Search results for: Zhao Wang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1649

Search results for: Zhao Wang

239 Insight into Localized Fertilizer Placement in Major Cereal Crops

Authors: Solomon Yokamo, Dianjun Lu, Xiaoqin Chen, Huoyan Wang

Abstract:

The current ‘high input-high output’ nutrient management model based on homogenous spreading over the entire soil surface remains a key challenge in China’s farming systems, leading to low fertilizer use efficiency and environmental pollution. Localized placement of fertilizer (LPF) to crop root zones has been proposed as a viable approach to boost crop production while protecting environmental pollution. To assess the potential benefits of LPF on three major crops—wheat, rice, and maize—a comprehensive meta-analysis was conducted, encompassing 85 field studies published from 2002-2023. We further validated the practicability and feasibility of one-time root zone N management based on LPF for the three field crops. The meta-analysis revealed that LPF significantly increased the yields of the selected crops (13.62%) and nitrogen recovery efficiency (REN) (33.09%) while reducing cumulative nitrous oxide (N₂O) emission (17.37%) and ammonia (NH₃) volatilization (60.14%) compared to the conventional surface application (CSA). Higher grain yield and REN were achieved with an optimal fertilization depth (FD) of 5-15 cm, moderate N rates, combined NPK application, one-time deep fertilization, and coarse-textured and slightly acidic soils. Field validation experiments showed that localized one-time root zone N management without topdressing increased maize (6.2%), rice (34.6%), and wheat (2.9%) yields while saving N fertilizer (3%) and also increased the net economic benefits (23.71%) compared to CSA. A soil incubation study further proved the potential of LPF to enhance the retention and availability of mineral N in the root zone over an extended period. Thus, LPF could be an important fertilizer management strategy and should be extended to other less-developed and developing regions to win the triple benefit of food security, environmental quality, and economic gains.

Keywords: grain yield, LPF, NH₃ volatilization, N₂O emission, N recovery efficiency

Procedia PDF Downloads 20
238 Synthesis of Magnetic Plastic Waste-Reduced Graphene Oxide Composite and Its Application in Dye Adsorption from Aqueous Solution

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

The valorization of plastic wastes, as a mitigation strategy, is attracting the researchers’ attention since these wastes have raised serious environmental concerns. Plastic wastes have been reported to adsorb the organic pollutants in the water environment and to be the main vector of those pollutants in the aquatic environment, especially dyes, as a serious water pollution concern. Recycling technologies of plastic wastes such as landfills, incineration, and energy recovery have been adopted to manage those wastes before getting exposed to the environment. However, they are far from being widely accepted due to their related environmental pollution, lack of space for the landfill as well as high cost. Therefore, modification is necessary for green plastic adsorbent in water applications. Current routes for plastic modification into adsorbents are based on the combustion method, but they have weaknesses of air pollution as well as high cost. Thus, the green strategy for plastic modification into adsorbents is highly required. Furthermore, recent researchers recommended that if plastic wastes are combined with other solid carbon materials, they could promote their application in water treatment. Herein, we present new insight into using plastic waste-based materials as future green adsorbents. Magnetic plastic-reduced graphene oxide (MPrGO) composite was synthesized by cross-linking method and applied in removing methylene blue (MB) from an aqueous solution. Furthermore, the following advantages have been achieved: (i) The density of plastic and reduced graphene oxide were enhanced, (ii) no second pollution of black color in solution, (iii) small amount of graphene oxide (1%) was linked on 10g of plastic waste, and the composite presented the high removal efficiency, (iv) easy recovery of adsorbent from water. The low concentration of MB (10-30mg/L) was all removed by 0.3g of MPrGO. Different characterization techniques such as XRD, SEM, FTIR, BET, XPS, and Raman spectroscopy were performed, and the results confirmed a conjugation between plastic waste and graphene oxide. This MPrGO composite presented a good prospect for the valorization of plastic waste, and it is a promising composite material in water treatment.

Keywords: plastic waste, graphene oxide, dye, adsorption

Procedia PDF Downloads 91
237 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry

Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu

Abstract:

The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.

Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS

Procedia PDF Downloads 282
236 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies

Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong

Abstract:

To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.

Keywords: neural network, travel characteristics analysis, transportation choice, travel sharing rate, traffic resource allocation

Procedia PDF Downloads 139
235 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir

Authors: Fengxia Li, Lufeng Zhang, Haibo Wang

Abstract:

The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.

Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties

Procedia PDF Downloads 76
234 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan

Authors: Basit Aftab, Zhichao Wang, Feng Zhongke

Abstract:

Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.

Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.

Procedia PDF Downloads 34
233 A Comparative Study of Mechanisms across Different Online Social Learning Types

Authors: Xinyu Wang

Abstract:

In the context of the rapid development of Internet technology and the increasing prevalence of online social media, this study investigates the impact of digital communication on social learning. Through three behavioral experiments, we explore both affective and cognitive social learning in online environments. Experiment 1 manipulates the content of experimental materials and two forms of feedback, emotional valence, sociability, and repetition, to verify whether individuals can achieve online emotional social learning through reinforcement using two social learning strategies. Results reveal that both social learning strategies can assist individuals in affective, social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 2 similarly manipulates the content of experimental materials and two forms of feedback to verify whether individuals can achieve online knowledge social learning through reinforcement using two social learning strategies. Results show that similar to online affective social learning, individuals adopt both social learning strategies to achieve cognitive social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 3 simultaneously observes online affective and cognitive social learning by manipulating the content of experimental materials and feedback at different levels of social pressure. Results indicate that online affective social learning exhibits different learning effects under different levels of social pressure, whereas online cognitive social learning remains unaffected by social pressure, demonstrating more stable learning effects. Additionally, to explore the sustained effects of online social learning and differences in duration among different types of online social learning, all three experiments incorporate two test time points. Results reveal significant differences in pre-post-test scores for online social learning in Experiments 2 and 3, whereas differences are less apparent in Experiment 1. To accurately measure the sustained effects of online social learning, the researchers conducted a mini-meta-analysis of all effect sizes of online social learning duration. Results indicate that although the overall effect size is small, the effect of online social learning weakens over time.

Keywords: online social learning, affective social learning, cognitive social learning, social learning strategies, social reinforcement, social pressure, duration

Procedia PDF Downloads 49
232 Big Data Analysis on the Development of Jinan’s Consumption Centers under the Influence of E-Commerce

Authors: Hang Wang, Xiaoming Gao

Abstract:

The rapid development of e-commerce has significantly transformed consumer behavior and urban consumption patterns worldwide. This study explores the impact of e-commerce on the development and spatial distribution of consumption centers, with a particular focus on Jinan City, China. Traditionally, urban consumption centers are defined by physical commercial spaces, such as shopping malls and markets. However, the rise of e-commerce has introduced a shift towards virtual consumption hubs, with a corresponding impact on physical retail locations. Utilizing Gaode POI (Point of Interest) data, this research aims to provide a comprehensive analysis of the spatial distribution of consumption centers in Jinan, comparing e-commerce-driven virtual consumption hubs with traditional physical consumption centers. The study methodology involves gathering and analyzing POI data, focusing on logistics distribution for e-commerce activities and mobile charging point locations to represent offline consumption behavior. A spatial clustering technique is applied to examine the concentration of commercial activities and to identify emerging trends in consumption patterns. The findings reveal a clear differentiation between e-commerce and physical consumption centers in Jinan. E-commerce activities are dispersed across a wider geographic area, correlating closely with residential zones and logistics centers, while traditional consumption hubs remain concentrated around historical and commercial areas such as Honglou and the old city center. Additionally, the research identifies an ongoing transition within Jinan’s consumption landscape, with online and offline retail coexisting, though at different spatial and functional levels. This study contributes to urban planning by providing insights into how e-commerce is reshaping consumption behaviors and spatial structures in cities like Jinan. By leveraging big data analytics, the research offers a valuable tool for urban designers and planners to adapt to the evolving demands of digital commerce and to optimize the spatial layout of city infrastructure to better serve the needs of modern consumers.

Keywords: big data, consumption centers, e-commerce, urban planning, jinan

Procedia PDF Downloads 22
231 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning

Authors: Pinzhe Zhao

Abstract:

This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.

Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity

Procedia PDF Downloads 23
230 In situ Investigation of PbI₂ Precursor Film Formation and Its Subsequent Conversion to Mixed Cation Perovskite

Authors: Dounya Barrit, Ming-Chun Tang, Hoang Dang, Kai Wang, Detlef-M. Smilgies, Aram Amassian

Abstract:

Several deposition methods have been developed for perovskite film preparation. The one-step spin-coating process has emerged as a more popular option thanks to its ability to produce films of different compositions, including mixed cation and mixed halide perovskites, which can stabilize the perovskite phase and produce phases with desired band gap. The two-step method, however, is not understood in great detail. There is a significant need and opportunity to adopt the two-step process toward mixed cation and mixed halide perovskites, but this requires deeper understanding of the two-step conversion process, for instance when using different cations and mixtures thereof, to produce high-quality perovskite films with uniform composition. In this work, we demonstrate using in situ investigations that the conversion of PbI₂ to perovskite is largely dictated by the state of the PbI₂ precursor film in terms of its solvated state. Using time-resolved grazing incidence wide-angle X-Ray scattering (GIWAXS) measurements during spin coating of PbI₂ from a DMF (Dimethylformamide) solution we show the film formation to be a sol-gel process involving three PbI₂-DMF solvate complexes: disordered precursor (P₀), ordered precursor (P₁, P₂) prior to PbI₂ formation at room temperature after 5 minutes. The ordered solvates are highly metastable and eventually disappear, but we show that performing conversion from P₀, P₁, P₂ or PbI₂ can lead to very different conversion behaviors and outcomes. We compare conversion behaviors by using MAI (Methylammonium iodide), FAI (Formamidinium Iodide) and mixtures of these cations, and show that conversion can occur spontaneously and quite rapidly at room temperature without requiring further thermal annealing. We confirm this by demonstrating improvements in the morphology and microstructure of the resulting perovskite films, using techniques such as in situ quartz crystal microbalance with dissipation monitoring, SEM and XRD.

Keywords: in situ GIWAXS, lead iodide, mixed cation, perovskite solar cell, sol-gel process, solvate phase

Procedia PDF Downloads 148
229 Experimental Study on the Heating Characteristics of Transcritical CO₂ Heat Pumps

Authors: Lingxiao Yang, Xin Wang, Bo Xu, Zhenqian Chen

Abstract:

Due to its outstanding environmental performance, higher heating temperature and excellent low-temperature performance, transcritical carbon dioxide (CO₂) heat pumps are receiving more and more attention. However, improperly set operating parameters have a serious negative impact on the performance of the transcritical CO₂ heat pump due to the properties of CO₂. In this study, the heat transfer characteristics of the gas cooler are studied based on the modified “three-stage” gas cooler, then the effect of three operating parameters, compressor speed, gas cooler water-inlet flowrate and gas cooler water-inlet temperature, on the heating process of the system are investigated from the perspective of thermal quality and heat capacity. The results shows that: In the heat transfer process of gas cooler, the temperature distribution of CO₂ and water shows a typical “two region” and “three zone” pattern; The rise in the cooling pressure of CO₂ serves to increase the thermal quality on the CO₂ side of the gas cooler, which in turn improves the heating temperature of the system; Nevertheless, the elevated thermal quality on the CO₂ side can exacerbate the mismatch of heat capacity on both sides of the gas cooler, thereby adversely affecting the system coefficient of performance (COP); Furthermore, increasing compressor speed mitigates the mismatch in heat capacity caused by elevated thermal quality, which is exacerbated by decreasing gas cooler water-inlet flowrate and rising gas cooler water-inlet temperature; As a delegate, the varying compressor speed results in a 7.1°C increase in heating temperature within the experimental range, accompanied by a 10.01% decrease in COP and an 11.36% increase in heating capacity. This study can not only provide an important reference for the theoretical analysis and control strategy of the transcritical CO₂ heat pump, but also guide the related simulation and the design of the gas cooler. However, the range of experimental parameters in the current study is small and the conclusions drawn are not further analysed quantitatively. Therefore, expanding the range of parameters studied and proposing corresponding quantitative conclusions and indicators with universal applicability could greatly increase the practical applicability of this study. This is also the goal of our next research.

Keywords: transcritical CO₂ heat pump, gas cooler, heat capacity, thermal quality

Procedia PDF Downloads 23
228 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating

Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye

Abstract:

Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field.

Keywords: conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density

Procedia PDF Downloads 154
227 Unequal Contributions of Parental Isolates in Somatic Recombination of the Stripe Rust Fungus

Authors: Xianming Chen, Yu Lei, Meinan Wang

Abstract:

The dikaryotic basidiomycete fungus, Puccinia striiformis, causes stripe rust, one of the most important diseases of wheat and barley worldwide. The pathogen is largely reproduced asexually, and asexual recombination has been hypothesized to be one of the mechanisms for the pathogen variations. To test the hypothesis and understand the genetic process of asexual recombination, somatic recombinant isolates were obtained under controlled conditions by inoculating susceptible host plants with a mixture of equal quantity of urediniospores of isolates with different virulence patterns and selecting through a series of inoculation on host plants with different genes for resistance to one of the parental isolates. The potential recombinant isolates were phenotypically characterized by virulence testing on the set of 18 wheat lines used to differentiate races of the wheat stripe rust pathogen, P. striiformis f. sp. tritici (Pst), for the combinations of Pst isolates; or on both sets of the wheat differentials and 12 barley differentials for identifying races of the barley stripe rust pathogen, P. striiformis f. sp. hordei (Psh) for combinations of a Pst isolate and a Psh isolate. The progeny and parental isolates were also genotypically characterized with 51 simple sequence repeat and 90 single-nucleotide polymorphism markers. From nine combinations of parental isolates, 68 potential recombinant isolates were obtained, of which 33 (48.5%) had similar virulence patterns to one of the parental isolates, and 35 (51.5%) had virulence patterns distinct from either of the parental isolates. Of the 35 isolates of distinct virulence patterns, 11 were identified as races that had been previously detected from natural collections and 24 were identified as new races. The molecular marker data confirmed 66 of the 68 isolates as recombinants. The percentages of parental marker alleles ranged from 0.9% to 98.9% and were significantly different from equal proportions in the recombinant isolates. Except for a couple of combinations, the greater or less contribution was not specific to any particular parental isolates as the same parental isolates contributed more to some of the progeny isolates but less to the other progeny isolates in the same combination. The unequal contributions by parental isolates appear to be a general role in somatic recombination for the stripe rust fungus, which may be used to distinguish asexual recombination from sexual recombination in studying the evolutionary mechanisms of the highly variable fungal pathogen.

Keywords: molecular markers, Puccinia striiformis, somatic recombination, stripe rust

Procedia PDF Downloads 244
226 A Study of Topical and Similarity of Sebum Layer Using Interactive Technology in Image Narratives

Authors: Chao Wang

Abstract:

Under rapid innovation of information technology, the media plays a very important role in the dissemination of information, and it has a totally different analogy generations face. However, the involvement of narrative images provides more possibilities of narrative text. "Images" through the process of aperture, a camera shutter and developable photosensitive processes are manufactured, recorded and stamped on paper, displayed on a computer screen-concretely saved. They exist in different forms of files, data, or evidence as the ultimate looks of events. By the interface of media and network platforms and special visual field of the viewer, class body space exists and extends out as thin as sebum layer, extremely soft and delicate with real full tension. The physical space of sebum layer of confuses the fact that physical objects exist, needs to be established under a perceived consensus. As at the scene, the existing concepts and boundaries of physical perceptions are blurred. Sebum layer physical simulation shapes the “Topical-Similarity" immersing, leading the contemporary social practice communities, groups, network users with a kind of illusion without the presence, i.e. a non-real illusion. From the investigation and discussion of literatures, digital movies editing manufacture and produce the variability characteristics of time (for example, slices, rupture, set, and reset) are analyzed. Interactive eBook has an unique interaction in "Waiting-Greeting" and "Expectation-Response" that makes the operation of image narrative structure more interpretations functionally. The works of digital editing and interactive technology are combined and further analyze concept and results. After digitization of Interventional Imaging and interactive technology, real events exist linked and the media handing cannot be cut relationship through movies, interactive art, practical case discussion and analysis. Audience needs more rational thinking about images carried by the authenticity of the text.

Keywords: sebum layer, topical and similarity, interactive technology, image narrative

Procedia PDF Downloads 389
225 Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model

Authors: Jiachen Wang, Dongxu Ji

Abstract:

Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios.

Keywords: geothermal power generation, optimization, energy model, thermodynamics

Procedia PDF Downloads 68
224 Bayesian Networks Scoping the Climate Change Impact on Winter Wheat Freezing Injury Disasters in Hebei Province, China

Authors: Xiping Wang,Shuran Yao, Liqin Dai

Abstract:

Many studies report the winter is getting warmer and the minimum air temperature is obviously rising as the important climate warming evidences. The exacerbated air temperature fluctuation tending to bring more severe weather variation is another important consequence of recent climate change which induced more disasters to crop growth in quite a certain regions. Hebei Province is an important winter wheat growing province in North of China that recently endures more winter freezing injury influencing the local winter wheat crop management. A winter wheat freezing injury assessment Bayesian Network framework was established for the objectives of estimating, assessing and predicting winter wheat freezing disasters in Hebei Province. In this framework, the freezing disasters was classified as three severity degrees (SI) among all the three types of freezing, i.e., freezing caused by severe cold in anytime in the winter, long extremely cold duration in the winter and freeze-after-thaw in early season after winter. The factors influencing winter wheat freezing SI include time of freezing occurrence, growth status of seedlings, soil moisture, winter wheat variety, the longitude of target region and, the most variable climate factors. The climate factors included in this framework are daily mean and range of air temperature, extreme minimum temperature and number of days during a severe cold weather process, the number of days with the temperature lower than the critical temperature values, accumulated negative temperature in a potential freezing event. The Bayesian Network model was evaluated using actual weather data and crop records at selected sites in Hebei Province using real data. With the multi-stage influences from the various factors, the forecast and assessment of the event-based target variables, freezing injury occurrence and its damage to winter wheat production, were shown better scoped by Bayesian Network model.

Keywords: bayesian networks, climatic change, freezing Injury, winter wheat

Procedia PDF Downloads 410
223 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 106
222 Measures of Phylogenetic Support for Phylogenomic and the Whole Genomes of Two Lungfish Restate Lungfish and Origin of Land Vertebrates

Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou

Abstract:

Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to reassess the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high gene support confidence with confidence intervals exceeding 95%, high internode certainty, and high gene concordance factor. The evidence stems from two datasets containing recently deciphered whole genomes of two lungfish species, as well as five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa diminishes the number of orthologues and leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction (LBA) and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.

Keywords: gene support confidence (GSC), origin of land vertebrates, coelacanth, two whole genomes of lungfishes, confidence intervals

Procedia PDF Downloads 89
221 Testing Serum Proteome between Elite Sprinters and Long-Distance Runners

Authors: Hung-Chieh Chen, Kuo-Hui Wang, Tsu-Lin Yeh

Abstract:

Proteomics represent the performance of genomic complement proteins and the protein level on functional genomics. This study adopted proteomic strategies for comparing serum proteins among three groups: elite sprinter (sprint runner group, SR), long-distance runners (long-distance runner group, LDR), and the untrained control group (control group, CON). Purposes: This study aims to identify elite sprinters and long-distance runners’ serum protein and to provide a comparison of their serum proteome’ composition. Methods: Serum protein fractionations that separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by a quantitative nano-LC-MS/MS-based proteomic profiling. The one-way analysis of variance (ANOVA) and Scheffe post hoc comparison (α= 0.05) was used to determine whether there is any significant difference in each protein level among the three groups. Results: (1) After analyzing the 307 identified proteins, there were 26 unique proteins in the SR group, and 18 unique proteins in the LDR group. (2) For the LDR group, 7 coagulation function-associated proteins’ expression levels were investigated: vitronectin, serum paraoxonase/arylesterase 1, fibulin-1, complement C3, vitamin K-dependent protein, inter-alpha-trypsin inhibitor heavy chain H3 and von Willebrand factor, and the findings show the seven coagulation function-associated proteins were significantly lower than the group of SR. (3) Comparing to the group of SR, this study found that the LDR group’s expression levels of the 2 antioxidant proteins (afamin and glutathione peroxidase 3) were also significantly lower. (4) The LDR group’s expression levels of seven immune function-related proteins (Ig gamma-3 chain C region, Ig lambda-like polypeptide 5, clusterin, complement C1s subcomponent, complement factor B, complement C4-A, complement C1q subcomponent subunit A) were also significantly lower than the group of SR. Conclusion: This study identified the potential serum protein markers for elite sprinters and long-distance runners. The changes in the regulation of coagulation, antioxidant, or immune function-specific proteins may also provide further clinical applications for these two different track athletes.

Keywords: biomarkers, coagulation, immune response, oxidative stress

Procedia PDF Downloads 117
220 Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery

Authors: Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Chen-Hao Wang

Abstract:

As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density.

Keywords: VRFB, VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples, graphite felt, heteroatom-doping

Procedia PDF Downloads 98
219 Atomic Scale Storage Mechanism Study of the Advanced Anode Materials for Lithium-Ion Batteries

Authors: Xi Wang, Yoshio Bando

Abstract:

Lithium-ion batteries (LIBs) can deliver high levels of energy storage density and offer long operating lifetimes, but their power density is too low for many important applications. Therefore, we developed some new strategies and fabricated novel electrodes for fast Li transport and its facile synthesis including N-doped graphene-SnO2 sandwich papers, bicontinuous nanoporous Cu/Li4Ti5O12 electrode, and binder-free N-doped graphene papers. In addition, by using advanced in-TEM, STEM techniques and the theoretical simulations, we systematically studied and understood their storage mechanisms at the atomic scale, which shed a new light on the reasons of the ultrafast lithium storage property and high capacity for these advanced anodes. For example, by using advanced in-situ TEM, we directly investigated these processes using an individual CuO nanowire anode and constructed a LIB prototype within a TEM. Being promising candidates for anodes in lithium-ion batteries (LIBs), transition metal oxide anodes utilizing the so-called conversion mechanism principle typically suffer from the severe capacity fading during the 1st cycle of lithiation–delithiation. Also we report on the atomistic insights of the GN energy storage as revealed by in situ TEM. The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface (SEI) configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ HRTEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0001} spacings and surface "hole" defects result in improved surface capacitive effects and thus high rate capability and the high capacity is owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.

Keywords: in-situ TEM, STEM, advanced anode, lithium-ion batteries, storage mechanism

Procedia PDF Downloads 352
218 Supercritical Hydrothermal and Subcritical Glycolysis Conversion of Biomass Waste to Produce Biofuel and High-Value Products

Authors: Chiu-Hsuan Lee, Min-Hao Yuan, Kun-Cheng Lin, Qiao-Yin Tsai, Yun-Jie Lu, Yi-Jhen Wang, Hsin-Yi Lin, Chih-Hua Hsu, Jia-Rong Jhou, Si-Ying Li, Yi-Hung Chen, Je-Lueng Shie

Abstract:

Raw food waste has a high-water content. If it is incinerated, it will increase the cost of treatment. Therefore, composting or energy is usually used. There are mature technologies for composting food waste. Odor, wastewater, and other problems are serious, but the output of compost products is limited. And bakelite is mainly used in the manufacturing of integrated circuit boards. It is hard to directly recycle and reuse due to its hard structure and also difficult to incinerate and produce air pollutants due to incomplete incineration. In this study, supercritical hydrothermal and subcritical glycolysis thermal conversion technology is used to convert biomass wastes of bakelite and raw kitchen wastes to carbon materials and biofuels. Batch carbonization tests are performed under high temperature and pressure conditions of solvents and different operating conditions, including wet and dry base mixed biomass. This study can be divided into two parts. In the first part, bakelite waste is performed as dry-based industrial waste. And in the second part, raw kitchen wastes (lemon, banana, watermelon, and pineapple peel) are used as wet-based biomass ones. The parameters include reaction temperature, reaction time, mass-to-solvent ratio, and volume filling rates. The yield, conversion, and recovery rates of products (solid, gas, and liquid) are evaluated and discussed. The results explore the benefits of synergistic effects in thermal glycolysis dehydration and carbonization on the yield and recovery rate of solid products. The purpose is to obtain the optimum operating conditions. This technology is a biomass-negative carbon technology (BNCT); if it is combined with carbon capture and storage (BECCS), it can provide a new direction for 2050 net zero carbon dioxide emissions (NZCDE).

Keywords: biochar, raw food waste, bakelite, supercritical hydrothermal, subcritical glycolysis, biofuels

Procedia PDF Downloads 179
217 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions

Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren

Abstract:

Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.

Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB

Procedia PDF Downloads 147
216 Therapeutic Efficacy of Clompanus Pubescens Leaves Fractions via Downregulation of Neuronal Cholinesterases/NA⁺-K⁺ ATPase/IL-1 β and Improving the Neurocognitive and Antioxidants Status of Streptozotocin-Induced Diabetic Rats

Authors: Amos Sunday Onikanni, Bashir Lawal, Babatunji Emmanuel Oyinloye, Gomaa Mostafa-Hedeab, Mohammed Alorabi, Simona Cavalu, Augustine O. Olusola, Chih-Hao Wang, Gaber El-Saber Batiha

Abstract:

The increasing global burden of diabetes mellitus has called for the search for a therapeutic alternative that offers better activities and safety than conventional chemotherapy. Herein, we evaluated the neuroprotective and antioxidant properties of different fractions (ethyl acetate, N-butanol and residual aqueous) of Clompanus pubescens leaves in streptozotocin (STZ)-induced diabetic rats. Our results revealed a significant elevation in the levels of blood glucose, pro-inflammatory cytokines, lipid peroxidation, neuronal activities of acetylcholinesterase, butyrylcholinesterase, nitric oxide, epinephrine, norepinephrine, and Na+/K+-ATPase in diabetic non treated rats. In addition, decreased levels of enzymatic and non-enzymatic antioxidants were observed. Treatment with different fractions of C. pubescens leaves resulted in a significant reversal of the biochemical alteration and improved the neurocognitive deficit in STZ-induced diabetic rats. However, the ethyl-acetate fraction demonstrated higher activities than the other fractions and was characterized for its phytoconstituents, revealing the presence of Gallic acid (713.00 ppm), catechin (0.91 ppm), ferulic acid (0.98 ppm), rutin (59.82 ppm), quercetin (3.22 ppm) and kaempferol (4.07 ppm). Our molecular docking analysis revealed that these compounds exhibited different binding affinities and potentials for targeting BChE/AChE/ IL-1 β/Na+-K+-ATPase. However, only Kampferol and ferulic exhibited good drug-like, ADMET, and permeability properties suitable for use as a neuronal drug target agent. Hence, the ethyl-acetate fraction of C. pubescent leaves could be considered a source of promising bioactive metabolite for the treatment and management of cognitive impairments related to type II diabetes mellitus.

Keywords: diabetes mellitus, neuroprotective, antioxidant, pro-inflammatory cytokines

Procedia PDF Downloads 119
215 Presence and Absence: The Use of Photographs in Paris, Texas

Authors: Yi-Ting Wang, Wen-Shu Lai

Abstract:

The subject of this paper is the photography in the 1983 film Paris, Texas, directed by Wim Wenders. Wenders is well known as a film director as well as a photographer. We have found that photography is shown as a photographic element in many of his films. Some of these photographs serve as details within the films, while others play important roles that are relevant to the story. This paper aims to consider photographs in film as a specific type of text, which is the output of both still photography and the film itself. In the film Paris, Texas, three sets of important photographs appear whose symbolic meanings are as dialectical as their text types. The relationship between the existence of these photos and the storyline is both dependent and isolated. The film’s images fly by and progress into other images, while the photos in the film serve a unique narrative function by stopping the continuously flowing images thus provide the viewer a space for imagination and contemplation. They are more than just artistic forms; they also contained multiple meanings. The photographs in Paris, Texas play the role of both presence and absence according to their shifting meanings. There are references to their presence: photographs exist between film time and narrative time, so in terms of the interaction between the characters in the film, photographs are a common symbol of the beginning and end of the characters’ journeys. In terms of the audience, the film’s photographs are a link in the viewing frame structure, through which the creative motivation of the film director can be explored. Photographs also point to the absence of certain objects: the scenes in the photos represent an imaginary map of emotion. The town of Paris, Texas is therefore isolated from the physical presence of the photograph, and is far more abstract than the reality in the film. This paper embraces the ambiguous nature of photography and demonstrates its presence and absence in film with regard to the meaning of text. However, it is worth reflecting that the temporary nature of the interpretation of the film’s photographs is far greater than any other type of photographic text: the characteristics of the text cause the interpretation results to change along with the variations in the interpretation process, which makes their meaning a dynamic process. The photographs’ presence or absence in the context of Paris, Texas also demonstrates the presence and absence of the creator, time, the truth, and the imagination. The film becomes more complete as a result of the revelation of the photographs, while the intertextual connection between these two forms simultaneously provides multiple possibilities for the interpretation of the photographs in the film.

Keywords: film, Paris, Texas, photography, Wim Wenders

Procedia PDF Downloads 319
214 Incidence of Lymphoma and Gonorrhea Infection: A Retrospective Study

Authors: Diya Kohli, Amalia Ardeljan, Lexi Frankel, Jose Garcia, Lokesh Manjani, Omar Rashid

Abstract:

Gonorrhea is the second most common sexually transmitted disease (STDs) in the United States of America. Gonorrhea affects the urethra, rectum, or throat and the cervix in females. Lymphoma is a cancer of the immune network called the lymphatic system that includes the lymph nodes/glands, spleen, thymus gland, and bone marrow. Lymphoma can affect many organs in the body. When a lymphocyte develops a genetic mutation, it signals other cells into rapid proliferation that causes many mutated lymphocytes. Multiple studies have explored the incidence of cancer in people infected with STDs such as Gonorrhea. For instance, the studies conducted by Wang Y-C and Co., as well as Caini, S and Co. established a direct co-relationship between Gonorrhea infection and incidence of prostate cancer. We hypothesize that Gonorrhea infection also increases the incidence of Lymphoma in patients. This research study aimed to evaluate the correlation between Gonorrhea infection and the incidence of Lymphoma. The data for the research was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database. This database was utilized to evaluate patients infected with Gonorrhea versus the ones who were not infected to establish a correlation with the prevalence of Lymphoma using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale for academic research. Standard statistical methods were applied throughout. Between January 2010 and December 2019, the query was analyzed and resulted in 254 and 808 patients in both the infected and control group, respectively. The two groups were matched by Age Range and CCI score. The incidence of Lymphoma was 0.998% (254 patients out of 25455) in the Gonorrhea group (patients infected with Gonorrhea that was Lymphoma Positive) compared to 3.174% and 808 patients in the control group (Patients negative for Gonorrhea but with Lymphoma). This was statistically significant by a p-value < 2.210-16 with an OR= 0.431 (95% CI 0.381-0.487). The patients were then matched by antibiotic treatment to avoid treatment bias. The incidence of Lymphoma was 1.215% (82 patients out of 6,748) in the Gonorrhea group compared to 2.949% (199 patients out of 6748) in the control group. This was statistically significant by a p-value <5.410-10 with an OR= 0.468 (95% CI 0.367-0.596). The study shows a statistically significant correlation between Gonorrhea and a reduced incidence of Lymphoma. Further evaluation is recommended to assess the potential of Gonorrhea in reducing Lymphoma.

Keywords: gonorrhea, lymphoma, STDs, cancer, ICD

Procedia PDF Downloads 196
213 Assessment and Adaptation Strategy of Climate Change to Water Quality in the Erren River and Its Impact to Health

Authors: Pei-Chih Wu, Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Hsien-Chang Wang

Abstract:

The impact of climate change to health has always been well documented. Amongst them, water-borne infectious diseases, chronic adverse effects or cancer risks due to chemical contamination in flooding or drought events are especially important in river basin. This study therefore utilizes GIS and different models to integrate demographic, land use, disaster prevention, social-economic factors, and human health assessment in the Erren River basin. Therefore, through the collecting of climatic, demographic, health surveillance, water quality and other water monitoring data, potential risks associated with the Erren River Basin are established and to understand human exposure and vulnerability in response to climate extremes. This study assesses the temporal and spatial patterns of melioidosis (2000-2015) and various cancer incidents in Tainan and Kaohsiung cities. The next step is to analyze the spatial association between diseases incidences, climatic factors, land uses, and other demographic factors by using ArcMap and GeoDa. The study results show that amongst all melioidosis cases in Taiwan, 24% cases (115) residence occurred in the Erren River basin. The relationship between the cases and in Tainan and Kaohsiung cities are associated with population density, aging indicator, and residence in Erren River basin. Risks from flooding due to heavy rainfall and fish farms in spatial lag regression are also related. Through liver cancer, the preliminary analysis in temporal and spatial pattern shows an increases pattern in annual incidence without clusters in Erren River basin. Further analysis of potential cancers connected to heavy metal contamination from water pollution in Erren River is established. The final step is to develop an assessment tool for human exposure from water contamination and vulnerability in response to climate extremes for the second year.

Keywords: climate change, health impact, health adaptation, Erren River Basin

Procedia PDF Downloads 305
212 The Impact of COVID-19 Health Measures on Adults with Multiple Chemical Sensitivity

Authors: Riina I. Bray, Yifan Wang, Nikolas Argiropoulos, Stephanie Robins, John Molot, Kelly Tragash, Lynn M. Marshall, Margaret E. Sears, Marie-Andrée Pigeon, Michel Gaudet, Pierre Auger, Emily Bélanger, Rohini Peris

Abstract:

Multiple chemical sensitivity (MCS) is a chronic medical condition characterized by intolerances to chemical substances. Since the arrival of the COVID-19 pandemic and associated health measures, people experiencing MCS (PEMCS) are at a heightened risk of environmental exposures associated with cleaners, disinfectants, and sanitizers. Little attention has been paid to the well-being of PEMCS in the context of the COVID-19 pandemic. Objective: This study assesses the lived experiences of Canadian adults with MCS in relation to their living environment, access to healthcare, and levels of perceived social support before and during the pandemic. Methods: A total of 119 PEMCS completed an online questionnaire. McNemar Chi-Squared and Wilcoxon Signed Rank tests were used to evaluate if there were statistically significant changes in participants’ perception of their living environment, access to healthcare, and levels of social support before and after March 11, 2020. Results: Both positive and negative outcomes were noted. Participants reported an increase in exposure to disinfectants/sanitizers that entered their living environment (p<.001). There was a reported decrease in access to a family doctor during the pandemic (p<0.001). Although PEMCS experienced increased social isolation (p<0.001), they also reported an increase in understanding from family (p<0.029) and a decrease in stigma for wearing personal protective equipment (p<0.001). Conclusion: PEMCS reported experiencing: increased exposure to disinfectants or sanitizers, a loss of social support, and barriers in accessing healthcare during the pandemic. However, COVID-19 provided an opportunity to normalize the living conditions of PEMCS, such as wearing masks and social isolation. These findings can guide decision-makers on the importance of implementing nontoxic alternatives for cleaning and disinfection, as well as improving accommodation measures for PEMCS.

Keywords: covid-19, multiple chemical sensitivity, MCS, quality of life, social isolation, physical environment, healthcare

Procedia PDF Downloads 88
211 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 121
210 Content-Aware Image Augmentation for Medical Imaging Applications

Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang

Abstract:

Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.

Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving

Procedia PDF Downloads 224