Search results for: thermal network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8141

Search results for: thermal network

6791 Comparison Study on Characterization of Various Fly Ashes for Heavy Metal Adsorption

Authors: E. Moroydor Derun, N. Tugrul, N. Baran Acarali, A. S. Kipcak, S. Piskin

Abstract:

Fly ash is a waste material of coal firing thermal plants that is released from thermal power plants. It was defined as very fine particles that are drifted upward which are taken up by the flue gases. The emerging amount of fly ash in the world is approximately 600 million tons per year. In our country, it is expected that will be occurred 50 million tons of waste ash per year until 2020. The fly ashes can be evaluated by using as adsorbent material. The purpose of this study is to investigate the possibility of use of various fly ashes (Tuncbilek, Catalagzi, Orhaneli) like low-cost adsorbents for heavy metal adsorption. First of all, fly ashes were characterized. For this purpose; analyses such as XRD, XRF, SEM and FT-IR were performed.

Keywords: adsorbent, fly ash, heavy metal, waste

Procedia PDF Downloads 259
6790 A Study on the Comparatison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test

Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim

Abstract:

In rapid industrial development has increased the demand for high-strength and lightweight materials. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order, and thickness. Thus, the hardness and strength of CFRP depend much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75°, and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75°, and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.

Keywords: Carbon Fiber Reinforced Plastic (CFRP), bending test, infrared camera, composite

Procedia PDF Downloads 398
6789 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings

Authors: A. Fayad, Q. Alqhazaly, T. Cinkler

Abstract:

In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.

Keywords: BER, DuoBinary, NRZ-OOK, TWDM-PON

Procedia PDF Downloads 149
6788 Overcoming Obstacles in UHTHigh-protein Whey Beverages by Microparticulation Process: Scientific and Technological Aspects

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh, Seyed Jalal Razavi Zahedkolaei

Abstract:

Herein, a shelf stable (no refrigeration required) UHT processed, aseptically packaged whey protein drink was formulated by using a new strategy in microparticulate process. Applying thermal and two-dimensional mechanical treatments simultaneously, a modified protein (MWPC-80) was produced. Then the physical, thermal and thermodynamic properties of MWPC-80 were assessed using particle size analysis, dynamic temperature sweep (DTS), and differential scanning calorimetric (DSC) tests. Finally, using MWPC-80, a new RTD beverage was formulated, and shelf stability was assessed for three months at ambient temperature (25 °C). Non-isothermal dynamic temperature sweep was performed, and the results were analyzed by a combination of classic rate equation, Arrhenius equation, and time-temperature relationship. Generally, results showed that temperature dependency of the modified sample was significantly (Pvalue<0.05) less than the control one contained WPC-80. The changes in elastic modulus of the MWPC did not show any critical point at all the processed stages, whereas, the control sample showed two critical points during heating (82.5 °C) and cooling (71.10 °C) stages. Thermal properties of samples (WPC-80 & MWPC-80) were assessed using DSC with 4 °C /min heating speed at 20-90 °C heating range. Results did not show any thermal peak in MWPC DSC curve, which suggested high thermal resistance. On the other hands, WPC-80 sample showed a significant thermal peak with thermodynamic properties of ∆G:942.52 Kj/mol ∆H:857.04 Kj/mole and ∆S:-1.22Kj/mole°K. Dynamic light scattering was performed and results showed 0.7 µm and 15 nm average particle size for MWPC-80 and WPC-80 samples, respectively. Moreover, particle size distribution of MWPC-80 and WPC-80 were Gaussian-Lutresian and normal, respectively. After verification of microparticulation process by DTS, PSD and DSC analyses, a 10% why protein beverage (10% w/w/ MWPC-80, 0.6% w/w vanilla flavoring agent, 0.1% masking flavor, 0.05% stevia natural sweetener and 0.25% citrate buffer) was formulated and UHT treatment was performed at 137 °C and 4 s. Shelf life study did not show any jellification or precipitation of MWPC-80 contained beverage during three months storage at ambient temperature, whereas, WPC-80 contained beverage showed significant precipitation and jellification after thermal processing, even at 3% w/w concentration. Consumer knowledge on nutritional advantages of whey protein increased the request for using this protein in different food systems especially RTD beverages. These results could make a huge difference in this industry.

Keywords: high protein whey beverage, micropartiqulation, two-dimentional mechanical treatments, thermodynamic properties

Procedia PDF Downloads 74
6787 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.

Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm

Procedia PDF Downloads 327
6786 Research on Thermal Runaway Reaction of Ammonium Nitrate with Incompatible Substances

Authors: Weic-Ting Chen, Jo-Ming Tseng

Abstract:

Ammonium nitrate (AN) has caused many accidents in the world, which have caused a large number of people’s life and serious economic losses. In this study, the safety of the AN production process was discussed deeply, and the influence of incompatible substances was estimated according to the change of their heat value by mixing them with incompatible substances by thermal analysis techniques, and their safety parameters were calculated according to their kinetic parameters. In this study, differential scanning calorimeters (DSC) were applied for the temperature rise test and adiabatic thermal analysis in combination with the Advanced Reactive System Screening Tool (ARSST). The research results could contribute to the safety of the ammonium nitrate production process. Manufacturers can better understand the possibility of chemical heat release and the operating conditions that will cause a chemical reaction to be out of control when storing or adding new substances, so safety parameters were researched for these complex reactions. The results of this study will benefit the process of AN and the relevant staff, which also have safety protection in the working environment.

Keywords: ammonium nitrate, incompatible substances, differential scanning calorimeters, advanced reactive system screening tool, safety parameters

Procedia PDF Downloads 94
6785 Generation of 3d Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel De Luis Ruiz, Javier Sedano Cibrián, RubéN Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In this sense, the classic 3D models are being applied to investigate the direction towards which the generally subterranean structures of an archaeological site may continue and therefore, to help in making the decisions that define the location of new excavations. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimise the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain).

Keywords: process optimization, RGB models, thermal models, , UAV, workflow

Procedia PDF Downloads 138
6784 Heat Transfer Analysis of Helical Grooved Passages near the Leading Edge Region in Gas Turbine Blade

Authors: Harishkumar Kamath, Chandrakant R. Kini, N. Yagnesh Sharma

Abstract:

Gas turbines are highly effective engineered prime movers for converting energy from thermal form (combustion stage) to mechanical form – are widely used for propulsion and power generation systems. One method of increasing both the power output and thermal efficiency is to increase the temperature of the gas entering the turbine. In the advanced gas turbines of today, the turbine inlet temperature can be as high as 1500°C; however, this temperature exceeds the melting temperature of the metal blade. With modern gas turbines operating at extremely high temperatures, it is necessary to implement various cooling methods, so the turbine blades and vanes endure in the path of the hot gases. Merely passing coolant air through the blade does not provide adequate cooling; therefore, it is necessary to implement techniques that will further enhance the heat transfer from the blade walls. It is seen that by incorporating helical grooved passages into the leading edge built on turbulence and higher flow rates through the passages, the blade can be cooled effectively. It seen from the analysis helical grooved passages with diameter 5 mm, helical pitch of 50 mm and 8 starts results in better cooling of turbine blade and gives the best thermal performance.

Keywords: blade cooling, helical grooves, leading edge, numerical analysis

Procedia PDF Downloads 263
6783 A New Perspective: The Use of Low-Cost Phase Change Material in Building Envelope System

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The use of the low-cost paraffinic phase change material can be rather effective in smart building envelopes in the South China region. Particular attention has to be paid to the PCM optimization as an exploitation conditions and the envelope insulation changes its thermal characteristics. The studied smart building envelope consists of a reinforced aluminum exterior, polymeric insulation foam, phase change material and reinforced interior gypsum board. A prototype sample was tested to validate the numerical scheme using EnergryPlus software. Three scenarios of insulation thermal resistance loss (ΔR/R = 0%, 25%, 50%) were compared with the different PCM thicknesses (tP=0, 1, 2.5, 5 mm). The comparisons were carried out for a west facing enveloped office building (50 storey). PCM optimization was applied to find the maximum efficiency for the different ΔR/R cases. It was found, during the optimization, that the PCM is an important smart component, lowering the peak energy demand up to 2.7 times. The results are not influenced by the insulation aging in terms of ΔR/R during long-term exploitation. In hot and humid climates like Hong Kong, the insulation core of the smart systems is recommended to be laminated completely. This can be very helpful in achieving an acceptable payback period.

Keywords: smart building envelope, thermal performance, phase change material, energy efficiency, large-scale sandwich panel

Procedia PDF Downloads 730
6782 Device-integrated Micro-thermocouples for Reliable Temperature Measurement of GaN HEMTs

Authors: Hassan Irshad Bhatti, Saravanan Yuvaraja, Xiaohang Li

Abstract:

GaN-based devices, such as high electron mobility transistors (HEMTs), offer superior characteristics for high-power, high-frequency, and high-temperature applications [1]. However, this exceptional electrical performance is compromised by undesirable self-heating effects under high-power applications [2, 3]. Some of the issues caused by self-heating are current collapse, thermal runway and performance degradation [4, 5]. Therefore, accurate and reliable methods for measuring the temperature of individual devices on a chip are needed to monitor and control the thermal behavior of GaN-based devices [6]. Temperature measurement at the micro/nanoscale is a challenging task that requires specialized techniques such as Infrared microscopy, Raman thermometry, and thermoreflectance. Recently, micro-thermocouples (MTCs) have attracted considerable attention due to their advantages of simplicity, low cost, high sensitivity, and compatibility with standard fabrication processes [7, 8]. A micro-thermocouple is a junction of two different metal thin films, which generates a Seebeck voltage related to the temperature difference between a hot and cold zone. Integrating MTC in a device allows local temperature to be measured with high sensitivity and accuracy [9]. This work involves the fabrication and integration of micro-thermocouples (MTCs) to measure the channel temperature of GaN HEMT. Our fabricated MTC (Platinum-Chromium junction) has shown a sensitivity of 16.98 µV/K and can measure device channel temperature with high precision and accuracy. The temperature information obtained using this sensor can help improve GaN-based devices and provide thermal engineers with useful insights for optimizing their designs.

Keywords: Electrical Engineering, Thermal engineering, Power Devices, Semiconuctors

Procedia PDF Downloads 19
6781 Numerical Calculation of Heat Transfer in Water Heater

Authors: Michal Spilacek, Martin Lisy, Marek Balas, Zdenek Skala

Abstract:

This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation, and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. Results show that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.

Keywords: heat exchanger, heat transfer rate, numerical calculation, thermal images

Procedia PDF Downloads 616
6780 Malignancy Assessment of Brain Tumors Using Convolutional Neural Network

Authors: Chung-Ming Lo, Kevin Li-Chun Hsieh

Abstract:

The central nervous system in the World Health Organization defines grade 2, 3, 4 gliomas according to the aggressiveness. For brain tumors, using image examination would have a lower risk than biopsy. Besides, it is a challenge to extract relevant tissues from biopsy operation. Observing the whole tumor structure and composition can provide a more objective assessment. This study further proposed a computer-aided diagnosis (CAD) system based on a convolutional neural network to quantitatively evaluate a tumor's malignancy from brain magnetic resonance imaging. A total of 30 grade 2, 43 grade 3, and 57 grade 4 gliomas were collected in the experiment. Transferred parameters from AlexNet were fine-tuned to classify the target brain tumors and achieved an accuracy of 98% and an area under the receiver operating characteristics curve (Az) of 0.99. Without pre-trained features, only 61% of accuracy was obtained. The proposed convolutional neural network can accurately and efficiently classify grade 2, 3, and 4 gliomas. The promising accuracy can provide diagnostic suggestions to radiologists in the clinic.

Keywords: convolutional neural network, computer-aided diagnosis, glioblastoma, magnetic resonance imaging

Procedia PDF Downloads 147
6779 Technological Measures to Reduce the Environmental Impact of Swimming Pools

Authors: Fátima Farinha, Miguel J. Oliveira, Gina Matias, Armando Inverno, Jânio Monteiro, Cristiano Cabrita

Abstract:

In the last decades, the construction of swimming pools for recreational activities has grown exponentially in southern Europe. Swimming pools are used both for private use in villas and for collective use in hotels or condominiums. However, they have a high environmental impact, mainly in terms of water and energy consumption, being used for a short period of time, depending significantly on favorable atmospheric conditions. Contrary to what would be expected, not enough research has been conducted to reduce the negative impact of this equipment. In this context, this work proposes and analyses technological measures to reduce the environmental impacts of swimming pools, such as thermal insulation of the tank, water balance in order to detect leaks and optimize the backwash process, integration of renewable energy generation, and a smart control system that meets the requirements of the user. The work was developed within the scope of the Ecopool+++ project, which aims to create innovative heated pools with reduced thermal losses and integration of SMART energy plus water management systems. The project is in the final phase of its development, with very encouraging results.

Keywords: swimming pools, sustainability, thermal losses, water management system

Procedia PDF Downloads 105
6778 Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray

Authors: Abhijit Pattnayak, Abhijith N.V, Deepak Kumar, Jayant Jain, Vijay Chaudhry

Abstract:

Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings.

Keywords: thermal spray process, HVOF, ceramic coating, hardness, wear, corrosion

Procedia PDF Downloads 94
6777 Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines

Authors: V. Radulescu, S. Dumitru

Abstract:

Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number).

Keywords: experimental measurements, numerical correlations, thermal pollution through pipelines, turbulent thermal flow

Procedia PDF Downloads 164
6776 Artificial Neural Network in FIRST Robotics Team-Based Prediction System

Authors: Cedric Leong, Parth Desai, Parth Patel

Abstract:

The purpose of this project was to develop a neural network based on qualitative team data to predict alliance scores to determine winners of matches in the FIRST Robotics Competition (FRC). The game for the competition changes every year with different objectives and game objects, however the idea was to create a prediction system which can be reused year by year using some of the statistics that are constant through different games, making our system adaptable to future games as well. Aerial Assist is the FRC game for 2014, and is played in alliances of 3 teams going against one another, namely the Red and Blue alliances. This application takes any 6 teams paired into 2 alliances of 3 teams and generates the prediction for the final score between them.

Keywords: artifical neural network, prediction system, qualitative team data, FIRST Robotics Competition (FRC)

Procedia PDF Downloads 514
6775 A Survey on Genetic Algorithm for Intrusion Detection System

Authors: Prikhil Agrawal, N. Priyanka

Abstract:

With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.

Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security

Procedia PDF Downloads 297
6774 Promotion of Renewable Marines Energies in Morocco: Perspectives and Strategies

Authors: Nachtane Mourad, Tarfaoui Mostapha, Saifaoui Dennoun, El Moumen Ahmed

Abstract:

The current energy policy recommends the subject of energy efficiency and to phase out fossil energy as a master question for the prospective years. The kingdom requires restructuring its power equipment by improving the percentage of renewable energy supply and optimizing power systems and storage. Developing energy efficiency, therefore, obliges as a consubstantial objection to reducing energy consumption. The objective of this work is to show the energy transition in Morocco towards renewable energies, in particular, to show the great potential of renewable marine energies in Morocco, This goes back to the advantages of cost and non-pollution in addition to that of the independence of fossil energies. Bearing in mind the necessity of the balance of the Moroccan energy mix, hydraulic and thermal power plants have also been installed which will be added to the power stations already established as a prospect for a balanced network that is flexible to fluctuate demand.

Keywords: renewable marine energy, energy transition, efficiency energy, renewable energy

Procedia PDF Downloads 287
6773 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction

Authors: William Whiteley, Jens Gregor

Abstract:

In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.

Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography

Procedia PDF Downloads 111
6772 Entropy Generation Analysis of Cylindrical Heat Pipe Using Nanofluid

Authors: Morteza Ghanbarpour, Rahmatollah Khodabandeh

Abstract:

In this study, second law of thermodynamic is employed to evaluate heat pipe thermal performance. In fact, nanofluids potential to decrease the entropy generation of cylindrical heat pipes are studied and the results are compared with experimental data. Some cylindrical copper heat pipes of 200 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based Al2O3 nanofluids with volume concentrations of 1-5% as working fluids. Nanofluids are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles in a base liquid. These fluids have shown potential to enhance heat transfer properties of the base liquids used in heat transfer application. When the working fluid undergoes between different states in heat pipe cycle the entropy is generated. Different sources of irreversibility in heat pipe thermodynamic cycle are investigated and nanofluid effect on each of these sources is studied. Both experimental and theoretical studies reveal that nanofluid is a good choice to minimize the entropy generation in heat pipe thermodynamic cycle which results in higher thermal performance and efficiency of the system.

Keywords: heat pipe, nanofluid, thermodynamics, entropy generation, thermal resistance

Procedia PDF Downloads 470
6771 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus

Procedia PDF Downloads 408
6770 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 212
6769 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks

Authors: Shahzad Yousaf, Imran Shafi

Abstract:

This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.

Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions

Procedia PDF Downloads 391
6768 Study and Calibration of Autonomous UAV Systems with Thermal Sensing Allowing Screening of Environmental Concerns

Authors: Raahil Sheikh, Abhishek Maurya, Priya Gujjar, Himanshu Dwivedi, Prathamesh Minde

Abstract:

UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided.

Keywords: UAV, drone, autonomous system, thermal imaging

Procedia PDF Downloads 75
6767 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images

Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei

Abstract:

Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.

Keywords: miner self-rescue, object detection, underground mine, YOLO

Procedia PDF Downloads 83
6766 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories

Authors: Heba M. Wagih, Hoda M. O. Mokhtar

Abstract:

Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.

Keywords: human behavior trajectory, location-based social network, ontology, social network

Procedia PDF Downloads 452
6765 Load-Enabled Deployment and Sensing Range Optimization for Lifetime Enhancement of WSNs

Authors: Krishan P. Sharma, T. P. Sharma

Abstract:

Wireless sensor nodes are resource constrained battery powered devices usually deployed in hostile and ill-disposed areas to cooperatively monitor physical or environmental conditions. Due to their limited power supply, the major challenge for researchers is to utilize their battery power for enhancing the lifetime of whole network. Communication and sensing are two major sources of energy consumption in sensor networks. In this paper, we propose a deployment strategy for enhancing the average lifetime of a sensor network by effectively utilizing communication and sensing energy to provide full coverage. The proposed scheme is based on the fact that due to heavy relaying load, sensor nodes near to the sink drain energy at much faster rate than other nodes in the network and consequently die much earlier. To cover this imbalance, proposed scheme finds optimal communication and sensing ranges according to effective load at each node and uses a non-uniform deployment strategy where there is a comparatively high density of nodes near to the sink. Probable relaying load factor at particular node is calculated and accordingly optimal communication distance and sensing range for each sensor node is adjusted. Thus, sensor nodes are placed at locations that optimize energy during network operation. Formal mathematical analysis for calculating optimized locations is reported in present work.

Keywords: load factor, network lifetime, non-uniform deployment, sensing range

Procedia PDF Downloads 383
6764 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System

Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav

Abstract:

The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.

Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization

Procedia PDF Downloads 409
6763 Artificial Neural Network-Based Bridge Weigh-In-Motion Technique Considering Environmental Conditions

Authors: Changgil Lee, Junkyeong Kim, Jihwan Park, Seunghee Park

Abstract:

In this study, bridge weigh-in-motion (BWIM) system was simulated under various environmental conditions such as temperature, humidity, wind and so on to improve the performance of the BWIM system. The environmental conditions can make difficult to analyze measured data and hence those factors should be compensated. Various conditions were considered as input parameters for ANN (Artificial Neural Network). The number of hidden layers for ANN was decided so that nonlinearity could be sufficiently reflected in the BWIM results. The weight of vehicles and axle weight were more accurately estimated by applying ANN approach. Additionally, the type of bridge which was a target structure was considered as an input parameter for the ANN.

Keywords: bridge weigh-in-motion (BWIM) system, environmental conditions, artificial neural network, type of bridges

Procedia PDF Downloads 442
6762 Hub Port Positioning and Route Planning of Feeder Lines for Regional Transportation Network

Authors: Huang Xiaoling, Liu Lufeng

Abstract:

In this paper, we seek to determine one reasonable local hub port and optimal routes for a containership fleet, performing pick-ups and deliveries, between the hub and spoke ports in a same region. The relationship between a hub port, and traffic in feeder lines is analyzed. A new network planning method is proposed, an integrated hub port location and route design, a capacitated vehicle routing problem with pick-ups, deliveries and time deadlines are formulated and solved using an improved genetic algorithm for positioning the hub port and establishing routes for a containership fleet. Results on the performance of the algorithm and the feasibility of the approach show that a relatively small fleet of containerships could provide efficient services within deadlines.

Keywords: route planning, hub port location, container feeder service, regional transportation network

Procedia PDF Downloads 447