketers choose various techniques in their digital texts. Video is an essential element for attraction and seduction; it is a trigger element for tourists. This solution for web marketing engages and convinces potential tourists to book a tourism product. Embedding video materials into a website provides useful information, create different feelings in viewers, and help them finalize their decisions. The present article discusses video solutions for health tourism websites used to allure potential tourists. The paper reviews the influential elements of persuasive tourism marketing videos. The article highlights how these components as persuasive strategies of tourism promotional materials can influence the decisions of tourism websites’ users. The result section provides the real examples of the deployment of the mentioned technique to convince the audience by the website of 'Karpaty' resort (Ukraine). This technique is worth attention as it plays an important role in the promotion of tourism services. The data collection of this study will provide updated information in relation to the rhetoric of tourism.

Keywords: tourism discourse, persuasive video, influential videos in marketing, persuasive discourse, tourism promotion

Procedia PDF Downloads 114
3704 Finite Element Analysis of Shape Memory Alloy Stents in Coronary Arteries

Authors: Amatulraheem Al-Abassi, K. Khanafer, Ibrahim Deiab

Abstract:

The coronary artery stent is a promising technology that can treat various coronary diseases. Materials used for manufacturing medical stents should have high biocompatible properties. Stent alloys, in particular, are remarkably promising good clinical outcomes, however, there is threaten of restenosis (reoccurring of artery narrowing due to fatty plaque), stent recoiling, or in long-term the occurrence of stent fracture. However, stents that are made of Nickel-titanium (Nitinol) can bare extensive plastic deformation and resist restenosis. This shape memory alloy has outstanding mechanical properties. Nitinol is a unique shape memory alloy as it has unique mechanical properties such as; biocompatibility, super-elasticity, and recovery to original shape under certain loads. Stent failure may cause complications in vascular diseases and possibly blockage of blood flow. Thus, studying the behaviors of the stent under different medical conditions will help the doctors and cardiologists to predict when it is necessary to change the stent in order to prevent any severe morbidity outcomes. To the best of our knowledge, there are limited published papers that analyze the stent behavior with regards to the contact surfaces of plaque layer and blood vessel. Thus, stent material properties will be discussed in this investigation to highlight the mechanical and clinical differences between various stents. This research analyzes the performance of Nitinol stent in well-known stent design to determine its bearing with stress and its dislocation in blood vessels, in comparison to stents made of different biocompatible materials. In addition, a study of its performance will be represented in the system. Finite Element Analysis is the core of this study. Thus, a physical representative model will be discussed to show the distribution of stress and strain along the interaction surface between the stent and the artery. The reaction of vascular tissue to the stent will be evaluated to predict the possibility of restenosis within the treated area.

Keywords: shape memory alloy, stent, coronary artery, finite element analysis

Procedia PDF Downloads 199