Search results for: relaxation training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4243

Search results for: relaxation training

2863 Algorithmic Obligations: Proactive Liability for AI-Generated Content and Copyright Compliance

Authors: Aleksandra Czubek

Abstract:

As AI systems increasingly shape content creation, existing copyright frameworks face significant challenges in determining liability for AI-generated outputs. Current legal discussions largely focus on who bears responsibility for infringing works, be it developers, users, or entities benefiting from AI outputs. This paper introduces a novel concept of algorithmic obligations, proposing that AI developers be subject to proactive duties that ensure their models prevent copyright infringement before it occurs. Building on principles of obligations law traditionally applied to human actors, the paper suggests a shift from reactive enforcement to proactive legal requirements. AI developers would be legally mandated to incorporate copyright-aware mechanisms within their systems, turning optional safeguards into enforceable standards. These obligations could vary in implementation across international, EU, UK, and U.S. legal frameworks, creating a multi-jurisdictional approach to copyright compliance. This paper explores how the EU’s existing copyright framework, exemplified by the Copyright Directive (2019/790), could evolve to impose a duty of foresight on AI developers, compelling them to embed mechanisms that prevent infringing outputs. By drawing parallels to GDPR’s “data protection by design,” a similar principle could be applied to copyright law, where AI models are designed to minimize copyright risks. In the UK, post-Brexit text and data mining exemptions are seen as pro-innovation but pose risks to copyright protections. This paper proposes a balanced approach, introducing algorithmic obligations to complement these exemptions. AI systems benefiting from text and data mining provisions should integrate safeguards that flag potential copyright violations in real time, ensuring both innovation and protection. In the U.S., where copyright law focuses on human-centric works, this paper suggests an evolution toward algorithmic due diligence. AI developers would have a duty similar to product liability, ensuring that their systems do not produce infringing outputs, even if the outputs themselves cannot be copyrighted. This framework introduces a shift from post-infringement remedies to preventive legal structures, where developers actively mitigate risks. The paper also breaks new ground by addressing obligations surrounding the training data of large language models (LLMs). Currently, training data is often treated under exceptions such as the EU’s text and data mining provisions or U.S. fair use. However, this paper proposes a proactive framework where developers are obligated to verify and document the legal status of their training data, ensuring it is licensed or otherwise cleared for use. In conclusion, this paper advocates for an obligations-centered model that shifts AI-related copyright law from reactive litigation to proactive design. By holding AI developers to a heightened standard of care, this approach aims to prevent infringement at its source, addressing both the outputs of AI systems and the training processes that underlie them.

Keywords: ip, technology, copyright, data, infringement, comparative analysis

Procedia PDF Downloads 21
2862 Simulation of Glass Breakage Using Voronoi Random Field Tessellations

Authors: Michael A. Kraus, Navid Pourmoghaddam, Martin Botz, Jens Schneider, Geralt Siebert

Abstract:

Fragmentation analysis of tempered glass gives insight into the quality of the tempering process and defines a certain degree of safety as well. Different standard such as the European EN 12150-1 or the American ASTM C 1048/CPSC 16 CFR 1201 define a minimum number of fragments required for soda-lime safety glass on the basis of fragmentation test results for classification. This work presents an approach for the glass breakage pattern prediction using a Voronoi Tesselation over Random Fields. The random Voronoi tessellation is trained with and validated against data from several breakage patterns. The fragments in observation areas of 50 mm x 50 mm were used for training and validation. All glass specimen used in this study were commercially available soda-lime glasses at three different thicknesses levels of 4 mm, 8 mm and 12 mm. The results of this work form a Bayesian framework for the training and prediction of breakage patterns of tempered soda-lime glass using a Voronoi Random Field Tesselation. Uncertainties occurring in this process can be well quantified, and several statistical measures of the pattern can be preservation with this method. Within this work it was found, that different Random Fields as basis for the Voronoi Tesselation lead to differently well fitted statistical properties of the glass breakage patterns. As the methodology is derived and kept general, the framework could be also applied to other random tesselations and crack pattern modelling purposes.

Keywords: glass breakage predicition, Voronoi Random Field Tessellation, fragmentation analysis, Bayesian parameter identification

Procedia PDF Downloads 161
2861 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 200
2860 Teachers' Experience for Improving Fine Motor Skills of Children with Down Syndrome in the Context of Special Education in Southern Province of Sri Lanka

Authors: Sajee A. Gamage, Champa J. Wijesinghe, Patricia Burtner, Ananda R. Wickremasinghe

Abstract:

Background: Teachers working in the context of special education have an enormous responsibility of enhancing performance skills of children in their classroom settings. Fine Motor Skills (FMS) are essential functional skills for children to gain independence in Activities of Daily Living. Children with Down Syndrome (DS) are predisposed to specific challenges due to deficits in FMS. This study is aimed to determine the teachers’ experience on improving FMS of children with DS in the context of special education of Southern Province, Sri Lanka. Methodology: A cross-sectional study was conducted among all consenting eligible teachers (n=147) working in the context of special education in government schools of Southern Province of Sri Lanka. A self-administered questionnaire was developed based on literature and expert opinion to assess teachers’ experience regarding deficits of FMS, limitations of classroom activity performance and barriers to improve FMS of children with DS. Results: Approximately 93% of the teachers were females with a mean age ( ± SD) of 43.1 ( ± 10.1) years. Thirty percent of the teachers had training in special educationand 83% had children with DS in their classrooms. Major deficits of FMS reported were deficits in grasping (n=116; 79%), in-hand manipulation (n=103; 70%) and bilateral hand use (n=99; 67.3%). Paperwork (n=70; 47.6%), painting (n=58; 39.5%), scissor work (n=50; 34.0%), pencil use for writing (n=45; 30.6%) and use of tools in the classroom (n=41; 27.9%) were identified as major classroom performance limitations of children with DS. Parental factors (n=67; 45.6%), disease specific characteristics (n=58; 39.5%) and classroom factors (n=36; 24.5%), were identified as major barriers to improve FMS in the classroom setting. Lack of resources and standard tools, social stigma and late school admission were also identified as barriers to FMS training. Eighty nine percent of the teachers informed that training fine motor activities in a special education classroom was more successful than work with normal classroom setting. Conclusion: Major areas of FMS deficits were grasping, in-hand manipulation and bilateral hand use; classroom performance limitations included paperwork, painting and scissor work of children with DS. Teachers recommended regular practice of fine motor activities according to individual need. Further research is required to design a culturally specific FMS assessment tool and intervention methods to improve FMS of children with DS in Sri Lanka.

Keywords: classroom activities, Down syndrome, experience, fine motor skills, special education, teachers

Procedia PDF Downloads 154
2859 Attitude and Practice of Family Physicians in Giving Smoking Cessation Advice at King Abdul-Aziz Medical City for National Guard, Riyadh

Authors: Mohammed Alateeq, Abdulaziz Alrshoud

Abstract:

Objectives: To examine the attitude and practice of family physicians in giving smoking cessation advice at King Abdul-Aziz Medical City for National Guard, Riyadh. Methods: Cross sectional study using validated self-reported questionnaire that distributed to all family physicians and primary health care doctors at the four main family medicine and primary health care centers, KAMC, Riyadh. Results: 73 physicians are contributed in this study. 28 (38.4%) physicians were from (KASHM ALAN) clinic, 26 (35.6%) physicians were from (UM ALHAMAM) Clinic. 13 (17.8%) physicians were from (ISKAN) clinic. 6 (8.2%) physicians were from the Employee Health Clinic. 73 (100%) of the target population agreed that giving brief smoking cessation advice is part of their duties. 67 (91.7%) agreed that Presence of hospital guidelines and special clinics for smoking cessation will encourage them to provide advice. Only 5 (6.84%) received training courses (1-4 weeks) in smoking cessation interventions. Conclusion: Most of the target population agreed that brief smoking cessation advice is part of their duties. Also, they agreed that Presence of hospital guidelines and special clinics for smoking cessation will encourage them to provide advice although most of them did not received a formal training in smoking cessation advice.

Keywords: advice, attitude, cessation, family physicians, smoking

Procedia PDF Downloads 292
2858 Community Based Landslide Investigation and Treatment in the Earthquake Affected Areas, Nepal

Authors: Basanta Raj Adhikari

Abstract:

Large and small scale earthquakes are frequent in the Nepal, Himalaya, and many co-seismic landslides are resulted out of it. Recently, Gorkha earthquake-2015 has triggered many co-seismic landslides destroying many lives and properties. People have displaced their original places due to having many cracks and unstable ground. Therefore, Nepal has been adopting a pronged development strategy to address the earthquake issues through reconstruction and rehabilitation policy, plans and budgets. Landslides are major threat for the mountain livelihood, and it is very important to investigate and mitigate to improve human wellbeing factoring in considerations of economic growth, environmental safety, and sustainable development. Community based landslide investigation was carried with the involvement of the local community in the Sindhupalchowk District of Central Nepal. Landslide training and field orientation were the major methodological approach of this study. Combination of indigenous and modern scientific knowledge has created unique working environment which enhanced the local capacity and trained people for replication. Local topography of the landslide was created with the help of Total Station and bill of quantity was derived based on it. River training works, plantation of trees and grasses, support structures, surface and sub-surface drainage management are the recommended mitigative measures. This is a very unique example of how academia and local community can work together for sustainable development by reducing disaster risk at the local level with very low-cost technology.

Keywords: community, earthquake, landslides, Nepal

Procedia PDF Downloads 157
2857 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 115
2856 Construction Unit Rate Factor Modelling Using Neural Networks

Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula

Abstract:

Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.

Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry

Procedia PDF Downloads 366
2855 The Effectiveness of Using Functional Rehabilitation with Children of Cerebral Palsy

Authors: Bara Yousef

Abstract:

The development of independency and functional participation is an important therapeutic goal for many children with cerebral palsy,They was many therapeutic approach have been used for treatment those children like neurodevelopment treatment, balance training strengthening and stretching exercise. More recently, therapy for children with cerebral palsy has focused on achieving functional goals using task-oriented interventions and summer camping model, which focus on activities that relevant and meaningful to the child, to learn more efficient and effective motor skills. We explore the effectiveness of using functional rehabilitation comparing with regular rehabilitation among 40 Saudi children with cerebral palsy in pediatric unit at Sultan Bin Abdul Aziz Humanitarian City-Ksa ,where 20 children randomly assign in control group who received rehabilitation based on regular therapy approach and other 20 children assign on experiment group who received rehabilitation based on functional therapy approach with an average of 45min OT treatment and 45 min PT treatment- daily within a period of 6 week. Our finding reported that children in experiment group has improved in gross motor function with an average from 49.4 to 57.6 based on GMFM 66 as primary outcome measure and improved in WeeFIM with an average from 52 to 62 while children in control group has improved with an average from 48.4 to 53.7 in GMFM and from 53 to and 58 in WeeFIM. Consequently, there has been growing interest in determining the effects of functional training programs as promising approach for these children.

Keywords: Cerebral Palsy (CP), gross motor function measure (GMFM66), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability

Procedia PDF Downloads 383
2854 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention

Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang

Abstract:

Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.

Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles

Procedia PDF Downloads 260
2853 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 217
2852 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?

Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang

Abstract:

Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.

Keywords: creativity, default mode network, neural activation, SCAMPER

Procedia PDF Downloads 102
2851 Adopting the Community Health Workers Master List Registry for Community Health Workforce in Kenya

Authors: Gikunda Aloise, Mjema Saida, Barasa Herbert, Wanyungu John, Kimani Maureen

Abstract:

Background: Community Health Workforce (CHW) is health care providers at the community level (Level 1) and serves as a bridge between the community and the formal healthcare system. This human resource has enormous potential to extend healthcare services and ensures that the vulnerable, marginalized, and hard-to-reach populations have access to quality healthcare services at the community and primary health facility levels. However, these cadres are neither recognized, remunerated, nor in most instances, registered in a master list. Management and supervision of CHWs is not easy if their individual demographics, training capacity and incentives is not well documented through a centralized registry. Description: In February 2022, Amref supported the Kenya Ministry of Health in developing a community health workforce database called Community Health Workers Master List Registry (CHWML), which is hosted in Kenya Health Information System (KHIS) tracker. CHW registration exercise was through a sensitization meeting conducted by the County Community Health Focal Person for the Sub-County Community Health Focal Person and Community Health Assistants who uploaded information on individual demographics, training undertaken and incentives received by CHVs. Care was taken to ensure compliance with Kenyan laws on the availability and use of personal data as prescribed by the Data Protection Act, 2019 (DPA). Results and lessons learnt: By June 2022, 80,825 CHWs had been registered in the system; 78,174 (96%) CHVs and 2,636 (4%) CHAs. 25,235 (31%) are male, 55,505 (68%) are female & 85 (1%) are transgender. 39,979. (49%) had secondary education and 2500 (3%) had no formal education. Only 27 641 (34%) received a monthly stipend. 68,436 CHVs (85%) had undergone basic training. However, there is a need to validate the data to align with the current situation in the counties. Conclusions/Next steps: The use of CHWML will unlock opportunities for building more resilient and sustainable health systems and inform financial planning, resource allocation, capacity development, and quality service delivery. The MOH will update the CHWML guidelines in adherence to the data protection act which will inform standard procedures for maintaining, updating the registry and integrate Community Health Workforce registry with the HRH system.

Keywords: community health registry, community health volunteers (CHVs), community health workers masters list (CHWML), data protection act

Procedia PDF Downloads 146
2850 Superamolecular Chemistry and Packing of FAMEs in the Liquid Phase for Optimization of Combustion and Emission

Authors: Zeev Wiesman, Paula Berman, Nitzan Meiri, Charles Linder

Abstract:

Supramolecular chemistry refers to the domain of chemistry beyond that of molecules and focuses on the chemical systems made up of a discrete number of assembled molecular sub units or components. Biodiesel components self arrangements is closely related/affect their physical properties in combustion systems and emission. Due to technological difficulties, knowledge regarding the molecular packing of FAMEs (biodiesel) in the liquid phase is limited. Spectral tools such as X-ray and NMR are known to provide evidences related to molecular structure organization. Recently, it was reported by our research group that using 1H Time Domain NMR methodology based on relaxation time and self diffusion coefficients, FAMEs clusters with different motilities can be accurately studied in the liquid phase. Head to head dimarization with quasi-smectic clusters organization, based on molecular motion analysis, was clearly demonstrated. These findings about the assembly/packing of the FAME components are directly associated with fluidity/viscosity of the biodiesel. Furthermore, these findings may provide information of micro/nano-particles that are formed in the delivery and injection system of various combustion systems (affected by thermodynamic conditions). Various relevant parameters to combustion such as: distillation/Liquid Gas phase transition, cetane number/ignition delay, shoot, oxidation/NOX emission maybe predicted. These data may open the window for further optimization of FAME/diesel mixture in terms of combustion and emission.

Keywords: supermolecular chemistry, FAMEs, liquid phase, fluidity, LF-NMR

Procedia PDF Downloads 341
2849 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization

Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh

Abstract:

The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.

Keywords: battery characterization, SoH estimation, RLS, BEV

Procedia PDF Downloads 151
2848 Resiliency in Fostering: A Qualitative Study of Highly Experienced Foster Parents

Authors: Ande Nesmith

Abstract:

There is an ongoing shortage of foster parents worldwide to take on a growing population of children in need of out-of-home care. Currently, resources are primarily aimed at recruitment rather than retention. Retention rates are extraordinarily low, especially in the first two years of fostering. Qualitative interviews with 19 foster parents averaging 20 years of service provided insight into the challenges they faced and how they overcame them. Thematic analysis of interview transcripts identified sources of stress and resiliency. Key stressors included lack of support and responsiveness from the children’s social workers, false maltreatment allegations, and secondary trauma from children’s destructive behaviors and emotional dysregulation. Resilient parents connected with other foster parents for support, engaged in creative problem-solving, recognized that positive feedback from children usually arrives years later, and through training, understood the neurobiological impact of trauma on child behavior. Recommendations include coordinating communication between the foster parent licensing agency social workers and the children’s social workers, creating foster parent support networks and mentoring, and continuous training on trauma including effective parenting strategies. Research is needed to determine whether these resilience indicators in fact lead to long-term retention. Policies should include a mechanism to develop a cohesive line of communication and connection between foster parents and the children’s social workers as well as their respective agencies.

Keywords: foster care stability, foster parent burnout, foster parent resiliency, foster parent retention, trauma-informed fostering

Procedia PDF Downloads 353
2847 ‘Internationalize Yourself’: Mobility in Academia as a Form of Continuing Professional Training

Authors: Sonja Goegele, Petra Kletzenbauer

Abstract:

The FH JOANNEUM- a university of applied sciences based in Austria - cooperates in teaching and research with well-known international universities and thus aims to foster so-called strategic partnerships. The exchange of university lecturers and other faculty members is a way to achieve and secure strategic company goals, in which excellent research and teaching play a central role in order to improve both the development of academics and administration. Thanks to mobility not only the university but also the involved people truly benefit in their professional development which can be seen on several levels: increased foreign language proficiency, excellent networking possibilities within the scientific community as well as reinforced didactic competencies in the form of different teaching and learning methodologies. The paper discusses mobility in the light of the university’s strategic paper entitled ‘Hands on 2022’ by presenting results from an empirical research study among faculty members who participate in exchange programmes on a regular basis. In the form of an online questionnaire, mobility was discussed from different angles such as networking, collaborative research, professional training for academics and the overall impact of the exchange within and outside the organization. From the findings, it can be concluded that mobility is an asset for any university. However, keeping in constant dialogue with partner universities requires more than the purpose of the exchange itself. Building rapport and keeping a relationship of trust are challenges that need to be addressed more closely in order to run successful mobility programmes. Best Practice examples should highlight the importance of mobility as a vital initiative to transfer disciplines.

Keywords: higher education, internationalization, mobility, strategic partnerships

Procedia PDF Downloads 144
2846 Teaching Translation during Covid-19 Outbreak: Challenges and Discoveries

Authors: Rafat Alwazna

Abstract:

Translation teaching is a particular activity that includes translators and interpreters training either inside or outside institutionalised settings, such as universities. It can also serve as a means of teaching other fields, such as foreign languages. Translation teaching began in the twentieth century. Teachers of translation hold the responsibilities of educating students, developing their translation competence and training them to be professional translators. The activity of translation teaching involves various tasks, including curriculum design, course delivery, material writing as well as application and implementation. The present paper addresses translation teaching during COVID-19 outbreak, seeking to find out the challenges encountered by translation teachers in online translation teaching and the discoveries/solutions arrived at to resolve them. The paper makes use of a comprehensive questionnaire, containing closed-ended and open-ended questions to elicit both quantitative as well as qualitative data from about sixty translation teachers who have been teaching translation at BA and MA levels during COVID-19 outbreak. The data shows that about 40% of the participants evaluate their online translation teaching experience during COVID-19 outbreak as enjoyable and exhilarating. On the contrary, no participant has evaluated his/her online translation teaching experience as being not good, nor has any participant evaluated his/her online translation teaching experience as being terrible. The data also presents that about 23.33% of the participants evaluate their online translation teaching experience as very good, and the same percentage applies to those who evaluate their online translation teaching experience as good to some extent. Moreover, the data indicates that around 13.33% of the participants evaluate their online translation teaching experience as good. The data also demonstrates that the majority of the participants have encountered obstacles in online translation teaching and have concurrently proposed solutions to resolve them.

Keywords: online translation teaching, electronic learning platform, COVID-19 outbreak, challenges, solutions

Procedia PDF Downloads 225
2845 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder

Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu

Abstract:

Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.

Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network

Procedia PDF Downloads 152
2844 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: anti-spoofing, CNN, fingerprint recognition, GAN

Procedia PDF Downloads 185
2843 Deaf Inmates in Canadian Prisons: Addressing Discrimination through Staff Training Videos with Deaf Actors

Authors: Tracey Bone

Abstract:

Deaf inmates, whose first or preferred language is a Signed Language, experience barriers to accessing the necessary two-way communication with correctional staff, and the educational and social programs that will enhance their eligibility for conditional release from the federal prison system in Canada. The development of visual content to enhance the knowledge and skill development of correctional staff is a contemporary strategy intended to significantly improve the correctional experience for deaf inmates. This presentation reports on the development of two distinct training videos created to enhance staff’s understanding of the needs of deaf inmates; one a two-part simulation of an interaction with a deaf inmate, the second an interview with a deaf academic. Part one of video one demonstrates the challenges and misunderstandings inherent in communicating across languages without a qualified sign language interpreter; the second part demonstrates the ease of communication when communication needs are met. Video two incorporates the experiences of a deaf academic to provide the cultural grounding necessary to educate staff in the unique experiences associated with being a visual language user. Lack of staff understanding or awareness of deaf culture and language must not be acceptable reasons for the inadequate treatment of deaf visual language users in federal prisons. This paper demonstrates a contemporary approach to meeting the human rights and needs of this unique and often ignored inmate subpopulation. The deaf community supports this visual approach to enhancing staff understanding of the unique needs of this population. A study of its effectiveness is currently underway.

Keywords: accommodations, American Sign Language (ASL), deaf inmates, sensory deprivation

Procedia PDF Downloads 151
2842 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 85
2841 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 305
2840 Emotional Intelligence as Predictor of Academic Success among Third Year College Students of PIT

Authors: Sonia Arradaza-Pajaron

Abstract:

College students are expected to engage in an on-the-job training or internship for completion of a course requirement prior to graduation. In this scenario, they are exposed to the real world of work outside their training institution. To find out their readiness both emotionally and academically, this study has been conducted. A descriptive-correlational research design was employed and random sampling technique method was utilized among 265 randomly selected third year college students of PIT, SY 2014-15. A questionnaire on Emotional Intelligence (bearing the four components namely; emotional literacy, emotional quotient competence, values and beliefs and emotional quotient outcomes) was fielded to the respondents and GWA was extracted from the school automate. Data collected were statistically treated using percentage, weighted mean and Pearson-r for correlation. Results revealed that respondents’ emotional intelligence level is moderately high while their academic performance is good. A high significant relationship was found between the EI component; Emotional Literacy and their academic performance while only significant relationship was found between Emotional Quotient Outcomes and their academic performance. Therefore, if EI influences academic performance significantly when correlated, a possibility that their OJT performance can also be affected either positively or negatively. Thus, EI can be considered predictor of their academic and academic-related performance. Based on the result, it is then recommended that the institution would try to look deeply into the consideration of embedding emotional intelligence as part of the (especially on Emotional Literacy and Emotional Quotient Outcomes of the students) college curriculum. It can be done if the school shall have an effective Emotional Intelligence framework or program manned by qualified and competent teachers, guidance counselors in different colleges in its implementation.

Keywords: academic performance, emotional intelligence, college students, academic success

Procedia PDF Downloads 375
2839 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury

Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp

Abstract:

Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.

Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation

Procedia PDF Downloads 121
2838 Implementation of Hybrid Curriculum in Canadian Dental Schools to Manage Child Abuse and Neglect

Authors: Priyajeet Kaur Kaleka

Abstract:

Introduction: A dentist is often the first responder in the battle for a patient’s healthy body and maybe the first health professional to observe signs of child abuse, be it physical, emotional, and/or sexual mistreatment. Therefore, it is an ethical responsibility for the dental clinician to detect and report suspected cases of child abuse and neglect (CAN). The main reasons for not reporting suspected cases of CAN, with special emphasis on the third: 1) Uncertainty of the diagnosis, 2) Lack of knowledge of the reporting procedure, and 3) Child abuse and neglect somewhat remained the subject of ignorance among dental professionals because of a lack of advance clinical training. Given these epidemic proportions, there is a scope of further research about dental school curriculum design. Purpose: This study aimed to assess the knowledge and attitude of dentists in Canada regarding signs and symptoms of child abuse and neglect (CAN), reporting procedures, and whether educational strategies followed by dental schools address this sensitive issue. In pursuit of that aim, this abstract summarizes the evidence related to this question. Materials and Methods: Data was collected through a specially designed questionnaire adapted and modified from the author’s previous cross-sectional study on (CAN), which was conducted in Pune, India, in 2016 and is available on the database of PubMed. Design: A random sample was drawn from the targeted population of registered dentists and dental students in Canada regarding their knowledge, professional responsibilities, and behavior concerning child abuse. Questionnaire data were distributed to 200 members. Out of which, a total number of 157 subjects were in the final sample for statistical analysis, yielding response of 78.5%. Results: Despite having theoretical information on signs and symptoms, 55% of the participants indicated they are not confident to detect child physical abuse cases. 90% of respondents believed that recognition and handling the CAN cases should be a part of undergraduate training. Only 4.5% of the participants have correctly identified all signs of abuse due to inadequate formal training in dental schools and workplaces. Although nearly 96.3% agreed that it is a dentist’s legal responsibility to report CAN, only a small percentage of the participants reported an abuse case in the past. While 72% stated that the most common factor that might prevent a dentist from reporting a case was doubt over the diagnosis. Conclusion: The goal is to motivate dental schools to deal with this critical issue and provide their students with consummate training to strengthen their capability to care for and protect children. The educational institutions should make efforts to spread awareness among dental students regarding the management and tackling of CAN. Clinical Significance: There should be modifications in the dental school curriculum focusing on problem-based learning models to assist graduates to fulfill their legal and professional responsibilities. CAN literacy should be incorporated into the dental curriculum, which will eventually benefit future dentists to break this intergenerational cycle of violence.

Keywords: abuse, child abuse and neglect, dentist knowledge, dental school curriculum, problem-based learning

Procedia PDF Downloads 203
2837 Critical Core Skills Profiling in the Singaporean Workforce

Authors: Bi Xiao Fang, Tan Bao Zhen

Abstract:

Soft skills, core competencies, and generic competencies are exchangeable terminologies often used to represent a similar concept. In the Singapore context, such skills are currently being referred to as Critical Core Skills (CCS). In 2019, SkillsFuture Singapore (SSG) reviewed the Generic Skills and Competencies (GSC) framework that was first introduced in 2016, culminating in the development of the Critical Core Skills (CCS) framework comprising 16 soft skills classified into three clusters. The CCS framework is part of the Skills Framework, and whose stated purpose is to create a common skills language for individuals, employers and training providers. It is also developed with the objectives of building deep skills for a lean workforce, enhance business competitiveness and support employment and employability. This further helps to facilitate skills recognition and support the design of training programs for skills and career development. According to SSG, every job role requires a set of technical skills and a set of Critical Core Skills to perform well at work, whereby technical skills refer to skills required to perform key tasks of the job. There has been an increasing emphasis on soft skills for the future of work. A recent study involving approximately 80 organizations across 28 sectors in Singapore revealed that more enterprises are beginning to recognize that soft skills support their employees’ performance and business competitiveness. Though CCS is of high importance for the development of the workforce’s employability, there is little attention paid to the CCS use and profiling across occupations. A better understanding of how CCS is distributed across the economy will thus significantly enhance SSG’s career guidance services as well as training providers’ services to graduates and workers and guide organizations in their hiring for soft skills. This CCS profiling study sought to understand how CCS is demanded in different occupations. To achieve its research objectives, this study adopted a quantitative method to measure CCS use across different occupations in the Singaporean workforce. Based on the CCS framework developed by SSG, the research team adopted a formative approach to developing the CCS profiling tool to measure the importance of and self-efficacy in the use of CCS among the Singaporean workforce. Drawing on the survey results from 2500 participants, this study managed to profile them into seven occupation groups based on the different patterns of importance and confidence levels of the use of CCS. Each occupation group is labeled according to the most salient and demanded CCS. In the meantime, the CCS in each occupation group, which may need some further strengthening, were also identified. The profiling of CCS use has significant implications for different stakeholders, e.g., employers could leverage the profiling results to hire the staff with the soft skills demanded by the job.

Keywords: employability, skills profiling, skills measurement, soft skills

Procedia PDF Downloads 97
2836 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin

Authors: Osama K. Abou-Zied, Saba A. Sulaiman

Abstract:

We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.

Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption

Procedia PDF Downloads 334
2835 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 491
2834 Iris Cancer Detection System Using Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.

Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera

Procedia PDF Downloads 504