Search results for: supplier selection problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9335

Search results for: supplier selection problem

7985 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients

Procedia PDF Downloads 374
7984 Characterization of Group Dynamics for Fostering Mathematical Modeling Competencies

Authors: Ayse Ozturk

Abstract:

The study extends the prior research on modeling competencies by positioning students’ cognitive and language resources as the fundamentals for pursuing their own inquiry and expression lines through mathematical modeling. This strategy aims to answer the question that guides this study, “How do students’ group approaches to modeling tasks affect their modeling competencies over a unit of instruction?” Six bilingual tenth-grade students worked on open-ended modeling problems along with the content focused on quantities over six weeks. Each group was found to have a unique cognitive approach for solving these problems. Three different problem-solving strategies affected how the groups’ modeling competencies changed. The results provide evidence that the discussion around groups’ solutions, coupled with their reflections, advances group interpreting and validating competencies in the mathematical modeling process

Keywords: cognition, collective learning, mathematical modeling competencies, problem-solving

Procedia PDF Downloads 159
7983 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile

Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa

Abstract:

The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.

Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand

Procedia PDF Downloads 172
7982 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 189
7981 Evaluation of the Level of Knowledge about Probiotics amongst Community Pharmacy Staff in Jordan

Authors: Feras Darwish Elhajji, Alberto Berardi, Manal Ayyash, Iman Basheti

Abstract:

The concept of the use of probiotics for humans now has been known for decades however, their intake by the Jordanian population seems to be less common when compared to population in the developed countries. Community pharmacy is the main supplier of probiotics, however, after conducting an extensive literature review, not any published research article could be found talking about the role, knowledge, and practice of the pharmacists in the area of probiotics. The main aim of this study was to evaluate the level of knowledge about probiotics and their dispensing practice in community pharmacies in Jordan. Community pharmacy staff (pharmacists and technicians) in Amman and north of Jordan were randomly selected to complete an anonymous questionnaire that had been pre-tested and validated. Ethical approval was obtained from the university ethics committee. The questionnaire included the following sections: demographics, knowledge and perceptions about probiotics, and role of the pharmacist Pharmacists and technicians were visited and interviewed in 281 community pharmacies. Asking about probiotics, 90.4% of them said that they know what probiotics are, although only 29.5% agreed that pharmacy staff in Jordan have good knowledge about probiotics, and 88.3% agreed that pharmacy staff in Jordan need more training and knowledge about probiotics. Variables that were significantly related to knowledge about probiotics were being a pharmacist (ρ= 0.012), area of the community pharmacy (ρ= 0.019), and female staff (ρ= 0.031) after conducting logistic regression statistical analysis. More than two-thirds of the participants thought that probiotics are classified as dietary supplements by Jordan Food and Drug Administration (JFDA). Of those who knew probiotics, the majority of them – 76.8% and 91.7% – agreed that probiotics are effective and safe, respectively. Believing in efficacy of the probiotics was significantly associated with answering their use to be with or after antibiotic administration and to increase normal flora gut population (ρ= 0.007). Efficacy was also significantly associated with recommending probiotics to consumers by the pharmacist (ρ< 0.001) and by the doctor (ρ= 0.041). At the same time, the concept of safety was mainly associated with their use for flatulence and gases (ρ= 0.048). Level of knowledge about probiotics and their uses, efficacy and safety amongst community pharmacy staff in Jordan is found to be good. However, this level can be raised in the future, especially knowledge about uses of probiotics.

Keywords: community pharmacy, Jordan, prebiotics, probiotics

Procedia PDF Downloads 366
7980 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 217
7979 A New OvS Approach in Assembly Line Balancing Problem

Authors: P. Azimi, B. Behtoiy, A. A. Najafi, H. R. Charmchi

Abstract:

According to the previous studies, one of the most famous techniques which affect the efficiency of a production line is the assembly line balancing (ALB) technique. This paper examines the balancing effect of a whole production line of a real auto glass manufacturer in three steps. In the first step, processing time of each activity in the workstations is generated according to a practical approach. In the second step, the whole production process is simulated and the bottleneck stations have been identified, and finally in the third step, several improvement scenarios are generated to optimize the system throughput, and the best one is proposed. The main contribution of the current research is the proposed framework which combines two famous approaches including Assembly Line Balancing and Optimization via Simulation technique (OvS). The results show that the proposed framework could be applied in practical environments, easily.

Keywords: assembly line balancing problem, optimization via simulation, production planning

Procedia PDF Downloads 526
7978 Optimization of Headspace Solid Phase Microextraction (SPME) Technique Coupled with GC MS for Identification of Volatile Organic Compounds Released by Trogoderma Variabile

Authors: Thamer Alshuwaili, Yonglin Ren, Bob Du, Manjree Agarwal

Abstract:

The warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a major pest of packaged and processed stored products. Warehouse beetle is the common name which was given by Okumura (1972). This pest has been reported to infest 119 different commodities, and it is distributed throughout the tropical and subtropical parts of the world. Also, it is difficult to control because of the insect's ability to stay without food for long times, and it can survive for years under dry conditions and low-moisture food, and it has also developed resistance to many insecticides. The young larvae of these insects can cause damage to seeds, but older larvae prefer to feed on whole grains. The percentage of damage caused by these insects range between 30-70% in the storage. T. variabile is the species most responsible for causing significant damage in grain stores worldwide. Trogoderma spp. is a huge problem for cereal grains, and there are many countries, such as the USA, Australia, China, Kenya, Uganda and Tanzania who have specific quarantine regulations against possible importation. Also, grain stocks can be almost completely destroyed because of the massive populations the insect may develop. However, the purpose of the current research was to optimize conditions to collect volatile organic compound from Trogoderma variabile at different life stages by using headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and flame ionization detection (FID). Using SPME technique to extract volatile from insects is an efficient, straightforward and nondestructive method. Result of the study shows that 15 insects were optimal number for larvae and adults. Selection of the number of insects depend on the height of the peak area and the number of peaks. Sixteen hours were optimized as the best extraction time for larvae and 8 hours was the optimal number of adults.

Keywords: Trogoderma variabile, warehouse beetle , GC-MS, Solid phase microextraction

Procedia PDF Downloads 129
7977 Optimization of Topology-Aware Job Allocation on a High-Performance Computing Cluster by Neural Simulated Annealing

Authors: Zekang Lan, Yan Xu, Yingkun Huang, Dian Huang, Shengzhong Feng

Abstract:

Jobs on high-performance computing (HPC) clusters can suffer significant performance degradation due to inter-job network interference. Topology-aware job allocation problem (TJAP) is such a problem that decides how to dedicate nodes to specific applications to mitigate inter-job network interference. In this paper, we study the window-based TJAP on a fat-tree network aiming at minimizing the cost of communication hop, a defined inter-job interference metric. The window-based approach for scheduling repeats periodically, taking the jobs in the queue and solving an assignment problem that maps jobs to the available nodes. Two special allocation strategies are considered, i.e., static continuity assignment strategy (SCAS) and dynamic continuity assignment strategy (DCAS). For the SCAS, a 0-1 integer programming is developed. For the DCAS, an approach called neural simulated algorithm (NSA), which is an extension to simulated algorithm (SA) that learns a repair operator and employs them in a guided heuristic search, is proposed. The efficacy of NSA is demonstrated with a computational study against SA and SCIP. The results of numerical experiments indicate that both the model and algorithm proposed in this paper are effective.

Keywords: high-performance computing, job allocation, neural simulated annealing, topology-aware

Procedia PDF Downloads 118
7976 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance

Procedia PDF Downloads 106
7975 The Complementary Effect of Internal Control System and Whistleblowing Policy on Prevention and Detection of Fraud in Nigerian Deposit Money Banks

Authors: Dada Durojaye Joshua

Abstract:

The study examined the combined effect of internal control system and whistle blowing policy while it pursues the following specific objectives, which are to: examine the relationship between monitoring activities and fraud’s detection and prevention; investigate the effect of control activities on fraud’s detection and prevention in Nigerian Deposit Money Banks (DMBs). The population of the study comprises the 89,275 members of staff in the 20 DMBs in Nigeria as at June 2019. Purposive and convenient sampling techniques were used in the selection of the 80 members of staff at the supervisory level of the Internal Audit Departments of the head offices of the sampled banks, that is, selecting 4 respondents (Audit Executive/Head, Internal Control; Manager, Operation Risk Management; Head, Financial Crime Control; the Chief Compliance Officer) from each of the 20 DMBs in Nigeria. A standard questionnaire was adapted from 2017/2018 Internal Control Questionnaire and Assessment, Bureau of Financial Monitoring and Accountability Florida Department of Economic Opportunity. It was modified to serve the purpose for which it was meant to serve. It was self-administered to gather data from the 80 respondents at the respective headquarters of the sampled banks at their respective locations across Nigeria. Two likert-scales was used in achieving the stated objectives. A logit regression was used in analysing the stated hypotheses. It was found that effect of monitoring activities using the construct of conduct of ongoing or separate evaluation (COSE), evaluation and communication of deficiencies (ECD) revealed that monitoring activities is significant and positively related to fraud’s detection and prevention in Nigerian DMBS. So also, it was found that control activities using selection and development of control activities (SDCA), selection and development of general controls over technology to prevent financial fraud (SDGCTF), development of control activities that gives room for transparency through procedures that put policies into actions (DCATPPA) contributed to influence fraud detection and prevention in the Nigerian DMBs. In addition, it was found that transparency, accountability, reliability, independence and value relevance have significant effect on fraud detection and prevention ibn Nigerian DMBs. The study concluded that the board of directors demonstrated independence from management and exercises oversight of the development and performance of internal control. Part of the conclusion was that there was accountability on the part of the owners and preparers of the financial reports and that the system gives room for the members of staff to account for their responsibilities. Among the recommendations was that the management of Nigerian DMBs should create and establish a standard Internal Control System strong enough to deter fraud in order to encourage continuity of operations by ensuring liquidity, solvency and going concern of the banks. It was also recommended that the banks create a structure that encourages whistleblowing to complement the internal control system.

Keywords: internal control, whistleblowing, deposit money banks, fraud prevention, fraud detection

Procedia PDF Downloads 80
7974 Complementary Effect of Wistleblowing Policy and Internal Control System on Prevention and Detection of Fraud in Nigerian Deposit Money Banks

Authors: Dada Durojaye Joshua

Abstract:

The study examined the combined effect of internal control system and whistle blowing policy while it pursues the following specific objectives, which are to: examine the relationship between monitoring activities and fraud’s detection and prevention; investigate the effect of control activities on fraud’s detection and prevention in Nigerian Deposit Money Banks (DMBs). The population of the study comprises the 89,275 members of staff in the 20 DMBs in Nigeria as at June 2019. Purposive and convenient sampling techniques were used in the selection of the 80 members of staff at the supervisory level of the Internal Audit Departments of the head offices of the sampled banks, that is, selecting 4 respondents (Audit Executive/Head, Internal Control; Manager, Operation Risk Management; Head, Financial Crime Control; the Chief Compliance Officer) from each of the 20 DMBs in Nigeria. A standard questionnaire was adapted from 2017/2018 Internal Control Questionnaire and Assessment, Bureau of Financial Monitoring and Accountability Florida Department of Economic Opportunity. It was modified to serve the purpose for which it was meant to serve. It was self-administered to gather data from the 80 respondents at the respective headquarters of the sampled banks at their respective locations across Nigeria. Two likert-scales was used in achieving the stated objectives. A logit regression was used in analysing the stated hypotheses. It was found that effect of monitoring activities using the construct of conduct of ongoing or separate evaluation (COSE), evaluation and communication of deficiencies (ECD) revealed that monitoring activities is significant and positively related to fraud’s detection and prevention in Nigerian DMBS. So also, it was found that control activities using selection and development of control activities (SDCA), selection and development of general controls over technology to prevent financial fraud (SDGCTF), development of control activities that gives room for transparency through procedures that put policies into actions (DCATPPA) contributed to influence fraud detection and prevention in the Nigerian DMBs. In addition, it was found that transparency, accountability, reliability, independence and value relevance have significant effect on fraud detection and prevention ibn Nigerian DMBs. The study concluded that the board of directors demonstrated independence from management and exercises oversight of the development and performance of internal control. Part of the conclusion was that there was accountability on the part of the owners and preparers of the financial reports and that the system gives room for the members of staff to account for their responsibilities. Among the recommendations was that the management of Nigerian DMBs should create and establish a standard Internal Control System strong enough to deter fraud in order to encourage continuity of operations by ensuring liquidity, solvency and going concern of the banks. It was also recommended that the banks create a structure that encourages whistleblowing to complement the internal control system.

Keywords: internal control, whistleblowing, deposit money banks, fraud prevention, fraud detection

Procedia PDF Downloads 72
7973 Advances in Medication Reconciliation Tools

Authors: Zixuan Liu, Xin Zhang, Kexin He

Abstract:

In the context of widespread prevalence of multiple diseases, medication safety has become a highly concerned issue affecting patient safety. Medication reconciliation plays a vital role in preventing potential medication risks. However, in medical practice, medication reconciliation faces various challenges, and there is a wide variety of medication reconciliation tools, making the selection of appropriate tools somewhat difficult. The article introduces and analyzes the currently available medication reconciliation tools, providing a reference for healthcare professionals to choose and apply the appropriate medication reconciliation tools.

Keywords: patient safety, medication reconciliation, tools, review

Procedia PDF Downloads 80
7972 The Correlation between Hypomania, Creative Potential and Type of Major in Undergraduate Students

Authors: Dhea Kothari

Abstract:

There is an extensive amount of research that has examined the positive relationship between creativity and hypomania in terms of creative accomplishments, eminence, behaviors, occupations. Previous research had recruited participants based on creative occupations or stages of hypomania or bipolar disorder. This thesis focused on the relationship between hypomania and creative cognitive potential, such as divergent thinking and insight problem-solving. This was examined at an undergraduate educational level by recruiting students majoring in art, majoring in natural sciences (NSCI) and those double majoring in arts and NSCI. Participants were given a modified Alternate Uses Task (AUT) to measure divergent thinking and a set of rebus puzzles to measure insight problem-solving. Both tasks involved a level of overcoming functional fixedness. A negative association was observed between hypomania and originality of responses on the AUT when an object with low functional fixedness was given to all participants. On the other hand, a positive association was found between hypomania and originality of responses on the AUT when an object with high functional fixedness was given to the participants majoring in NSCI. Therefore, the research suggests that an increased ability to overcome functional fixedness might be central to individuals with hypomania and individuals with higher creative cognitive potential.

Keywords: creative cognition, convergent thinking, creativity, divergent thinking, insight, major type, problem-solving

Procedia PDF Downloads 94
7971 On the Interactive Search with Web Documents

Authors: Mario Kubek, Herwig Unger

Abstract:

Due to the large amount of information in the World Wide Web (WWW, web) and the lengthy and usually linearly ordered result lists of web search engines that do not indicate semantic relationships between their entries, the search for topically similar and related documents can become a tedious task. Especially, the process of formulating queries with proper terms representing specific information needs requires much effort from the user. This problem gets even bigger when the user's knowledge on a subject and its technical terms is not sufficient enough to do so. This article presents the new and interactive search application DocAnalyser that addresses this problem by enabling users to find similar and related web documents based on automatic query formulation and state-of-the-art search word extraction. Additionally, this tool can be used to track topics across semantically connected web documents

Keywords: DocAnalyser, interactive web search, search word extraction, query formulation, source topic detection, topic tracking

Procedia PDF Downloads 393
7970 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila , V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest

Procedia PDF Downloads 310
7969 An Enhanced Harmony Search (ENHS) Algorithm for Solving Optimization Problems

Authors: Talha A. Taj, Talha A. Khan, M. Imran Khalid

Abstract:

Optimization techniques attract researchers to formulate a problem and determine its optimum solution. This paper presents an Enhanced Harmony Search (ENHS) algorithm for solving optimization problems. The proposed algorithm increases the convergence and is more efficient than the standard Harmony Search (HS) algorithm. The paper discusses the novel techniques in detail and also provides the strategy for tuning the decisive parameters that affects the efficiency of the ENHS algorithm. The algorithm is tested on various benchmark functions, a real world optimization problem and a constrained objective function. Also, the results of ENHS are compared to standard HS, and various other optimization algorithms. The ENHS algorithms prove to be significantly better and more efficient than other algorithms. The simulation and testing of the algorithms is performed in MATLAB.

Keywords: optimization, harmony search algorithm, MATLAB, electronic

Procedia PDF Downloads 463
7968 Model of Multi-Criteria Evaluation for Railway Lines

Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek

Abstract:

The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.

Keywords: railway track, multi-criteria methods, evaluation, transportation model

Procedia PDF Downloads 469
7967 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

Authors: Aymen Laadhari

Abstract:

We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.

Keywords: finite element method, level set, Newton, membrane

Procedia PDF Downloads 330
7966 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 354
7965 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd

Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic

Abstract:

Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.

Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization

Procedia PDF Downloads 108
7964 A Multidimensional Genetic Algorithm Applicable for Our VRP Variant Dealing with the Problems of Infrastructure Defaults SVRDP-CMTW: “Safety Vehicle Routing Diagnosis Problem with Control and Modified Time Windows”

Authors: Ben Mansour Mouin, Elloumi Abdelkarim

Abstract:

We will discuss the problem of routing a fleet of different vehicles from a central depot to different types of infrastructure-defaults with dynamic maintenance requests, modified time windows, and control of default maintained. For this reason, we propose a modified metaheuristicto to solve our mathematical model. SVRDP-CMTW is a variant VRP of an optimal vehicle plan that facilitates the maintenance task of different types of infrastructure-defaults. This task will be monitored after the maintenance, based on its priorities, the degree of danger associated with each default, and the neighborhood at the black-spots. We will present, in this paper, a multidimensional genetic algorithm “MGA” by detailing its characteristics, proposed mechanisms, and roles in our work. The coding of this algorithm represents the necessary parameters that characterize each infrastructure-default with the objective of minimizing a combination of cost, distance and maintenance times while satisfying the priority levels of the most urgent defaults. The developed algorithm will allow the dynamic integration of newly detected defaults at the execution time. This result will be displayed in our programmed interactive system at the routing time. This multidimensional genetic algorithm replaces N genetic algorithm to solve P different type problems of infrastructure defaults (instead of N algorithm for P problem we can solve in one multidimensional algorithm simultaneously who can solve all these problemsatonce).

Keywords: mathematical model, VRP, multidimensional genetic algorithm, metaheuristics

Procedia PDF Downloads 196
7963 Slope Effect in Emission Evaluation to Assess Real Pollutant Factors

Authors: G. Meccariello, L. Della Ragione

Abstract:

The exposure to outdoor air pollution causes lung cancer and increases the risk of bladder cancer. Because air pollution in urban areas is mainly caused by transportation, it is necessary to evaluate pollutant exhaust emissions from vehicles during their real-world use. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that account for more than 50% of world population. A particular attention was given to the slope variability along the streets during each journey performed by the instrumented vehicle. In this paper we dealt with the problem of describing a quantitatively approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars. Finally the slope analysis can be correlated to the emission and consumption values in a specific road position, and it could be evaluated its influence on their behaviour.

Keywords: air pollution, driving cycles, GPS signal, slope, emission factor, fuel consumption

Procedia PDF Downloads 391
7962 Solving Flowshop Scheduling Problems with Ant Colony Optimization Heuristic

Authors: Arshad Mehmood Ch, Riaz Ahmad, Imran Ali Ch, Waqas Durrani

Abstract:

This study deals with the application of Ant Colony Optimization (ACO) approach to solve no-wait flowshop scheduling problem (NW-FSSP). ACO algorithm so developed has been coded on Matlab computer application. The paper covers detailed steps to apply ACO and focuses on judging the strength of ACO in relation to other solution techniques previously applied to solve no-wait flowshop problem. The general purpose approach was able to find reasonably accurate solutions for almost all the problems under consideration and was able to handle a fairly large spectrum of problems with far reduced CPU effort. Careful scrutiny of the results reveals that the algorithm presented results better than other approaches like Genetic algorithm and Tabu Search heuristics etc; earlier applied to solve NW-FSSP data sets.

Keywords: no-wait, flowshop, scheduling, ant colony optimization (ACO), makespan

Procedia PDF Downloads 434
7961 Technology Roadmapping in Defense Industry

Authors: Sevgi Özlem Bulu, Arif Furkan Mendi, Tolga Erol, İzzet Gökhan Özbilgin

Abstract:

The rapid progress of technology in today's competitive conditions has also accelerated companies' technology development activities. As a result, companies are paying more attention to R&D studies and are beginning to allocate a larger share to R&D projects. A more systematic, comprehensive, target-oriented implementation of R&D studies is crucial for the company to achieve successful results. As a consequence, Technology Roadmap (TRM) is gaining importance as a management tool. It has critical prospects for achieving medium and long term success as it contains decisions about past business, future plans, technological infrastructure. When studies on TRM are examined, projects to be placed on the roadmap are selected by many different methods. Generally preferred methods are based on multi-criteria decision making methods. Management of selected projects becomes an important point after the selection phase of the projects. At this stage, TRM are used. TRM can be created in many different ways so that each institution can prepare its own Technology Roadmap according to their strategic plan. Depending on the intended use, there can be TRM with different layers at different sizes. In the evaluation phase of the R&D projects and in the creation of the TRM, HAVELSAN, Turkey's largest defense company in the software field, carries out this process with great care and diligence. At the beginning, suggested R&D projects are evaluated by the Technology Management Board (TMB) of HAVELSAN in accordance with the company's resources, objectives, and targets. These projects are presented to the TMB periodically for evaluation within the framework of certain criteria by board members. After the necessary steps have been passed, the approved projects are added to the time-based TRM, which is composed of four layers as market, product, project and technology. The use of a four-layered roadmap provides a clearer understanding and visualization of company strategy and objectives. This study demonstrates the benefits of using TRM, four-layered Technology Roadmapping and the possibilities for the institutions in the defense industry.

Keywords: technology roadmap, research and development project, project selection, research development in defense industry

Procedia PDF Downloads 179
7960 Digital Technologies in Cultural Entrepreneurial Practice in Tech Arts in Morocco: Design or Fine Arts

Authors: Hiba Taim

Abstract:

This abstract falls within the scope of entrepreneurship and regulates cultural and creative entrepreneurship. It tackles the topic of "The Ecosystem in Cultural and Creative Entrepreneurship in North Africa". This piece of work deals with the problem of the absence of the ecosystem in cultural and creative enterprises in North Africa, meaning the absence of a clear structure of the ecosystem in the field of cultural and creative entrepreneurship in North Africa. The aim of this research is to create an integrated ecosystem that brings together all those involved in cultural and creative entrepreneurship in North Africa: from training, financial support, continuing, international organizations, government banks, and means of communication. This study is significant not only because it suggests some activities to develop this system but also because it provides all of the information to cultural and creative entrepreneurs in order for them to create project opportunities and activate the entrepreneurship process. It will also enable the creation of opportunities to work among them and formulate common cultural policies to develop the quality of cultural and creative services in North Africa. This research paper uses a qualitative approach to gather information of good quality about the problem being tackled, as well as studying and analyzing different documents and conducting interviews with cultural entrepreneurs, which will help to collect all the information on the state of the ecosystem in North Africa. For the moment, this paperwork is at the stage of collecting preliminary data regarding the problem and developing appropriate schedules for all the phases of the research in order to be productive and deliver this study in the coming months.

Keywords: cultural innovation, design innovation, design thinking, cultural entrepreneurship

Procedia PDF Downloads 147
7959 Biofungicides in Nursery Production

Authors: Miroslava Markovic, Snezana Rajkovic, Ljubinko Rakonjac, Aleksandar Lucic

Abstract:

Oak powdery mildew is a serious problem on seedlings in nurseries as well as on naturally and artificially introduced progeny. The experiments were set on oak seedlings in two nurseries located in Central Serbia, where control of oak powdery mildew Microsphaera alphitoides Griff. et Maubl. had been conducted through alternative protection measures by means of various dosages of AQ-10 biofungicide, with and without added polymer (which has so far never been used in this country for control of oak powdery mildew). Simultaneous testing was conducted on the efficiency of a chemical sulphur-based preparation (used in this area for many years as a measure of suppression of powdery mildews, without the possibility of developing resistance of the pathogen to the active matter). To date, the Republic of Serbia has registered no fungicides for suppression of pathogens in the forest ecosystems. In order to introduce proper use of new disease-fighting agents into a country, certain relevant principles, requirements and criteria prescribed by the Forest Stewardship Council (FSC) must be observed, primarily with respect to measures of assessment and mitigation of risks, the list of dangerous and highly dangerous pesticides with the possibility of alternative protection. One of the main goals of the research was adjustment of the protective measures to the FSC policy through selection of eco-toxicologically favourable fungicides, given the fact that only preparations named on the list of permitted active matters are approved for use in certified forests. The results of the research have demonstrated that AQ-10 biofungicide can be used as a part of integrated disease management programmes as an alternative, through application of several treatments during vegetation and combination with other active matters registered for these purposes, so as to curtail the use of standard fungicides for control of powdery mildews on oak seedlings in nurseries. The best results in suppression of oak powdery mildew were attained through use of AQ-10 biofungicide (dose 50 or 70g/ha) with added polymer Nu Film-17 (dose 1.0 or 1.5 l/ha). If the treatment is applied at the appropriate time, even fewer number of treatments and smaller doses will be just as efficient.

Keywords: oak powdery mildew, biofungicides, polymers, Microsphaera alphitoides

Procedia PDF Downloads 375
7958 DNA Methylation Changes in Response to Ocean Acidification at the Time of Larval Metamorphosis in the Edible Oyster, Crassostrea hongkongensis

Authors: Yong-Kian Lim, Khan Cheung, Xin Dang, Steven Roberts, Xiaotong Wang, Vengatesen Thiyagarajan

Abstract:

Unprecedented rate of increased CO₂ level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g., some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors, including OA, can influence the addition and removal of methyl groups through epigenetic modification (e.g., DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, the above hypothesis was tested through testing the effect of OA, using decreased pH 7.4 as a proxy, on the DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis, at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1; however, over one-third of the larvae raised at pH 7.4 failed to attach to an optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.

Keywords: adaptive plasticity, DNA methylation, larval metamorphosis, ocean acidification

Procedia PDF Downloads 139
7957 Rounding Technique's Application in Schnorr Signature Algorithm: Known Partially Most Significant Bits of Nonce

Authors: Wenjie Qin, Kewei Lv

Abstract:

In 1996, Boneh and Venkatesan proposed the Hidden Number Problem (HNP) and proved the most significant bits (MSB) of computational Diffie-Hellman key exchange scheme and related schemes are unpredictable bits. They also gave a method which is a lattice rounding technique to solve HNP in non-uniform model. In this paper, we put forward a new concept that is Schnorr-MSB-HNP. We also reduce the problem of solving Schnorr signature private key with a few consecutive most significant bits of random nonce (used at each signature generation) to Schnorr-MSB-HNP, then we use the rounding technique to solve the Schnorr-MSB-HNP. We have come to the conclusion that if there is a ‘miraculous box’ which inputs the random nonce and outputs 2loglogq (q is a prime number) most significant bits of nonce, the signature private key will be obtained by choosing 2logq signature messages randomly. Thus we get an attack on the Schnorr signature private key.

Keywords: rounding technique, most significant bits, Schnorr signature algorithm, nonce, Schnorr-MSB-HNP

Procedia PDF Downloads 233
7956 A Source Point Distribution Scheme for Wave-Body Interaction Problem

Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing

Abstract:

A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.

Keywords: source point distribution, panel method, Rankine source, desingularized algorithm

Procedia PDF Downloads 365