Search results for: multivariate time series data
37530 Factors Associated with Condom Breakage among Female Sex Workers: Evidence from Behavioral Tracking Survey in Thane District of Maharashtra, India
Authors: Sukhvinder Kaur, Jayanta Bora, Ashok Agarwal, Sangeeta Kaul
Abstract:
Background: HIV and STI transmission can be prevented if condoms are used properly, but condom tear may lead to infections even if are used consistently. Studies reveal high rates of condom breakage among Female Sex Workers (FSWs). USAID PHFI-PIPPSE is piloting a prevention model among high risk groups at Thane district of Maharashtra, India by implementing prevention and advocacy efforts for such risk behaviors. The current analysis highlights the correlates of condom breakage among FSWs from Thane. Method: A Behavioral Tracking Survey was conducted in 2014-15 among 503 FSWs through probability-based two stage random sampling from 3,660 FSWs at 100 hotspots, to understand levels of high risk behaviors, awareness and exposure to prevention programs. Bi-variate and multivariate-logistic regression methods used to assess the association of condom breakage while having sex with age, STI occurrence, anal sex with clients and alcohol consumption. Only self-reported STIs (Genital sore/ulcer, yellowish/ greenish discharge from vagina with/without foul smell, lower abdominal pain without diarrhea/dysentery or menses) were considered. Major Findings: Results depicted FSWs who reported condom breakage while having sex with any type of partner (paying clients, non-paying partners and other than main partner husband/boyfriend) had significantly high number of STIs (42.3% vs 16.9 %, P, 0.000) and had started sexual relationship in <16 years of age (31.0% vs 16.4 %, P, 0.000). Multivariate analysis after controlling the age at sex, knowledge about HIV and literacy, highlighted significantly higher odds of condom breakage among FSWs who have reported currently suffering with STI [AOR 2.91, 95% CI 1.75 - 4.83; P, 0.000]; who had anal sex with their paying client [AOR 2.59, 95% CI 1.59 - 4.19; P, 0.000]; and who consumed alcohol in the last 12 months [AOR 1.89, 95% CI 1.01 - 3.53; P, 0.047]. Conclusion: Risky behavior like anal sex with paying clients and impact of alcohol while having sex are main factors for condom breakage among young sex workers; and condom breakage leads to STIs. Hence, program interventions should address measures for prevention of condom breakage for HIV/STI prevention.Keywords: female sex workers, condom breakage, anal sex, young sex workers
Procedia PDF Downloads 26137529 Determinants Affecting to Adoption of Climate Smart Agriculture Technologies in the Northern Bangladesh
Authors: Md. Rezaul Karim, Andreas Thiel
Abstract:
Bangladesh is known as one of the most climate vulnerable countries in the world. Innovative technologies are always the key responses to the management of climate impacts. The objectives of this study are to determine the farmer’s perception of climate variability, to compare farmers’ perceptions with metrological data, and to explore the determinants that affect the likelihood of adoption of the selected Climate Smart Agricultural (CSA) technologies. Data regarding climate change perception, determinants and adoption were collected based on the household survey from stratified and randomly selected 365 farmers of the Biral sub-district under Dinajpur district in drought-prone northern Bangladesh. The likelihood of adoption of CSA technologies was analyzed following a multivariate probit model. The findings show that about 82.5% of the farmers perceived increasing temperature, and 75.1 % of farmers perceived decreasing dry season rainfall over the years, which is similarly relevant to metrological data. About 76.4.7% and 80.85% of farmers were aware of the drought tolerance crops and vermicompost, respectively; more than half of the farmers adopted these practices. Around 70.7% of farmers were aware of perching for insect control, but 46.3% of farmers adopted this practice. Although two-thirds of farmers were aware of crop diversification and pheromone trap, adoption was lower compared to the other three CSAs. Results also indicate that the likelihood of adoption of the selected CSAs is significantly influenced by different factors such as socio-economic characteristics, institutional factors and perceived technological or innovation attributes. The likelihood of adopting drought tolerance crops is affected by 11, while crop diversification and perching method by 7, pheromone trap by 9 and vermicompost by 8 determining factors. Lack of information and unavailability of input appear to be major obstacles to the non-adoption of CSA technologies. This study suggests that policy implications are necessary to promote extension services and overcome the obstacles to the non-adoption of individual CSA technologies. It further recommends that the research study should be conducted in a diverse context, nationally or globally.Keywords: determinants, adoption, climate smart agriculture, northern Bangladesh
Procedia PDF Downloads 6737528 Challenges of the Implementation of Real Time Online Learning in a South African Context
Authors: Thifhuriwi Emmanuel Madzunye, Patricia Harpur, Ephias Ruhode
Abstract:
A review of the pertinent literature identified a gap concerning the hindrances and opportunities accompanying the implementation of real-time online learning systems (RTOLs) in rural areas. Whilst RTOLs present a possible solution to teaching and learning issues in rural areas, little is known about the implementation of digital strategies among schools in isolated communities. This study explores associated guidelines that have the potential to inform decision-making where Internet-based education could improve educational opportunities. A systematic literature review has the potential to consolidate and focus on disparate literature served to collect interlinked data from specific sources in a structured manner. During qualitative data analysis (QDA) of selected publications via the application of a QDA tool - ATLAS.ti, the following overarching themes emerged: digital divide, educational strategy, human factors, and support. Furthermore, findings from data collection and literature review suggest that signiant factors include a lack of digital knowledge, infrastructure shortcomings such as a lack of computers, poor internet connectivity, and handicapped real-time online may limit students’ progress. The study recommends that timeous consideration should be given to the influence of the digital divide. Additionally, the evolution of educational strategy that adopts digital approaches, a focus on training of role-players and stakeholders concerning human factors, and the seeking of governmental funding and support are essential to the implementation and success of RTOLs.Keywords: communication, digital divide, digital skills, distance, educational strategy, government, ICT, infrastructures, learners, limpopo, lukalo, network, online learning systems, political-unrest, real-time, real-time online learning, real-time online learning system, pass-rate, resources, rural area, school, support, teachers, teaching and learning and training
Procedia PDF Downloads 33537527 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System
Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal
Abstract:
Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks
Procedia PDF Downloads 39537526 An Econometric Analysis of the Impacts of Inflation on the Economic Growth of South Africa
Authors: Gisele Mah, Paul Saah
Abstract:
The rising rates of inflation are hindering economic growth in developing nations. Hence, this study investigated the effects of inflation rates on the economic growth of South Africa using the secondary time series data from 1987 to 2022. The main objectives of this study were to investigate the long run relationship between inflation and economic growth, and also to determine the causality direction between these two variables. The study utilized the Autoregressive Distributed Lag (ARDL) bounds test of co-integration to investigate whether there is a long-run relationship between inflation and economic growth. The Pairwise Granger causality approach was employed to determine the second objective, which is the direction of causality. The study discovered only one co-integration relationship between our variables and it was between inflation and economic growth. The results showed that there is a negative and significant relationship between inflation and economic growth. There appeared to be a positive and significant relationship between economic growth and exchange rate. The interest rates have shown to be negative and insignificant in explaining economic growth. The study also established that inflation does Granger cause economic growth which is given as GDP. Similarly, the study discovered that inflation Granger causes exchange rates. Therefore, the study recommends that inflation should be decreased in South Africa, in order for economic growth to increase. Contrary, this study recommends that South Africa should increase its exchange rates, in order for economic growth to also increase.Keywords: inflation rate, economic growth, South Africa, autoregressive distributed lag model
Procedia PDF Downloads 4837525 5-[Aryloxypyridyl (or Nitrophenyl)]-4H-1,2,4-Triazoles as Flexible Benzodiazepine Analogs: Synthesis, Receptor Binding Affinity and the Lipophilicity-Dependent Anti-Seizure Onset of Action
Authors: Latifeh Navidpour, Shabnam Shabani, Alireza Heidari, Manouchehr Bashiri, Azadeh Ebrahim-Habibi, Soraya Shahhosseini, Hamed Shafaroodi, Sayyed Abbas Tabatabai, Mahsa Toolabi
Abstract:
A new series of 5-(2-aryloxy-4-nitrophenyl)-4H-1,2,4-triazoles and 5-(2-aryloxy-3-pyridyl)-4H-1,2,4-triazoles, possessing C-3 thio or alkylthio substituents, was synthesized and evaluated for their benzodiazepine receptor affinity and anti-seizure activity. These analogues revealed similar to significantly superior affinity to GABAA/ benzodiazepine receptor complex (IC50 values of 0.04–4.1 nM), relative to diazepam as the reference drug (IC50 value of 2.4 nM). To determine the onset of anti-seizure activity, the time-dependent effectiveness of i.p. administration of compounds on pentylenetetrazole induced seizure threshold was studied and a very good relationship was observed between the lipophilicity (cLogP) and onset of action of studied analogues (r2 = 0.964). The minimum effective dose of the compounds, determined at the time the analogues showed their highest activity, was demonstrated to be 0.025–0.1 mg/kg, relative to diazepam (0.025 mg/kg).Keywords: 1, 2, 4-triazole, flexible benzodiazepines, GABAA/bezodiazepine receptor complex, onset of action, PTZ induced seizure threshold
Procedia PDF Downloads 10537524 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks
Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba
Abstract:
Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN
Procedia PDF Downloads 5637523 State and Determinant of Caregiver’s Mental Health in Thailand: A Household Level Analysis
Authors: Ruttana Phetsitong, Patama Vapattanawong, Malee Sunpuwan, Marc Voelker
Abstract:
The majority of care for older people at home in Thai society falls upon caregivers resulting in caregiver’s mental health problem. Beyond individual characteristics, household factors might have a profound effect on the caregiver’s mental health. But reliable data capturing this at the household level have been limited to date. The objectives of the present study were to explore the levels of Thai caregiver’s mental health and to investigate the factors affecting the mental health at household level. Data were obtained from the 2011 National Survey of Thai Older Persons conducted by the National Statistical Office of Thailand. Caregiver’s mental health was measured by using the 15- items-short version of the Thai Mental Health Indicator (TMHI-15) developed by the Department of Mental Health, the Ministry of Public Health. Multivariate logistic regression models were used to explore the impact of potential factors on caregiver’s mental health. The THMI-15 produced an overall average caregiver mental health score of 30.9 out of 45 (SD 5.3). The score can be categorized into good (34.02-45), fair (27.01-34), and poor (0-27). Duration of care for older people, household wealth, and functional dependency of the older people significantly predicted total caregiver’s mental health. Household economic factor was key in predicting better mental health. Compared to those poorest households, the adjusted effect of the fifth quintile household wealth was high (OR=2.34; 95%CI=1.47-3.73). The findings of this study provide a fuller picture to a better understanding of the level and factors that cause the mental health of Thai caregivers. Health care providers and policymakers should consider these factors when designing interventions aimed at alleviating caregiver’s psychological burden when provided care for older people at home.Keywords: caregiver’s mental health, household, older people, Thailand
Procedia PDF Downloads 14437522 Renewable Energy Trends Analysis: A Patents Study
Authors: Sepulveda Juan
Abstract:
This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: patents, scientometric, renewable energy, technology maps
Procedia PDF Downloads 30937521 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT
Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh
Abstract:
Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module
Procedia PDF Downloads 19437520 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 16237519 Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis
Authors: Balgaisha G. Mukanova, Yelbek B. Utepov, Aida G. Nazarova, Alisher Z. Imanov
Abstract:
The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value.Keywords: acoustic model, direction of arrival, inverse source problem, sound localization, urban noises
Procedia PDF Downloads 6237518 Analytical Soliton Solutions of the Fractional Jaulent-Miodek System
Authors: Sajeda Elbashabsheh, Kamel Al-Khaled
Abstract:
This paper applies a modified Laplace Adomian decomposition method to solve the time-fractional JaulentMiodek system. The method produce convergent series solutions with easily compatible components. This paper considers the Caputo fractional derivative. The effectiveness and applicability of the method are demonstrated by comparing its results with those of prior studies. Results are presented in tables and figures. These solutions might be imperative and significant for the explanation of some practical physical phenomena. All computations and figures in the work are done using MATHEMATICA. The numerical results demonstrate that the current methods are effective, reliable, and simple to i implement for nonlinear fractional partial differential equations.Keywords: approximate solutions, Jaulent-Miodek system, Adomian decomposition method, solitons
Procedia PDF Downloads 4437517 Different Perceptions of Distance and Full-time Teaching Depending on Different Cultural Backgrounds: A Comparative Study
Authors: Daniel Ecler
Abstract:
This paper aims to compare the data obtained using semi-structured questionnaires and find some connections between them, which could help to understand what factors affect the perception of the advantages and disadvantages of distance learning compared to conventional education. The data collected came from respondents from Czech and Chinese university students, and expectations were such that the different cultural environments from which the two groups come would have an impact on different experiences of distance education. With the help of variation-finding comparison, it turned out that Chinese students did not have such difficulties with the transition to distance learning as students from the Czech Republic, as most of them came into contact with some form of distance education in the past. In addition, it has also been shown that Chinese students use modern technology to a much greater extent, which has also made it easier for them to become accustomed to another form of teaching. In conclusion, Chinese students have greater preconditions for easier management of distance learning, while Czech students prefer more personal contact, and thus full-time teaching. It is obvious that both approaches have their pros and cons; now, it is necessary to find out how to use them for maximum efficiency of the educational process.Keywords: Chinese college students, cultural background, Czech college students, distance learning, full-time teaching
Procedia PDF Downloads 15137516 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 7837515 The Implications of Some Social Variables in Increasing the Unemployed in Egypt
Authors: Mohamed Elkhouli
Abstract:
This research sets out to identify some social factors or variables that may need to be controlled in order to decrease the volume of unemployed in Egypt. As well as, it comes to investigate the relationship between a set of social variables and unemployment issue in Egypt in the sake of determining the most important social variables influencing the rise of unemployed during the time series targeted (2002-2012). Highlighting the unemployment issue is becoming an increasingly important topic in all countries throughout the world resulting from expand their globalization efforts. In general, the study tries to determine what the most social priorities are likely to adopt seriously by the Egypt's government in order to solve the unemployed problem. The results showed that the low value for both of small projects and the total value of disbursed social security respectively have significant impact on increasing the No. of unemployed in Egypt, according to the target period by the current study.Keywords: Egypt, social status, unemployment, unemployed
Procedia PDF Downloads 32637514 The Effectiveness of the Counselling Module in Counseling Interventions for Low Performance Employees
Authors: Hazaila Hassan
Abstract:
This research aims and discusses about the effectiveness of the Psynnova i-Behaviour Modification Technique (iBMT) module towards the change in behaviour of low-performing employees. The purpose of the study is to examine the effectiveness of the Psynnova Module on changing behaviour through five factors among low-performing employees in the public sector. The five main factors/constructs were cognitive enhancement and rationality, emotional stability, attitude alignment and adjustment, social skills development and psycho-spirituality enhancement. In this research, 5 main constructs will be using to indicate behaviour changing performance of the employees after attending The Psynnova Program that using this Psynnova IBMT Module. The respondents are among those who have low scores in terms of annual performance through annual performance value reports and have gone through various stages before being required to attend Psynnova Program. Besides that, the research plan was also to critically examine and understand the change in behaviour among the low-performing employees through the five dimensions in the Psynnova Module. A total of 50 respondent will purposively sampled to be the respondents of this research. This study will use the Experimental Method to One Group Purposively Pre and Post Test using the Time Series Design. Experimental SPSS software version 22.0 will be used to analyse this data. Hopefully this research can see the changing of their behaviour in five factors as an indicator to the respondent after attending the Psynnova Programme. Findings from this study are also used to propose to assisting psychologist to see the changes that occurred to the respondents with the best framework of behaviour changing for them.Keywords: five dimension of behaviour changing, among adult, low performance, modul effectiveness
Procedia PDF Downloads 17137513 Statistical Analysis of Extreme Flow (Regions of Chlef)
Authors: Bouthiba Amina
Abstract:
The estimation of the statistics bound to the precipitation represents a vast domain, which puts numerous challenges to meteorologists and hydrologists. Sometimes, it is necessary, to approach in value the extreme events for sites where there is little, or no datum, as well as their periods of return. The search for a model of the frequency of the heights of daily rains dresses a big importance in operational hydrology: It establishes a basis for predicting the frequency and intensity of floods by estimating the amount of precipitation in past years. The most known and the most common approach is the statistical approach, It consists in looking for a law of probability that fits best the values observed by the random variable " daily maximal rain " after a comparison of various laws of probability and methods of estimation by means of tests of adequacy. Therefore, a frequent analysis of the annual series of daily maximal rains was realized on the data of 54 pluviometric stations of the pond of high and average. This choice was concerned with five laws usually applied to the study and the analysis of frequent maximal daily rains. The chosen period is from 1970 to 2013. It was of use to the forecast of quantiles. The used laws are the law generalized by extremes to three components, those of the extreme values to two components (Gumbel and log-normal) in two parameters, the law Pearson typifies III and Log-Pearson III in three parameters. In Algeria, Gumbel's law has been used for a long time to estimate the quantiles of maximum flows. However, and we will check and choose the most reliable law.Keywords: return period, extreme flow, statistics laws, Gumbel, estimation
Procedia PDF Downloads 7937512 Biomolecular Interaction of Ruthenium(II) Polypyridyl Complexes
Authors: S. N. Harun, H. Ahmad
Abstract:
A series of ruthenium(II) complexes, including two novel compounds [Ru(dppz)2(L)]2+ where dppz = dipyrido-[3,2-a:2’,3’-c]phenazine, and L = 2-phenylimidazo[4,5-f][1,10]phenanthroline (PIP) or 2-(4-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (p-HPIP) have been synthesized and characterized. The previously reported complexes [Ru(bpy)2L]2+ and [Ru(phen)2L]2+ were also prepared. All complexes were characterized by elemental analysis, 1H-NMR spectroscopy, ESI-Mass spectroscopy and FT-IR spectroscopy. The photophysical properties were analyzed by UV-Visible spectroscopy and fluorescence spectroscopy. [Ru(dppz)2(PIP)]2+ and [Ru(dppz)2(p-HPIP)]2+ displayed ‘molecular light-switch’ effect as they have high emission in acetonitrile but no emission in water. The cytotoxicity of all complexes against cancer cell lines Hela and MCF-7 were investigated through standard MTT assay. [Ru(dppz)2(PIP)]2+ showed moderate toxicity on both MCF-7 and Hela with IC50 of 37.64 µM and 28.02 µM, respectively. Interestingly, [Ru(dppz)2(p-HPIP)]2+ exhibited remarkable cytotoxicity results with IC50 of 13.52 µM on Hela and 11.63 µM on MCF-7 cell lines which are comparable to the infamous anti-cancer drug, cisplatin. The cytotoxicity of this complex series increased as the ligands size extended in order of [Ru(bpy)2(L)]2+ < [Ru(phen)2(L)]2+ < [Ru(dppz)2(L)]2+.Keywords: ruthenium, cytotoxicity, molecular light-switch, anticancer
Procedia PDF Downloads 30737511 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC
Authors: Mohamed Zellagui, Heba Ahmed Hassan
Abstract:
This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method
Procedia PDF Downloads 50037510 Association Between Advanced Parental Age and Implantation Failure: A Prospective Cohort Study in Anhui, China
Authors: Jiaqian Yin, Ruoling Chen, David Churchill, Huijuan Zou, Peipei Guo, Chunmei Liang, Xiaoqing Peng, Zhikang Zhang, Weiju Zhou, Yunxia Cao
Abstract:
Purpose: This study aimed to explore the interaction of male and female age on implantation failure from in vitro fertilisation (IVF)/ intracytoplasmic sperm injection (ICSI) treatments in couples following their first cycles using the Anhui Maternal-Child Health Study (AMCHS). Methods: The AMCHS recruited 2042 infertile couples who were physically fit for in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) treatment at the Reproductive Centre of the First Affiliated Hospital of Anhui Medical University between May 2017 to April 2021. This prospective cohort study analysed the data from 1910 cohort couples for the current paper data analysis. The multivariate logistic regression model was used to identify the effect of male and female age on implantation failure after controlling for confounding factors. Male age and female age were examined as continuous and categorical (male age: 20-<25, 25-<30, 30-<35, 35-<40, ≥40; female age: 20-<25, 25-<30, 30-<35, 35-<40, ≥40) predictors. Results: Logistic regression indicated that advanced maternal age was associated with increased implantation failure (P<0.001). There was evidence of an interaction between maternal age (30-<35 and ≥ 35) and paternal age (≥35) on implantation failure. (p<0.05). Only when the male was ≥35 years of increased maternal age was associated with the risk of implantation failure. Conclusion: In conclusion, there was an additive effect on implantation failure with advanced parental age. The impact of advanced maternal age was only seen in the older paternal age group. The delay of childbearing in both men and women will be a serious public issue that may contribute to a higher risk of implantation failure in patients needing assisted reproductive technology (ART).Keywords: parental age, infertility, cohort study, IVF
Procedia PDF Downloads 15437509 AI-Driven Solutions for Optimizing Master Data Management
Authors: Srinivas Vangari
Abstract:
In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.Keywords: artificial intelligence, master data management, data governance, data quality
Procedia PDF Downloads 1937508 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong
Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong
Abstract:
Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island
Procedia PDF Downloads 7337507 A Human Centered Design of an Exoskeleton Using Multibody Simulation
Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann
Abstract:
Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation
Procedia PDF Downloads 16237506 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming
Procedia PDF Downloads 30037505 Blended Learning Instructional Approach to Teach Pharmaceutical Calculations
Authors: Sini George
Abstract:
Active learning pedagogies are valued for their success in increasing 21st-century learners’ engagement, developing transferable skills like critical thinking or quantitative reasoning, and creating deeper and more lasting educational gains. 'Blended learning' is an active learning pedagogical approach in which direct instruction moves from the group learning space to the individual learning space, and the resulting group space is transformed into a dynamic, interactive learning environment where the educator guides students as they apply concepts and engage creatively in the subject matter. This project aimed to develop a blended learning instructional approach to teaching concepts around pharmaceutical calculations to year 1 pharmacy students. The wrong dose, strength or frequency of a medication accounts for almost a third of medication errors in the NHS therefore, progression to year 2 requires a 70% pass in this calculation test, in addition to the standard progression requirements. Many students were struggling to achieve this requirement in the past. It was also challenging to teach these concepts to students of a large class (> 130) with mixed mathematical abilities, especially within a traditional didactic lecture format. Therefore, short screencasts with voice-over of the lecturer were provided in advance of a total of four teaching sessions (two hours/session), incorporating core content of each session and talking through how they approached the calculations to model metacognition. Links to the screencasts were posted on the learning management. Viewership counts were used to determine that the students were indeed accessing and watching the screencasts on schedule. In the classroom, students had to apply the knowledge learned beforehand to a series of increasingly difficult set of questions. Students were then asked to create a question in group settings (two students/group) and to discuss the questions created by their peers in their groups to promote deep conceptual learning. Students were also given time for question-and-answer period to seek clarifications on the concepts covered. Student response to this instructional approach and their test grades were collected. After collecting and organizing the data, statistical analysis was carried out to calculate binomial statistics for the two data sets: the test grade for students who received blended learning instruction and the test grades for students who received instruction in a standard lecture format in class, to compare the effectiveness of each type of instruction. Student response and their performance data on the assessment indicate that the learning of content in the blended learning instructional approach led to higher levels of student engagement, satisfaction, and more substantial learning gains. The blended learning approach enabled each student to learn how to do calculations at their own pace freeing class time for interactive application of this knowledge. Although time-consuming for an instructor to implement, the findings of this research demonstrate that the blended learning instructional approach improves student academic outcomes and represents a valuable method to incorporate active learning methodologies while still maintaining broad content coverage. Satisfaction with this approach was high, and we are currently developing more pharmacy content for delivery in this format.Keywords: active learning, blended learning, deep conceptual learning, instructional approach, metacognition, pharmaceutical calculations
Procedia PDF Downloads 17237504 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning
Procedia PDF Downloads 41737503 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets
Authors: Cristian Pauna
Abstract:
Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network
Procedia PDF Downloads 16037502 Thinking Lean in ICU: A Time Motion Study Quantifying ICU Nurses’ Multitasking Time Allocation
Authors: Fatma Refaat Ahmed, Sally Mohamed Farghaly
Abstract:
Context: Intensive care unit (ICU) nurses often face pressure and constraints in their work, leading to the rationing of care when demands exceed available time and resources. Observations suggest that ICU nurses are frequently distracted from their core nursing roles by non-core tasks. This study aims to provide evidence on ICU nurses' multitasking activities and explore the association between nurses' personal and clinical characteristics and their time allocation. Research Aim: The aim of this study is to quantify the time spent by ICU nurses on multitasking activities and investigate the relationship between their personal and clinical characteristics and time allocation. Methodology: A self-observation form utilizing the "Diary" recording method was used to record the number of tasks performed by ICU nurses and the time allocated to each task category. Nurses also reported on the distractions encountered during their nursing activities. A convenience sample of 60 ICU nurses participated in the study, with each nurse observed for one nursing shift (6 hours), amounting to a total of 360 hours. The study was conducted in two ICUs within a university teaching hospital in Alexandria, Egypt. Findings: The results showed that ICU nurses completed 2,730 direct patient-related tasks and 1,037 indirect tasks during the 360-hour observation period. Nurses spent an average of 33.65 minutes on ventilator care-related tasks, 14.88 minutes on tube care-related tasks, and 10.77 minutes on inpatient care-related tasks. Additionally, nurses spent an average of 17.70 minutes on indirect care tasks per hour. The study identified correlations between nursing time and nurses' personal and clinical characteristics. Theoretical Importance: This study contributes to the existing research on ICU nurses' multitasking activities and their relationship with personal and clinical characteristics. The findings shed light on the significant time spent by ICU nurses on direct care for mechanically ventilated patients and the distractions that require attention from ICU managers. Data Collection: Data were collected using self-observation forms completed by participating ICU nurses. The forms recorded the number of tasks performed, the time allocated to each task category, and any distractions encountered during nursing activities. Analysis Procedures: The collected data were analyzed to quantify the time spent on different tasks by ICU nurses. Correlations were also examined between nursing time and nurses' personal and clinical characteristics. Question Addressed: This study addressed the question of how ICU nurses allocate their time across multitasking activities and whether there is an association between nurses' personal and clinical characteristics and time allocation. Conclusion: The findings of this study emphasize the need for a lean evaluation of ICU nurses' activities to identify and address potential gaps in patient care and distractions. Implementing lean techniques can improve efficiency, safety, clinical outcomes, and satisfaction for both patients and nurses, ultimately enhancing the quality of care and organizational performance in the ICU setting.Keywords: motion study, ICU nurse, lean, nursing time, multitasking activities
Procedia PDF Downloads 6837501 Building Information Modeling-Based Information Exchange to Support Facilities Management Systems
Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell
Abstract:
Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.Keywords: building information modeling, BIM, facilities management systems, interoperability, information management
Procedia PDF Downloads 116