Search results for: missing data estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26524

Search results for: missing data estimation

25144 Emerging Technology for Business Intelligence Applications

Authors: Hsien-Tsen Wang

Abstract:

Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.

Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing

Procedia PDF Downloads 99
25143 Verification of Simulated Accumulated Precipitation

Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze

Abstract:

Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.

Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting

Procedia PDF Downloads 151
25142 Using Equipment Telemetry Data for Condition-Based maintenance decisions

Authors: John Q. Todd

Abstract:

Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.

Keywords: condition based maintenance, equipment data, metrics, alerts

Procedia PDF Downloads 189
25141 Compression Index Estimation by Water Content and Liquid Limit and Void Ratio Using Statistics Method

Authors: Lizhou Chen, Abdelhamid Belgaid, Assem Elsayed, Xiaoming Yang

Abstract:

Compression index is essential in foundation settlement calculation. The traditional method for determining compression index is consolidation test which is expensive and time consuming. Many researchers have used regression methods to develop empirical equations for predicting compression index from soil properties. Based on a large number of compression index data collected from consolidation tests, the accuracy of some popularly empirical equations were assessed. It was found that primary compression index is significantly overestimated in some equations while it is underestimated in others. The sensitivity analyses of soil parameters including water content, liquid limit and void ratio were performed. The results indicate that the compression index obtained from void ratio is most accurate. The ANOVA (analysis of variance) demonstrates that the equations with multiple soil parameters cannot provide better predictions than the equations with single soil parameter. In other words, it is not necessary to develop the relationships between compression index and multiple soil parameters. Meanwhile, it was noted that secondary compression index is approximately 0.7-5.0% of primary compression index with an average of 2.0%. In the end, the proposed prediction equations using power regression technique were provided that can provide more accurate predictions than those from existing equations.

Keywords: compression index, clay, settlement, consolidation, secondary compression index, soil parameter

Procedia PDF Downloads 163
25140 Ethics Can Enable Open Source Data Research

Authors: Dragana Calic

Abstract:

The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.

Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions

Procedia PDF Downloads 286
25139 The Cartometric-Geographical Analysis of Ivane Javakhishvili 1922: The Map of the Republic of Georgia

Authors: Manana Kvetenadze, Dali Nikolaishvili

Abstract:

The study revealed the territorial changes of Georgia before the Soviet and Post-Soviet periods. This includes the estimation of the country's borders, its administrative-territorial arrangement change as well as the establishment of territorial losses. Georgia’s old and new borders marked on the map are of great interest. The new boundary shows the condition of 1922 year, following the Soviet period. Neither on this map nor in other works Ivane Javakhishvili talks about what he implies in the old borders, though it is evident that this is the Pre-Soviet boundary until 1921 – i.e., before the period when historical Tao, Zaqatala, Lore, Karaia represented the parts of Georgia. According to cartometric-geographical terms, the work presents detailed analysis of Georgia’s borders, along with this the comparison of research results has been carried out: 1) At the boundary line on Soviet topographic maps, the maps of 100,000; 50,000 and 25,000 scales are used; 2) According to Ivane Javakhishvili’s work ('The borders of Georgia in terms of historical and contemporary issues'). During that research, we used multi-disciplined methodology and software. We used Arc GIS for Georeferencing maps, and after that, we compare all post-Soviet Union maps, in order to determine how the borders have changed. During this work, we also use many historical data. The features of the spatial distribution of the territorial administrative units of Georgia, as well as the distribution of administrative-territorial units of the objects depicted on the map, have been established. The results obtained are presented in the forms of thematic maps and diagrams.

Keywords: border, GIS, georgia, historical cartography, old maps

Procedia PDF Downloads 243
25138 Analytical Method Development and Validation of Stability Indicating Rp - Hplc Method for Detrmination of Atorvastatin and Methylcobalamine

Authors: Alkaben Patel

Abstract:

The proposed RP-HPLC method is easy, rapid, economical, precise and accurate stability indicating RP-HPLC method for simultaneous estimation of Astorvastatin and Methylcobalamine in their combined dosage form has been developed.The separation was achieved by LC-20 AT C18(250mm*4.6mm*2.6mm)Colum and water (pH 3.5): methanol 70:30 as mobile phase, at a flow rate of 1ml/min. wavelength of this dosage form is 215nm.The drug is related to stress condition of hydrolysis, oxidation, photolysis and thermal degradation.

Keywords: RP- HPLC, atorvastatin, methylcobalamine, method, development, validation

Procedia PDF Downloads 337
25137 Total Plaque Area in Chronic Renal Failure

Authors: Hernán A. Perez, Luis J. Armando, Néstor H. García

Abstract:

Background and aims Cardiovascular disease rates are very high in patients with renal failure (CRF), but the underlying mechanisms are incompletely understood. Traditional cardiovascular risk factors do not explain the increased risk, and observational studies have observed paradoxical or absent associations between classical risk factors and mortality in dialysis patients. A large randomized controlled trial, the 4D Study, the AURORA and the ALERT study found that statin therapy in CRF do not reduce cardiovascular events. These results may be the results of ‘accelerated atherosclerosis’ observed on these patients. The objective of this study was to investigate if carotid total plaque area (TPA), a measure of carotid plaque burden growth is increased at progressively lower creatinine clearance in patients with CRF. We studied a cohort of patients with CRF not on dialysis, reasoning that risk factor associations might be more easily discerned before end stage renal disease. Methods: The Blossom DMO Argentina ethics committee approved the study and informed consent from each participant was obtained. We performed a cohort study in 412 patients with Stage 1, 2 and 3 CRF. Clinical and laboratory data were obtained. TPA was determined using bilateral carotid ultrasonography. Modification of Diet in Renal Disease estimation formula was used to determine renal function. ANOVA was used when appropriate. Results: Stage 1 CRF group (n= 16, 43±2yo) had a blood pressure of 123±2/78±2 mmHg, BMI 30±1, LDL col 145±10 mg/dl, HbA1c 5.8±0.4% and had the lowest TPA 25.8±6.9 mm2. Stage 2 CRF (n=231, 50±1 yo) had a blood pressure of 132±1/81±1 mmHg, LDL col 125±2 mg/dl, HbA1c 6±0.1% and TPA 48±10mm2 ( p< 0.05 vs CRF stage 1) while Stage 3 CRF (n=165, 59±1 yo) had a blood pressure of 134±1/81±1, LDL col 125±3 mg/dl, HbA1c 6±0.1% and TPA 71±6mm2 (p < 0.05 vs CRF stage 1 and 2). Conclusion: Our data indicate that TPA increases along the renal function deterioration, and it is not related with the LDL cholesterol and triglycerides levels. We suggest that mechanisms other than the classics are responsible for the observed excess of cardiovascular disease in CKD patients and finally, determination of total plaque area should be used to measure effects of antiatherosclerotic therapy.

Keywords: hypertension, chronic renal failure, atherosclerosis, cholesterol

Procedia PDF Downloads 272
25136 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 465
25135 Enhanced Calibration Map for a Four-Hole Probe for Measuring High Flow Angles

Authors: Jafar Mortadha, Imran Qureshi

Abstract:

This research explains and compares the modern techniques used for measuring the flow angles of a flowing fluid with the traditional technique of using multi-hole pressure probes. In particular, the focus of the study is on four-hole probes, which offer great reliability and benefits in several applications where the use of modern measurement techniques is either inconvenient or impractical. Due to modern advancements in manufacturing, small multi-hole pressure probes can be made with high precision, which eliminates the need for calibrating every manufactured probe. This study aims to improve the range of calibration maps for a four-hole probe to allow high flow angles to be measured accurately. The research methodology comprises a literature review of the successful calibration definitions that have been implemented on five-hole probes. These definitions are then adapted and applied on a four-hole probe using a set of raw pressures data. A comparison of the different definitions will be carried out in Matlab and the results will be analyzed to determine the best calibration definition. Taking simplicity of implementation into account as well as the reliability of flow angles estimation, an adapted technique from a research paper written in 2002 offered the most promising outcome. Consequently, the method is seen as a good enhancement for four-hole probes and it can substitute for the existing calibration definitions that offer less accuracy.

Keywords: calibration definitions, calibration maps, flow measurement techniques, four-hole probes, multi-hole pressure probes

Procedia PDF Downloads 297
25134 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures

Authors: Jungyeol Hong, Dongjoo Park

Abstract:

The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.

Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership

Procedia PDF Downloads 179
25133 Sidelobe Free Inverse Synthetic Aperture Radar Imaging of Non Cooperative Moving Targets Using WiFi

Authors: Jiamin Huang, Shuliang Gui, Zengshan Tian, Fei Yan, Xiaodong Wu

Abstract:

In recent years, with the rapid development of radio frequency technology, the differences between radar sensing and wireless communication in terms of receiving and sending channels, signal processing, data management and control are gradually shrinking. There has been a trend of integrated communication radar sensing. However, most of the existing radar imaging technologies based on communication signals are combined with synthetic aperture radar (SAR) imaging, which does not conform to the practical application case of the integration of communication and radar. Therefore, in this paper proposes a high-precision imaging method using communication signals based on the imaging mechanism of inverse synthetic aperture radar (ISAR) imaging. This method makes full use of the structural characteristics of the orthogonal frequency division multiplexing (OFDM) signal, so the sidelobe effect in distance compression is removed and combines radon transform and Fractional Fourier Transform (FrFT) parameter estimation methods to achieve ISAR imaging of non-cooperative targets. The simulation experiment and measured results verify the feasibility and effectiveness of the method, and prove its broad application prospects in the field of intelligent transportation.

Keywords: integration of communication and radar, OFDM, radon, FrFT, ISAR

Procedia PDF Downloads 126
25132 Seismic Data Scaling: Uncertainties, Potential and Applications in Workstation Interpretation

Authors: Ankur Mundhra, Shubhadeep Chakraborty, Y. R. Singh, Vishal Das

Abstract:

Seismic data scaling affects the dynamic range of a data and with present day lower costs of storage and higher reliability of Hard Disk data, scaling is not suggested. However, in dealing with data of different vintages, which perhaps were processed in 16 bits or even 8 bits and are need to be processed with 32 bit available data, scaling is performed. Also, scaling amplifies low amplitude events in deeper region which disappear due to high amplitude shallow events that saturate amplitude scale. We have focused on significance of scaling data to aid interpretation. This study elucidates a proper seismic loading procedure in workstations without using default preset parameters as available in most software suites. Differences and distribution of amplitude values at different depth for seismic data are probed in this exercise. Proper loading parameters are identified and associated steps are explained that needs to be taken care of while loading data. Finally, the exercise interprets the un-certainties which might arise when correlating scaled and unscaled versions of seismic data with synthetics. As, seismic well tie correlates the seismic reflection events with well markers, for our study it is used to identify regions which are enhanced and/or affected by scaling parameter(s).

Keywords: clipping, compression, resolution, seismic scaling

Procedia PDF Downloads 472
25131 Applications of Hyperspectral Remote Sensing: A Commercial Perspective

Authors: Tuba Zahra, Aakash Parekh

Abstract:

Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.

Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR

Procedia PDF Downloads 79
25130 Development and Testing of an Instrument to Measure Beliefs about Cervical Cancer Screening among Women in Botswana

Authors: Ditsapelo M. McFarland

Abstract:

Background: Despite the availability of the Pap smear services in urban areas in Botswana, most women in such areas do not seem to screen regular for prevention of the cervical cancer disease. Reasons for non-use of the available Pap smear services are not well understood. Beliefs about cancer may influence participation in cancer screening in these women. The purpose of this study was to develop an instrument to measure beliefs about cervical cancer and Pap smear screening among Black women in Botswana, and evaluate the psychometric properties of the instrument. Significance: Instruments that are designed to measure beliefs about cervical cancer and screening among black women in Botswana, as well as in the surrounding region, are presently not available. Valid and reliable instruments are needed for exploration of the women’s beliefs about cervical cancer. Conceptual Framework: The Health Belief Model (HBM) provided a conceptual framework for the study. Methodology: The study was done in four phases: Phase 1: item generation: 15 items were generated from literature review and qualitative data for each of four conceptually defined HBM constructs: Perceived susceptibility, severity, benefits, and barriers (Version 1). Phase 2: content validity: Four experts who were advanced practice nurses of African descent and were familiar with the content and the HBM evaluated the content. Experts rated the items on a 4-point Likert scale ranging from: 1=not relevant, 2=somewhat relevant, 3=relevant and 4=very relevant. Fifty-five items were retained for instrument development: perceived susceptibility - 11, severity - 14, benefits - 15 and barriers - 15, all measuring on a 4-point Likert scale ranging from strongly disagree (1) to strongly agree (4). (Version 2). Phase 3: pilot testing: The instrument was pilot tested on a convenient sample of 30 women in Botswana and revised as needed. Phase 4: reliability: the revised instrument (Version 3) was submitted to a larger sample of women in Botswana (n=300) for reliability testing. The sample included women who were Batswana by birth and decent, were aged 30 years and above and could complete an English questionnaire. Data were collected with the assistance of trained research assistants. Major findings: confirmatory factor analysis of the 55 items found that a number of items did not adequately load in a four-factor solution. Items that exhibited reasonable reliability and had low frequency of missing values (n=36) were retained: perceived barriers (14 items), perceived benefits (8 items), perceived severity (4 items), and perceived susceptibility (10 items). confirmatory factor analysis (principle components) for a four factor solution using varimax rotation demonstrated that these four factors explained 43% of the variation in these 36 items. Conclusion: reliability analysis using Cronbach’s Alpha gave generally satisfactory results with values from 0.53 to 0.89.

Keywords: cervical cancer, factor analysis, psychometric evaluation, varimax rotation

Procedia PDF Downloads 127
25129 Association of Social Data as a Tool to Support Government Decision Making

Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias

Abstract:

Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.

Keywords: social data, government decision making, association of social data, data mining

Procedia PDF Downloads 371
25128 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 20
25127 Visual Preferences of Elementary School Children with Autism Spectrum Disorder: An Experimental Study

Authors: Larissa Pliska, Isabel Neitzel, Michael Buschermöhle, Olga Kunina-Habenicht, Ute Ritterfeld

Abstract:

Visual preferences, which can be assessed using eye tracking technologies, are considered one of the defining hallmarks of Autism Spectrum Disorder (ASD). Specifically, children with ASD show a decreased preference for social images rather than geometric images compared to typically developed (TD) children. Such differences are already prevalent at a very early age and indicate the severity of the disorder: toddlers with ASD who preferred geometric images when confronted with social and geometric images showed higher ASD symptom severity than toddlers with ASD who showed higher social attention. Furthermore, the complexity of social pictures (one child playing vs. two children playing together) as well as the mode of stimulus presentation (video or image), are not decisive for the marker. The average age of diagnosis for ASD in Germany is 6.5 years, and visual preference data on this age group is missing. In the present study, we therefore investigated whether visual preferences persist into school age. We examined the visual preferences of 16 boys aged 6 to 11 with ASD and unimpaired cognition as well as TD children (1:1 matching based on children's age and the parent's level of education) within an experimental setting. Different stimulus presentation formats (images vs. videos) and different levels of stimulus complexity were included. Children with and without ASD received pairs of social and non-social images and video stimuli on a screen while eye movements (i.e., eye position and gaze direction) were recorded. For this specific use case, KIZMO GmbH developed a customized, native iOS app (KIZMO Face-Analyzer) for use on iPads. Neither the format of stimulus presentation nor the complexity of the social images had a significant effect on the visual preference of children with and without ASD in this study. Despite the tendency for a difference between the groups for the video stimuli, there were no significant differences. Overall, no statistical differences in visual preference occurred between boys with and without ASD, suggesting that gaze preference in these groups is similar at primary school age. One limitation is that the children with ASD were already receiving Autism-specific intervention. The potential of a visual preference task as an indicator of ASD can be emphasized. The article discusses the clinical relevance of this marker in elementary school children.

Keywords: autism spectrum disorder, eye tracking, hallmark, visual preference

Procedia PDF Downloads 61
25126 A New Obesity Index Derived from Waist Circumference and Hip Circumference Well-Matched with Other Indices in Children with Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Anthropometric obesity indices such as waist circumference (WC), indices derived from anthropometric measurements such as waist-to-hip ratio (WHR), and indices created from body fat mass composition such as trunk-to-leg fat ratio (TLFR) are commonly used for the evaluation of mild or severe forms of obesity. Their clinical utilities are being compared using body mass index (BMI) percentiles to classify obesity groups. The best of them is still being investigated to make a clear-cut discrimination between healthy normal individuals (N-BMI) and overweight or obese (OB) or morbid obese patients. The aim of this study is to derive a new index, which best suits the purpose for the discrimination of children with N-BMI from OB children. A total of eighty-three children participated in the study. Two groups were constituted. The first group comprised 42 children with N-BMI, and the second group was composed of 41 OB children, whose age- and sex- adjusted BMI percentile values vary between 95 and 99. The corresponding values for the first group were between 15 and 85. This classification was based upon the tables created by World Health Organization. The institutional ethics committee approved the study protocol. Informed consent forms were filled by the parents of the participants. Anthropometric measurements were taken and recorded following a detailed physical examination. Within this context, weight, height (Ht), WC, hip C (HC), neck C (NC) values were taken. Body mass index, WHR, (WC+HC)/2, WC/Ht, (WC/HC)/Ht, WC*NC were calculated. Bioelectrical impedance analysis was performed to obtain body’s fat compartments in terms of total fat, trunk fat, leg fat, arm fat masses. Trunk-to-leg fat ratio, trunk-to-appendicular fat ratio (TAFR), (trunk fat+leg fat)/2 ((TF+LF)/2) were calculated. Fat mass index (FMI) and diagnostic obesity notation model assessment-II (D2I) index values were calculated. Statistical analysis of the data was performed. Significantly increased values of (WC+HC)/2, (TF+LF)/2, D2I, and FMI were observed in OB group in comparison with those of N-BMI group. Significant correlations were calculated between BMI and WC, (WC+HC)/2, (TF+LF)/2, TLFR, TAFR, D2I as well as FMI both in N-BMI and OB groups. The same correlations were obtained for WC. (WC+HC)/2 was correlated with TLFR, TAFR, (TF+LF)/2, D2I, and FMI in N-BMI group. In OB group, the correlations were the same except those with TLFR and TAFR. These correlations were not present with WHR. Correlations were observed between TLFR and BMI, WC, (WC+HC)/2, (TF+LF)/2, D2I as well as FMI in N-BMI group. Same correlations were observed also with TAFR. In OB group, correlations between TLFR or TAFR and BMI, WC as well as (WC+HC)/2 were missing. None was noted with WHR. From these findings, it was concluded that (WC+HC)/2, but not WHR, was much more suitable as an anthropometric obesity index. The only correlation valid in both groups was that exists between (WC+HC)/2 and (TF+LF)/2. This index was suggested as a link between anthropometric and fat-based indices.

Keywords: children, hip circumference, obesity, waist circumference

Procedia PDF Downloads 168
25125 Combined Safety and Cybersecurity Risk Assessment for Intelligent Distributed Grids

Authors: Anders Thorsén, Behrooz Sangchoolie, Peter Folkesson, Ted Strandberg

Abstract:

As more parts of the power grid become connected to the internet, the risk of cyberattacks increases. To identify the cybersecurity threats and subsequently reduce vulnerabilities, the common practice is to carry out a cybersecurity risk assessment. For safety classified systems and products, there is also a need for safety risk assessments in addition to the cybersecurity risk assessment in order to identify and reduce safety risks. These two risk assessments are usually done separately, but since cybersecurity and functional safety are often related, a more comprehensive method covering both aspects is needed. Some work addressing this has been done for specific domains like the automotive domain, but more general methods suitable for, e.g., intelligent distributed grids, are still missing. One such method from the automotive domain is the Security-Aware Hazard Analysis and Risk Assessment (SAHARA) method that combines safety and cybersecurity risk assessments. This paper presents an approach where the SAHARA method has been modified in order to be more suitable for larger distributed systems. The adapted SAHARA method has a more general risk assessment approach than the original SAHARA. The proposed method has been successfully applied on two use cases of an intelligent distributed grid.

Keywords: intelligent distribution grids, threat analysis, risk assessment, safety, cybersecurity

Procedia PDF Downloads 153
25124 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 296
25123 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework

Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe

Abstract:

This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.

Keywords: IoT, fog, cloud, data analysis, data privacy

Procedia PDF Downloads 100
25122 Use of Magnesium as a Renewable Energy Source

Authors: Rafayel K. Kostanyan

Abstract:

The opportunities of use of metallic magnesium as a generator of hydrogen gas, as well as thermal and electric energy is presented in the paper. Various schemes of magnesium application are discussed and power characteristics of corresponding devices are presented. Economic estimation of hydrogen price obtained by different methods is made, including the use of magnesium as a source of hydrogen for transportation in comparison with gasoline. Details and prospects of our new inexpensive technology of magnesium production from magnesium hydroxide and magnesium bearing rocks (which are available worldwide and in Armenia) are analyzed. It is estimated the threshold cost of Mg production at which application of this metal in power engineering is economically justified.

Keywords: energy, electrodialysis, magnesium, new technology

Procedia PDF Downloads 272
25121 Developing an ANN Model to Predict Anthropometric Dimensions Based on Real Anthropometric Database

Authors: Waleed A. Basuliman, Khalid S. AlSaleh, Mohamed Z. Ramadan

Abstract:

Applying the anthropometric dimensions is considered one of the important factors when designing any human-machine system. In this study, the estimation of anthropometric dimensions has been improved by developing artificial neural network that aims to predict the anthropometric measurements of the male in Saudi Arabia. A total of 1427 Saudi males from age 6 to 60 participated in measuring twenty anthropometric dimensions. These anthropometric measurements are important for designing the majority of work and life applications in Saudi Arabia. The data were collected during 8 months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining fifteen dimensions were set to be the measured variables (outcomes). The hidden layers have been varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was significantly able to predict the body dimensions for the population of Saudi Arabia. The network mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found 0.0348 and 3.225 respectively. The accuracy of the developed neural network was evaluated by compare the predicted outcomes with a multiple regression model. The ANN model performed better and resulted excellent correlation coefficients between the predicted and actual dimensions.

Keywords: artificial neural network, anthropometric measurements, backpropagation, real anthropometric database

Procedia PDF Downloads 578
25120 GPU Based Real-Time Floating Object Detection System

Authors: Jie Yang, Jian-Min Meng

Abstract:

A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.

Keywords: object detection, GPU, motion estimation, parallel processing

Procedia PDF Downloads 474
25119 Interference of Mild Drought Stress on Estimation of Nitrogen Status in Winter Wheat by Some Vegetation Indices

Authors: H. Tavakoli, S. S. Mohtasebi, R. Alimardani, R. Gebbers

Abstract:

Nitrogen (N) is one of the most important agricultural inputs affecting crop growth, yield and quality in rain-fed cereal production. N demand of crops varies spatially across fields due to spatial differences in soil conditions. In addition, the response of a crop to the fertilizer applications is heavily reliant on plant available water. Matching N supply to water availability is thus essential to achieve an optimal crop response. The objective of this study was to determine effect of drought stress on estimation of nitrogen status of winter wheat by some vegetation indices. During the 2012 growing season, a field experiment was conducted at the Bundessortenamt (German Plant Variety Office) Marquardt experimental station which is located in the village of Marquardt about 5 km northwest of Potsdam, Germany (52°27' N, 12°57' E). The experiment was designed as a randomized split block design with two replications. Treatments consisted of four N fertilization rates (0, 60, 120 and 240 kg N ha-1, in total) and two water regimes (irrigated (Irr) and non-irrigated (NIrr)) in total of 16 plots with dimension of 4.5 × 9.0 m. The indices were calculated using readings of a spectroradiometer made of tec5 components. The main parts were two “Zeiss MMS1 nir enh” diode-array sensors with a nominal rage of 300 to 1150 nm with less than 10 nm resolutions and an effective range of 400 to 1000 nm. The following vegetation indices were calculated: NDVI, GNDVI, SR, MSR, NDRE, RDVI, REIP, SAVI, OSAVI, MSAVI, and PRI. All the experiments were conducted during the growing season in different plant growth stages including: stem elongation (BBCH=32-41), booting stage (BBCH=43), inflorescence emergence, heading (BBCH=56-58), flowering (BBCH=65-69), and development of fruit (BBCH=71). According to the results obtained, among the indices, NDRE and REIP were less affected by drought stress and can provide reliable wheat nitrogen status information, regardless of water status of the plant. They also showed strong relations with nitrogen status of winter wheat.

Keywords: nitrogen status, drought stress, vegetation indices, precision agriculture

Procedia PDF Downloads 321
25118 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data

Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif

Abstract:

Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.

Keywords: field data, local scour, scour equation, wide piers

Procedia PDF Downloads 415
25117 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol

Authors: Inkyu Kim, SangMan Moon

Abstract:

This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.

Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application

Procedia PDF Downloads 393
25116 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 59
25115 Router 1X3 - RTL Design and Verification

Authors: Nidhi Gopal

Abstract:

Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.

Keywords: data packets, networking, router, routing

Procedia PDF Downloads 815