Search results for: Octahedral Molecular Sieve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2250

Search results for: Octahedral Molecular Sieve

840 Simulation of Mid Infrared Supercontinuum Generation in Silicon Germanium Photonic Waveguides for Gas Spectroscopy

Authors: Proficiency Munsaka, Peter Baricholo, Erich Rohwer

Abstract:

Pulse evolutions along the 5 cm long, 6.0 ×4.2 μm² cross-section silicon germanium (SiGe) photonic waveguides were simulated and compared with experiments. Simulations were carried out by solving a generalized nonlinear Schrodinger equation (GNLSE) for an optical pulse evolution along the length of the SiGe photonic waveguides by the split-step Fourier method (SSFM). The solution obtained from the SSFM gave the pulse envelope in both time and spectral domain calculated at each distance step along the propagation direction. The SiGe photonic waveguides were pumped in an anomalous group velocity dispersion (GVD) regime using a 4.7 μm, 210 fs femtosecond laser to produce a significant supercontinuum (SC). The simulated propagation of ultrafast pulse along the SiGe photonic waveguides produced an SC covering the atmospheric window (2.5-8.5 μm) containing the molecular fingerprints for important gases. Thus, the mid-infrared supercontinuum generation in SiGe photonic waveguides system can be commercialized for gas spectroscopy for detecting gases that include CO₂, CH₄, H₂O, SO₂, SO₃, NO₂, H₂S, CO, and NO at trace level using absorption spectroscopy technique. The simulated profile evolutions are spectrally and temporally similar to those obtained by other researchers. Obtained evolution profiles are characterized by pulse compression, Soliton fission, dispersive wave generation, stimulated Raman Scattering, and Four Wave mixing.

Keywords: silicon germanium photonic waveguide, supercontinuum generation, spectroscopy, mid infrared

Procedia PDF Downloads 131
839 A Novel Protein Elicitor Extracted From Lecanicillium lecanii Induced Resistance Against Whitefly, Bemisia tabaci in Cotton

Authors: Yusuf Ali Abdulle, Azhar Uddin Keerio

Abstract:

Background: Protein elicitors play a key role in signaling or displaying plant defense mechanisms and emerging as vital tools for bio-control of insects. This study was aimed at the characterization of the novel protein elicitor isolated from entomopathogenic fungi Lecanicillium lecanii (V3) strain and its activity against Whitefly, Bemisia tabaci in cotton. The sequence of purified elicitor protein showed 100% similarity with hypothetical protein LEL_00878 [Cordyceps confragosa RCEF 1005], GenBank no (OAA81333.1). This novel protein elicitor has 253 amino acid residues and 762bp with a molecular mass of 29 kDa. The protein recombinant was expressed in Escherichia coli using pET‐28a (+) plasmid. Effects of purified novel protein elicitor on Bemisia tabaci were determined at three concentrations of protein (i.e., 58.32, 41.22, 35.41 μg mL⁻¹) on cotton plants and were exposed to newly molted adult B.tabaci. Bioassay results showed a significant effect of the exogenous application of novel protein elicitor on B. tabaci in cotton. In addition, the gene expression analysis found a significant up-regulation of the major genes associated with salicylic acid (SA) and jasmonic acid (JA) linked plant defense pathways in elicitor protein-treated plants. Our results suggested the potential application of a novel protein elicitor derived from Lecanicillium lecanii as a future bio-intensive controlling approach against the whitefly, Bemisia tabaci.

Keywords: resistance, Lecanicillium lecanii, secondary metabolites, whitefly

Procedia PDF Downloads 186
838 Phenotypic and Genotypic Diagnosis of Gaucher Disease in Algeria

Authors: S. Hallal, Z. Chami, A. Hadji-Lehtihet, S. Sokhal-Boudella, A. Berhoune, L. Yargui

Abstract:

Gaucher disease is the most common lysosomal storage in our population, it is due to a deficiency of β –glucosidase acid. The enzyme deficiency causes a pathological accumulation of undegraded substrate in lysosomes. This metabolic overload is responsible for a multisystemic disease with hepatosplenomegaly, anemia, thrombocytopenia, and bone involvement. Neurological involvement is rare. The laboratory diagnosis of Gaucher disease consists of phenotypic diagnosis by determining the enzymatic activity of β - glucosidase by fluorimetric method, a study by genotypic diagnosis in the GBA gene, limiting the search recurrent mutations (N370S, L444P, 84 GG); PCR followed by an enzymatic digestion. Abnormal profiles were verified by sequencing. Monitoring of treated patients is provided by the determination of chitotriosidase. Our experience spaning a period of 6 years (2007-2014) has enabled us to diagnose 78 patients out of a total of 328 requests from the various departments of pediatrics, internal medicine, neurology. Genotypic diagnosis focused on the entire family of 9 children treated at pediatric CHU Mustapha, which help define the clinical form; or 5 of them had type III disease, carrying the L444P mutation in the homozygous state. Three others were composite (N370/L444P) (N370S/other unintended mutation in our study), and only in one family no recurrent mutation has been found. This molecular study permits screening of heterozygous essential for genetic counseling.

Keywords: Gaucher disease, mutations, N370S, L444P

Procedia PDF Downloads 407
837 Genotyping of Salmonella enterica Collected from Poultry Farms Located in Riyadh, KSA by Multiplex-PCR

Authors: Moussa I. Mohamed, Turki, K. A. Al-Faraj, Abdullah A. Al-Arfaj, Ashgan M. Hessain

Abstract:

The objective of the present study is to detect the incidences of Salmonella enterica from different poultry farms located in Egypt on molecular basis. During the summer of 2012, a total of 1800 cloacal swabs were collected from poultry farms located I Cairo, Egypt to be subjected for isolation of Salmonella enteric. Moreover, a total of 300 samples of poultry and poultry products were collected from different retail establishment markets in Cairo, Egypt including, 150 local whole frozen chickens, 50 imported whole frozen chickens, 100 local chicken cut samples. The highest rate of isolation 8% was obtained from imported frozen chickens and local chicken cuts, followed by local frozen chickens 6.66% and finally rectal swabs from apparently health chickens 6.4 %. Salmonella Typhimurium and Salmonella Enteritidis were most frequent among the total Salmonella isolates. Multiplex-PCR for the rapid detection of Salmonella Typhimurium and Salmonella Enteritidis from field samples especially after pre-enrichment on Rappaport-Vassiliadis (RV) selective broth (PCR-RV), revealed the same positive samples. Therefore PCR-RV technique is rabid, time saving and applicable to detect Salmonella serovars directly from chicken samples. Moreover, detecting Salmonella Typhimurium and Salmonella Enteritidis by this assay was carried out within 2 days opposed to 5–6 d by the bacteriological and serological methods.

Keywords: Salmonella enterica, Salmonella typhimurium, Salmonella enteritidis enrichment, multiplex-PCR

Procedia PDF Downloads 375
836 Preparation and Characterization of Iron/Titanium-Pillared Clays

Authors: Rezala Houria, Valverde Jose Luis, Romero Amaya, Molinari Alessandra, Maldotti Andrea

Abstract:

The escalation of oil prices in 1973 confronted the oil industry with the problem of how to maximize the processing of crude oil, especially the heavy fractions, to give gasoline components. Strong impetus was thus given to the development of catalysts with relatively large pore sizes, which were able to deal with larger molecules than the existing molecular sieves, and with good thermal and hydrothermal stability. The oil embargo in 1973 therefore acted as a stimulus for the investigation and development of pillared clays. Iron doped titania-pillared montmorillonite clays was prepared using bentonite from deposits of Maghnia in western-Algeria. The preparation method consists of differents steps (purification of the raw bentonite, preparation of a pillaring agent solution and exchange of the cations located between the clay layers with the previously formed iron/titanium solution). The characterization of this material was carried out by X-ray fluorescence spectrometry, X-ray diffraction, textural measures by BET method, inductively coupled plasma atomic emission spectroscopy, diffuse reflectance UV visible spectroscopy, temperature- programmed desorption of ammonia and atomic absorption.This new material was investigated as photocatalyst for selective oxygenation of the liquid alkylaromatics such as: toluene, paraxylene and orthoxylene and the photocatalytic properties of it were compared with those of the titanium-pillared clays.

Keywords: iron doping, montmorillonite clays, pillared clays, oil industry

Procedia PDF Downloads 303
835 First Experimental Evidence on Feasibility of Molecular Magnetic Particle Imaging of Tumor Marker Alpha-1-Fetoprotein Using Antibody Conjugated Nanoparticles

Authors: Kolja Them, Priyal Chikhaliwala, Sudeshna Chandra

Abstract:

Purpose: The purpose of this work is to examine possibilities for noninvasive imaging and identification of tumor markers for cancer diagnosis. The proposed method uses antibody conjugated iron oxide nanoparticles and multicolor Magnetic Particle Imaging (mMPI). The method has the potential for radiation exposure free real-time estimation of local tumor marker concentrations in vivo. In this study, the method is applied to human Alpha-1-Fetoprotein. Materials and Methods: As tracer material AFP antibody-conjugated Dendrimer-Fe3O4 nanoparticles were used. The nanoparticle bioconjugates were then incubated with bovine serum albumin (BSA) to block any possible nonspecific binding sites. Parts of the resulting solution were then incubated with AFP antigen. MPI measurements were done using the preclinical MPI scanner (Bruker Biospin MRI GmbH) and the multicolor method was used for image reconstruction. Results: In multicolor MPI images the nanoparticles incubated only with BSA were clearly distinguished from nanoparticles incubated with BSA and AFP antigens. Conclusion: Tomographic imaging of human tumor marker Alpha-1-Fetoprotein is possible using AFP antibody conjugated iron oxide nanoparticles in presence of BSA. This opens interesting perspectives for cancer diagnosis.

Keywords: noninvasive imaging, tumor antigens, antibody conjugated iron oxide nanoparticles, multicolor magnetic particle imaging, cancer diagnosis

Procedia PDF Downloads 303
834 Conformation Prediction of Human Plasmin and Docking on Gold Nanoparticle

Authors: Wen-Shyong Tzou, Chih-Ching Huang, Chin-Hwa Hu, Ying-Tsang Lo, Tun-Wen Pai, Chia-Yin Chiang, Chung-Hao Li, Hong-Jyuan Jian

Abstract:

Plasmin plays an important role in the human circulatory system owing to its catalytic ability of fibrinolysis. The immediate injection of plasmin in patients of strokes has intrigued many scientists to design vectors that can transport plasmin to the desired location in human body. Here we predict the structure of human plasmin and investigate the interaction of plasmin with the gold-nanoparticle. Because the crystal structure of plasminogen has been solved, we deleted N-terminal domain (Pan-apple domain) of plasminogen and generate a mimic of the active form of this enzyme (plasmin). We conducted a simulated annealing process on plasmin and discovered a very large conformation occurs. Kringle domains 1, 4 and 5 had been observed to leave its original location relative to the main body of the enzyme and the original doughnut shape of this enzyme has been transformed to a V-shaped by opening its two arms. This observation of conformational change is consistent with the experimental results of neutron scattering and centrifugation. We subsequently docked the plasmin on the simulated gold surface to predict their interaction. The V-shaped plasmin could utilize its Kringle domain and catalytic domain to contact the gold surface. Our findings not only reveal the flexibility of plasmin structure but also provide a guide for the design of a plasmin-gold nanoparticle.

Keywords: docking, gold nanoparticle, molecular simulation, plasmin

Procedia PDF Downloads 473
833 Production of Fish Hydrolyzates by Single and Multiple Protease Treatments under Medium High Pressure of 300 MPa

Authors: Namsoo Kim, So-Hee Son, Jin-Soo Maeng, Yong-Jin Cho, Chong-Tai Kim

Abstract:

It has been reported that some enzymes such as trypsin and Alcalase 2.4L are tolerant to a medium high pressure of 300 MPa and preparation of protein hydrolyzates under 300 MPa was advantageous with regard to hydrolysis rate and thus production yield compared with the counterpart under ambient pressure.1,2) In this study, nine fish comprising halibut, soft shell clam and carp were hydrolyzed using Flavourzyme 500MG only, and the combination of Flavourzyme 500 mg, Alcalase 2.4 L, Marugoto E, and Protamex under 300 MPa. Then, the effects of single and multiple protease treatments were determined with respect to contents of soluble solid (SS) and soluble nitrogen, sensory attributes, electrophoretic profiles, and HPLC peak patterns of the fish hydrolyzates (FHs) from various species. The contents of SS of the FHs were quite species-specific and the hydrolyzates of halibut showed the highest SS contents. At this point, multiple protease treatment increased SS content conspicuously in all fish tested. The contents of total soluble nitrogen and TCA-soluble nitrogen were well correlated with those of SS irrespective of fish species and methods of enzyme treatment. Also, it was noticed that multiple protease treatment improved sensory attributes of the FHs considerably. Electropherograms of the FHs showed fast migrating peptide bands that had the molecular masses mostly lower than 1 kDa and this was confirmed by peptide patterns from HPLC analysis for some FHs that had good sensory quality.

Keywords: production, fish hydrolyzates, protease treatments, high pressure

Procedia PDF Downloads 285
832 Serotype Distribution and Demographics of Dengue Patients in a Tertiary Hospital of Lahore, Pakistan During the 2011 Epidemic

Authors: Muhammad Munir, Riffat Mehboob, Samina Naeem, Muhammad Salman, Shehryar Ahmed, Irshad Hussain Qureshi, Tahira Murtaza Cheema, Ashraf Sultan, Akmal Laeeq, Nakhshab Choudhry, Asad Aslam Khan, Fridoon Jawad Ahmad

Abstract:

A dengue outbreak in Lahore, Pakistan during 2011 was unprecedented in terms of severity and magnitude. This research aims to determine the serotype distribution of dengue virus during this outbreak and classify the patients demographically. 5ml of venous blood was drawn aseptically from 166 patients with dengue-like signs to test for the virus between the months of August to November 2011. The samples were sent to the CDC, Atlanta, Georgia for the purpose of molecular assays to determine their serotype. RT-PCR protocol was performed targeting at the 4 dengue serotypes. Out of 166 cases, dengue infection was detected with RT-PCR in 95 cases, all infected with same serotype DEN-2. 75% of positive cases were males while 25% were females. Most positive patients were in the age range of 16-30 years. 33% positive cases had accompanying bleeding. This is first study during the 2011 dengue epidemic in Lahore that reports DEN-2 as the only prevalent serotype. It also indicates that more infected patients were males, adults, within age range of 16-30 years, peaked in the month of November, Dengue hemorrhagic fever (DHF) is manifested more in females, Ravi town was heavily hit by dengue virus infection.

Keywords: dengue, serotypes, Pakistan, DEN 2, Lahore, demography, serotype distrbution, 2011 epidemic

Procedia PDF Downloads 500
831 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives

Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović

Abstract:

In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).

Keywords: benzimidazoles, QSAR, ADME, in silico

Procedia PDF Downloads 377
830 Identification of Individuals in Forensic Situations after Allo-Hematopoietic Stem Cell Transplantation

Authors: Anupuma Raina, Ajay Parkash

Abstract:

In forensic investigation, DNA analysis helps in the identification of a particular individual under investigation. A set of Short Tandem Repeats loci are widely used for individualization at a molecular level in forensic testing. STRs with tetrameric repeats of DNA are highly polymorphic and widely used for forensic DNA analysis. Identification of an individual became challenging for forensic examiners after Hematopoietic Stem Cell Transplantation. HSCT is a well-accepted and life-saving treatment to treat malignant and nonmalignant diseases. It involves the administration of healthy donor stem cells to replace the patient’s own unhealthy stem cells. A successful HSCT results in complete donor-derived cells in a patient’s hematopoiesis and hence have the capability to change the genetic makeup of the patient. Although an individual who has undergone HSCT and then committed a crime is a very rare situation, but not impossible. Keeping such a situation in mind, various biological samples like blood, buccal swab, and hair follicle were collected and studied after a certain interval of time after HSCT. Blood was collected from both the patient and the donor before the transplant. The DNA profile of both was analyzed using a short tandem repeat kit for autosomal chromosomes. Among all exhibits studied, only hair follicles were found to be the most suitable biological exhibit, as no donor DNA profile was observed for up to 90 days of study.

Keywords: chimerism, HSCT, STRs analysis, forensic identification

Procedia PDF Downloads 65
829 Investigation into the Homoepitaxy of AlGaN/GaN Heterostructure via Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

As the production process of self-standing GaN substrates evolves, the commercialization of low dislocation density, large-scale, semi-insulating self-standing GaN substrates is gradually becoming a reality. This advancement has given rise to increased interest in GaN materials' homoepitaxial technology. However, at the homoepitaxial interface, there are considerable concentrations of impurity elements, including C, Si, and O, which generate parasitic leakage channels at the re-growth junction. This phenomenon results in leaked HEMTs that prove difficult to switch off, rendering them effectively non-functional. The emergence of leakage channels can also degrade the high-frequency properties and lower the power devices' breakdown voltage. In this study, the uniform epitaxy of AlGaN/GaN heterojunction with high electron mobility was accomplished through the surface treatment of the GaN substrates prior to growth and the design of the AlN isolation layer structure. By employing a procedure combining gallium atom in-situ cleaning and plasma nitridation, the C and O impurity concentrations at the homoepitaxial interface were diminished to the scale of 10¹⁷ cm-³. Additionally, the 1.5 nm nitrogen-rich AlN isolation layer successfully prevented the diffusion of Si impurities into the GaN channel layer. The result was an AlGaN/GaN heterojunction with an electron mobility of 1552 cm²/Vs and an electron density of 1.1 × 10¹³ cm-² at room temperature, obtained on a Fe-doped semi-insulating GaN substrate.

Keywords: MBE, AlGaN/GaN, homogenerous epitaxy, HEMT

Procedia PDF Downloads 69
828 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties

Authors: Innocent Kafodya, Guijun Xian

Abstract:

This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.

Keywords: pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta

Procedia PDF Downloads 269
827 Genome Sequencing of Infectious Bronchitis Virus QX-Like Strain Isolated in Malaysia

Authors: M. Suwaibah, S. W. Tan, I. Aiini, K. Yusoff, A. R. Omar

Abstract:

Respiratory diseases are the most important infectious diseases affecting poultry worldwide. One of the avian respiratory virus of global importance causing significant economic losses is Infectious Bronchitis Virus (IBV). The virus causes a wide spectrum disease known as Infectious Bronchitis (IB), affecting not only the respiratory system but also the kidney and the reproductive system, depending on its strain. IB and Newcastle disease are two of the most prevalent diseases affecting poultry in Malaysia. However, a study on the molecular characterization of Malaysian IBV is lacking. In this study, an IBV strain IBS130 which was isolated in 2015 was fully sequenced using next-gene sequencing approach. Sequence analysis of IBS130 based on the complete genome, polyprotein 1ab and S1 genes were compared with other IBV sequences available in Genbank, National Center for Biotechnology Information (NCBI). IBV strain IBS130 is characterised as QX-like strain based on whole genome and S1 gene sequence analysis. Comparisons of the virus with other IBV strains showed that the nucleotide identity ranged from 67% to 99.2%, depending on the region analysed. The similarity in whole genome nucleotide ranging from 84.9% to 90.7% with the least similar was from Singapore strains (84.9%) and highly similar with China QX-like strains. Meanwhile, the similarity in polyprotein 1ab ranging from 85.3% to 89.9% with the least similar to Singapore strains (85.3%) and highly similar with Mass strains from USA.

Keywords: infectious bronchitis virus, phylogenetic analysis, chicken, Malaysia

Procedia PDF Downloads 187
826 Bioactive Molecules Isolated for the First Time from Hyoscyamus albus L. and their Mechanisms Underlying the Anticancer Effects

Authors: Benhouda Afaf, Yahia Massinissa, Paolo Grieco

Abstract:

Hyoscyamus albus L. is a small genus from Solanaceae family known by its use in old traditional medicine in the east of Algeria. Aim: This study aimed to characterize bioactive molecules from H. albus, evaluate their anticancer activity in several cancer cells and investigate their possible molecular mechanism. Materials and Methods: Different compounds (Peak h of fraction F), (Peak 3 of Fraction F), (Peak 1 of fraction C) were isolated from H.albus L by using high-performance chromatography (HPLC), mass spectrometry (MS) and proton NMR (NMR H1). All isolated compounds were subjected to cytotoxicity and antiproliferative assays against a panel of the four cell lines: DU-145, U-2 OS, U-87 MG and LN-229 cell lines and were determined using MTT assay, Annexin V and propodium iodide were used to evaluate apoptosis. Results: The phytochemical study of H. albus Fractions led to the isolation of quercetin-3-O-β-dglucopyranosyl-( 1 → 6)-β-d-glucopyranosid, N-trans-feruloyltyramine, Hydrocaffeoyl-N8- caffeoylspermidine.The biological results indicated that all cell lines were consistently sensitive to P1 FC in a dose-dependent manner. This difference in cytotoxic sensitivity was more pronounced in osteosarcoma cell line, U-2 OS, when compared to prostate cancer and U-87 MG. Cell viability data also demonstrated that only U-87 MG cells were responsive to treatment with Ph FF. compounds P1 FC and Ph FF have induced necrosis and apoptosis in a large part of LN-229 cells. Conclusion: The overall results of the present study provided evidence that isolated compounds are potential therapeutic entities against cancer.

Keywords: hyoscyamus albus, cancer cells, coumpounds, HPLC

Procedia PDF Downloads 17
825 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies

Authors: Sam Bahreini, Payam Hayati

Abstract:

Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.

Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)

Procedia PDF Downloads 170
824 Effectiveness of Opuntia ficus indica Cladodes Extract for Wound-Healing

Authors: Giuffrida Graziella, Pennisi Stefania, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta

Abstract:

Cladode chemical composition may vary according to soil factors, cultivation season, and plant age. The primary metabolites of cladodes are water, carbohydrates, and proteins. The carbohydrates in cladodes are divided into two types: structural and storage. Polysaccharides from Opuntia ficus‐indica (L.) Mill plants build molecular networks with the capacity to retain water; thus, they act as mucoprotective agents. Mucilage is the main polysaccharide of cladodes; it contains polymers of β‐d‐galacturonic acid bound in positions (1–4) and traces of R‐linked l‐rhamnose (1-2). Mucilage regulates both the cell water content during prolonged drought and the calcium flux in the plant cells. The in vitro analysis of keratinocytes in monolayer, through the scratch-wound-healing assay, provided promising results. After 48 hours of exposure, the wound scratch was almost completely closed in cells treated with cladode extract. After 72 hours, the treated cells reached complete confluence, while in the untreated cells (negative control) the confluence was reached after 96 hours. We also added a positive control group of cells treated with colchicine, which inhibited wound closure for a more comprehensive analysis.

Keywords: cladodes, metabolites, polysaccharide, scratch-wound-healing assay

Procedia PDF Downloads 57
823 The Mechanism of Parabacteroides goldsteinii on Immune Modulation and Anti-Obsogenicity

Authors: Yu-Ling Tsai, Chih-Jung Chang, Chia-Chen Lu, Eric Wu, Chuan-Sheng Lin, Tzu-Lung Lin, Hsin-Chih Lai

Abstract:

It is urgent that novel anti-obesity measures that are safe, effective and widely available are developed for counteracting the rapidly growing obesity epidemics. In the present study, we show that a probiotic bacterium Parabacteroides goldsteinii screened through culture under the high molecular weight polysaccharides prepared from two iconic medicinal fungi, the Ganoderma lucidum and the Hirsutella sinensis, reduced body weight by ca. 20% in high-fat diet (HFD)-fed mice. The bacterium also decreased intestinal permeability, metabolic endotoxemia, inflammation and insulin resistance. Notably, oral administration of live, but not high temperature-killed, P. goldsteinii to HFD fed mice considerably reduces weight gain and obesity-associated metabolic disorders. A three months feeding of the mice with P. goldsteinii did not show any aberrant side effects, indicating the safety of this bacterium. Transcriptome analysis indicated that P. goldsteinii enhances immunity in resting dendritic cells, but reduces inflammation in lipopolysaccharide (LPS)-induced dendritic cells. On top, Naïve T-cells were skewed towards regulatory T-cells after encountering with dendritic cells (DCs) pretreated with P. goldsteinii. These results indicated P. goldsteinii showed anti-inflammatory effects and can work as a potential probiotic ameliorating obesogenicity and related metabolic syndromes.

Keywords: Parabacteroides goldsteinii, gut microbiome, obesity, immune modulation

Procedia PDF Downloads 178
822 Free Radical Study of Papua’s Candy as the Consumption Culture of the Papuans

Authors: Livy Febria Tedjamulia, Aas Nurasyiah, Ivana Josephin Purnama, Monika Diah Maharani Kusumastuti, Achmad Ridwan Ariyantoro

Abstract:

Papua's candy is one of Indonesia’s indigenous consumption consisting of areca nut (Areca catechu), forest betel fruit (Piper aduncum), and CaCO3. This research aims to determine the concentration of tannins in areca nut, alkaloids in areca nut, flavonoids in forest betel fruit; detect their interaction and CaCO3; also toform a standardize consumption recommendation. The research methodwas includingDPPH assay for papua’s candy mixture, which resulted in IC50 value. Data analysis used is mathematical linear regression for each experiment. The test result of alkaloid is a Rf value of 0.773, while concentration of tannin and flavonoidare 0.603 mgGAE/g and 125.402 gQE/g, respectively. The IC50 value shows number of 3.0403, showing high antioxidant capacity.Other antioxidant assays were being studied using literature review, namely trolox and oxygen radical absorbance capacity, to figure out interaction among the bioactive compounds. It turned out that the interaction detected is antagonistic, which means the compound that is joined already has a stable molecular structure so that could reduce free radicals by donating hydrogen atoms. The recommendation consumptions given are 4 areca nuts, 5 forest betels, and 1 gram of lime betel. Therefore, papua's candy has its potential to be developed into functional food.

Keywords: antioxidant, bioactive compounds interaction, free radical, papua’s candy

Procedia PDF Downloads 206
821 Computer Simulation to Investigate Magnetic and Wave-Absorbing Properties of Iron Nanoparticles

Authors: Chuan-Wen Liu, Min-Hsien Liu, Chung-Chieh Tai, Bing-Cheng Kuo, Cheng-Lung Chen, Huazhen Shen

Abstract:

A recent surge in research on magnetic radar absorbing materials (RAMs) has presented researchers with new opportunities and challenges. This study was performed to gain a better understanding of the wave-absorbing phenomenon of magnetic RAMs. First, we hypothesized that the absorbing phenomenon is dependent on the particle shape. Using the Material Studio program and the micro-dot magnetic dipoles (MDMD) method, we obtained results from magnetic RAMs to support this hypothesis. The total MDMD energy of disk-like iron particles was greater than that of spherical iron particles. In addition, the particulate aggregation phenomenon decreases the wave-absorbance, according to both experiments and computational data. To conclude, this study may be of importance in terms of explaining the wave- absorbing characteristic of magnetic RAMs. Combining molecular dynamics simulation results and the theory of magnetization of magnetic dots, we investigated the magnetic properties of iron materials with different particle shapes and degrees of aggregation under external magnetic fields. The MDMD of the materials under magnetic fields of various strengths were simulated. Our results suggested that disk-like iron particles had a better magnetization than spherical iron particles. This result could be correlated with the magnetic wave- absorbing property of iron material.

Keywords: wave-absorbing property, magnetic material, micro-dot magnetic dipole, particulate aggregation

Procedia PDF Downloads 492
820 Development and Characterization of Polymorphic Genomic-SSR Markers in Asian Long-Horned Beetle (Anoplophora glabripennis)

Authors: Zhao Yang Liu, Jing Tao

Abstract:

The Asian long-horned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiinae), is a wood-borer and polyphagous xylophages native to Asia and killing healthy trees. As it causes serious danger to trees, the beetle has been paid close attention in the world. However, the genetic markers limited, especially microsatellite. In this study, 24 novel simple sequence repeat (SSR) molecular markers, a powerful tool for genetic diversity studies and linkage map construction, were developed and characterized from whole genome shotgun sequences. We developed SSR loci of 2 to 6 repeated and perfect units including 9895 points, the density of SSRs was found one SSR per 56.57 kb and the abundance of SSR was 0.02/kb, besides 140 types of repeats motifs were found. Half of the 48 pairs SSR primers (containing 4 di-, 7 tri-, 2 tetra- and 11 hexamers SSRs) we selected randomly from 1222 pairs of primers were polymorphism. The number of alleles for these markers in 48 individuals varied from 3 to 21 with an average of 7.71, the number of effective alleles ranged from 1.22 to 9.97 with an average of 3.54. Besides this, the polymorphic information content (PIC) ranged from 0.18 to 0.89 with a mean of 0.65, And Shannon's Information index (I) ranged from 0.46 to 2.62 with an average of 1.44. The results suggest that the method for screening of SSR in the whole genome is feasible and efficient. SSR markers developed in this study can be used for population genetic studies of A. glabripennis. Moreover, they may also be helpful for the development of microsatellites for other Coleoptera.

Keywords: SSR markers, Anoplophora glabripennis, genetic diversity, whole genome

Procedia PDF Downloads 391
819 Crops Cold Stress Alleviation by Silicon: Application on Turfgrass

Authors: Taoufik Bettaieb, Sihem Soufi

Abstract:

As a bioactive metalloid, silicon (Si) is an essential element for plant growth and development. It also plays a crucial role in enhancing plants’ resilience to different abiotic and biotic stresses. The morpho-physiological, biochemical, and molecular background of Si-mediated stress tolerance in plants were unraveled. Cold stress is a severe abiotic stress response to the decrease of plant growth and yield by affecting various physiological activities in plants. Several approaches have been used to alleviate the adverse effects generated from cold stress exposure, but the cost-effective, environmentally friendly, and defensible approach is the supply of silicon. Silicon has the ability to neutralize the harmful impacts of cold stress. Therefore, based on these hypotheses, this study was designed in order to investigate the morphological and physiological background of silicon effects applied at different concentrations on cold stress mitigation during early growth of a turfgrass, namely Paspalum vaginatum Sw. Results show that silicon applied at different concentrations improved the morphological development of Paspalum subjected to cold stress. It is also effective on the photosynthetic apparatus by maintaining stability the photochemical efficiency. As the primary component of cellular membranes, lipids play a critical function in maintaining the structural integrity of plant cells. Silicon application decreased membrane lipid peroxidation and kept on membrane frontline barrier relatively stable under cold stress.

Keywords: crops, cold stress, silicon, abiotic stress

Procedia PDF Downloads 123
818 Effectiveness of Intraoperative Heparinization in Neonatal and Pediatric Patients with Congenital Heart Diseases: Focus in Heparin Resistance

Authors: Karakhalis N. B.

Abstract:

This study aimed to determine the prevalence of heparin resistance among cardiac surgical pediatric and neonatal patients and identify associated risk factors. Materials and Methods: The study included 306 pediatric and neonatal patients undergoing on-pump cardiac surgery. Patients whose activated clotting time (ACT) targets were achieved after the first administration of heparin formed the 1st group (n=280); the 2nd group (n=26) included patients with heparin resistance. The initial assessment of the haemostasiological profile included determining the PT, aPPT, FG, AT III activity, and INR. Intraoperative control of heparinization was carried out with a definition of ACT using a kaolin activator. A weight-associated protocol at the rate of 300 U/kg with target values of ACT >480 sec was used for intraoperative heparinization. Results: The heparin resistance was verified in 8.5% of patients included in the study. Repeated heparin administration at the maximum dose of≥600 U/kg is required in 80.77% of cases. Despite additional heparinization, 19.23% of patients had FFP infusion. There was reduced antithrombin activity in the heparin resistance group (p=0.01). Most patients with heparin resistance (57.7%) were pretreated with low molecular weight heparins during the preoperative period. Conclusion: Determining the initial level of antithrombin activity can predict the risk of developing heparin resistance. The factor analysis verified hidden risk factors for heparin resistance to the heparin pretreatment, chronic hypoxia, and chronic heart failure.

Keywords: congenital heart disease, heparin, antithrombin, activated clotting time, heparin resistance

Procedia PDF Downloads 83
817 Gan Nanowire-Based Sensor Array for the Detection of Cross-Sensitive Gases Using Principal Component Analysis

Authors: Ashfaque Hossain Khan, Brian Thomson, Ratan Debnath, Abhishek Motayed, Mulpuri V. Rao

Abstract:

Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can’t be fully eliminated. In this work, a sensor array has been designed and fabricated comprising of platinum (Pt), copper (Cu), and silver (Ag) decorated TiO2 and ZnO functionalized GaN nanowires using industry-standard top-down fabrication approach. The metal/metal-oxide combinations within the array have been determined from prior molecular simulation study using first principle calculations based on density functional theory (DFT). The gas responses were obtained for both single and mixture of NO2, SO2, ethanol, and H2 in the presence of H2O and O2 gases under UV light at room temperature. Each gas leaves a unique response footprint across the array sensors by which precise discrimination of cross-sensitive gases has been achieved. An unsupervised principal component analysis (PCA) technique has been implemented on the array response. Results indicate that each gas forms a distinct cluster in the score plot for all the target gases and their mixtures, indicating a clear separation among them. In addition, the developed array device consumes very low power because of ultra-violet (UV) assisted sensing as compared to commercially available metal-oxide sensors. The nanowire sensor array, in combination with PCA, is a potential approach for precise real-time gas monitoring applications.

Keywords: cross-sensitivity, gas sensor, principle component analysis (PCA), sensor array

Procedia PDF Downloads 108
816 Bone Strengthening Effects of Deer Antler Extract

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

It has been reported that deer antler extract has bone-strengthening activity and effectively used in bone diseases therapy. However, little is known about the cellular and molecular mechanism of this effect. The upper section, mid section, and base of the antler has been known to exhibit different biological properties. Present study investigated the effects of these three parts of deer antler extracts on bone formation and resorption. The effects of deer antler extracts (DH) on bone formation were determined by cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization in human osteoblastic MG-63 cells. The effect on bone resorption was determined by osteoclastogenesis from bone marrow-derived precursor cells driven by RANKL. Ethanol extracts of DH (50 ~ 100 µg/ml) dose-dependently increased cell proliferation, and upper part increased the cell proliferation by 118.4% while mid and base parts increased proliferation by 107.8% and 102.3%, respectively. ALP activity was significantly increased by upper part of the DH treatment. After enhancement of ALP activity, significant augmentation of collagen synthesis and calcification assessed by Sirus red and Alzarin red staining, respectively, was observed in upper part of the DH treatment. The effect of DH on bone resorption was not observed in all three parts of the DH. These results could provide a mechanistic explanation for the bone-strengthening effects of DH.

Keywords: alkaline phosphatase, collagen synthesis, deer antler, osteoblastic MG-63 cells

Procedia PDF Downloads 315
815 Characterization of Solanum tuberosum Ammonium Transporter Gene Using Bioinformatics Approach

Authors: Adewole Tomiwa Adetunji, Francis Bayo Lewu, Richard Mundembe

Abstract:

Plants require nitrogen (N) to support desired production levels. There is a need for better understanding of N transport mechanism in order to improve N assimilation by plant root. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which N is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was amplified, sequenced and characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design 976 base pairs AMT1-specific primers which include forward primer 5’- GCCATCGCCGCCGCCGG-3’ and reverse primer 5’-GGGTCAGATCCATACCCGC-3’. These primers were used to amplify the Solanum tuberosum AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family due to the clade and high similarity it shared with other plant AMT1 genes. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1, and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th-10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport.

Keywords: ammonium transporter, bioinformatics, nitrogen, primers, Solanum tuberosum

Procedia PDF Downloads 229
814 Bone Mineral Density in Egyptian Children with Familial Mediterranean Fever

Authors: S. Salah, S. A. El-Masry, H. F. Sheba, R. A. El-Banna, W. Saad

Abstract:

Background: Familial Mediterranean fever (FMF) has episodic or subclinical inflammation that may lead to a decrease in bone mineral density (BMD). Objective: To assess BMD in Egyptian children with FMF on genetic basis. Subjects and Methods: A cross sectional study included 45 FMF patients and 25 control children of both sexes, with age range between 3-16 years old. The patients were reclassified into 2 groups: Group I (A) 23 cases used colchicines for 1 month or less, and Group I (B) 22 cases used colchicines for more than 6 months. For both patients and control, MEFV mutations were defined using molecular genetics technique and BMD was measured by DXA at 2 sites: proximal femur and the lumber spines. Results: four frequent gene mutations were found in the patient group: E148Q (35.6%), V726A (33.3%), M680I (28.9.0%) and M694V (2.2%). There were also 4 heterozygous gene mutations in 40% of control children. Patients received colchicines treatment for less than 1 month had highly significant lower values of BMD at femur and lumber spines than control children (p<0.05). Patients received colchicines treatment for more than 6 months had improved values of BMD at femur compared to control, but there were still significant differences between them at lumbar spine (p>0.05). There are insignificant effect of type of gene mutation on BMD and the risk of osteopenia among the patients. Conclusion: FMF had significant effect on BMD. However, regular use of colchicines treatment improves this effect mainly at femur.

Keywords: familial mediterranean fever, bone mineral density, genes, children

Procedia PDF Downloads 412
813 Molecular Characterization of Functional Domain (LRR) of TLR9 Genes in Malnad Gidda Cattle and Their Comparison to Cross Breed Cattle

Authors: Ananthakrishna L. R., Ramesh D., Kumar Wodeyar, Kotresh A. M., Gururaj P. M.

Abstract:

Malnad Gidda is the indigenous recognized cattle breed of Shivamogga District of Karnataka state, India is known for its disease resistance to many of the infectious diseases. There are 25 LRR (Leucine Rich Repeats) identified in bovine (Bos indicus) TLR9. The amino acid sequence of LRR is deduced to nucleotide sequence in BLASTx bioinformatic online tools. LRR2 to LRR10 are involved in pathogen recognition and binding in human TLR9 which showed a higher degree of nucleotide variations with respect to disease resistance to various pathogens. Hence, primers were designed to amplify the flanking sequences of LRR2 to LRR10, to discover the nucleotide variations if any, in Malnad Gidda breed of Cattle which is associated with disease resistance. The DNA isolated from peripheral blood mononuclear cells of ten Malnad Gidda cattle. A desired and specific amplification product of 0.8 kb was obtained at an annealing temperature of 56.6ᵒC. All the PCR products were sequenced on both sides by gene-specific primers. The sequences were compared with TLR9 sequence of cross breed cattle obtained from NCBI data bank. The sequence analysis between Malnad Gidda and crossbreed cattle revealed no nucleotide variations in the region LRR2 to LRR9 which shows the conserved in pathogen binding domain (LRR) of TLR9.

Keywords: leucine rich repeats, Malnad Gidda, cross breed, TLR9

Procedia PDF Downloads 226
812 Determination of Prostate Specific Membrane Antigen (PSMA) Based on Combination of Nanocomposite Fe3O4@Ag@JB303 and Magnetically Assisted Surface Enhanced Raman Spectroscopy (MA-SERS)

Authors: Zuzana Chaloupková, Zdeňka Marková, Václav Ranc, Radek Zbořil

Abstract:

Prostate cancer is now one of the most serious oncological diseases in men with an incidence higher than that of all other solid tumors combined. Diagnosis of prostate cancer usually involves detection of related genes or detection of marker proteins, such as PSA. One of the new potential markers is PSMA (prostate specific membrane antigen). PSMA is a unique membrane bound glycoprotein, which is considerably overexpressed on prostate cancer as well as neovasculature of most of the solid tumors. Commonly applied methods for a detection of proteins include techniques based on immunochemical approaches, including ELISA and RIA. Magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) can be considered as an interesting alternative to generally accepted approaches. This work describes a utilization of MA-SERS in a detection of PSMA in human blood. This analytical platform is based on magnetic nanocomposites Fe3O4@Ag, functionalized by a low-molecular selector labeled as JB303. The system allows isolating the marker from the complex sample using application of magnetic force. Detection of PSMA is than performed by SERS effect given by a presence of silver nanoparticles. This system allowed us to analyze PSMA in clinical samples with limits of detection lower than 1 ng/mL.

Keywords: diagnosis, cancer, PSMA, MA-SERS, Ag nanoparticles

Procedia PDF Downloads 231
811 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst

Authors: Peikun Zhang, Chunhua Cui

Abstract:

Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.

Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting

Procedia PDF Downloads 123