Search results for: learning outcomes framework
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14048

Search results for: learning outcomes framework

12698 Evaluation of Sustainable Blue Economy Development Performance: Method and Case

Authors: Mingbao Chen

Abstract:

After Rio+20, the blue economy rises all over the world, and it has become the focus field of national development. At present, the blue economy has become a new growth point in the field of global economy and the direction of the development of ‘green’ in the ocean. However, in fact, the key factors affecting the development of the blue economy have not been explored in depth, and the development policies and performance of the blue economy have not been scientifically evaluated. This cannot provide useful guidance for the development of the blue economy. Therefore, it is urgent to establish a quantitative evaluation framework to measure the performance of the blue economic development. Based on the full understanding of the connotation and elements of the blue economy, and studying the literature, this article has built an universality and operability evaluation index system, including ecological environment, social justice, sustainable growth, policy measures, and so on. And this article also established a sound evaluation framework of blue economic development performance. At the same time, this article takes China as a sample to test the framework of the adaptability, and to assess the performance of China's blue economic.

Keywords: Blue economy, development performance, evaluation framework, assess method

Procedia PDF Downloads 248
12697 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment

Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg

Abstract:

Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.

Keywords: building information, modelling, BIM, genetic algorithm, GA, architecture-engineering-construction, AEC, optimisation, structure, design, population, generation, selection, mutation, crossover, offspring

Procedia PDF Downloads 242
12696 Implementing Service Learning in the Health Education Curriculum

Authors: Karen Butler

Abstract:

Johnson C. Smith University, one of the nation’s oldest Historically Black Colleges and Universities, has a strong history of service learning and community service. We first integrated service learning and peer education into health education courses in the spring of 2000. Students enrolled in the classes served as peer educators for the semester. Since then, the program has evolved and expanded but remains an integral part of several courses. The purpose of this session is to describe our program in terms of development, successes, and obstacles, and feedback received. A detailed description of the service learning component in HED 235: Drugs and Drug Education and HED 337: Environmental Health will be provided. These classes are required of our Community Health majors but are also popular electives for students in other disciplines. Three sources of student feedback were used to evaluate and continually modify the component: the SIR II course evaluation, service learning reflection papers, and focus group interviews. Student feedback has been largely positive. When criticism was given, it was thoughtful and constructive – given in the spirit of making it better for the next group. Students consistently agreed that the service learning program increased their awareness of pertinent health issues; that both the service providers and service recipients benefited from the project; and that the goals/issues targeted by the service learning component fit the objectives of the course. Also, evidence of curriculum and learning enhancement was found in the reflection papers and focus group sessions. Service learning sets up a win-win situation. It provides a way to respond to campus and community health needs while enhancing the curriculum, as students learn more by doing things that benefit the health and wellness of others. Service learning is suitable for any health education course and any target audience would welcome the effort.

Keywords: black colleges, community health, health education, service learning

Procedia PDF Downloads 340
12695 Current Situation and Need in Learning Management for Developing the Analytical Thinking of Teachers in Basic Education of Thailand

Authors: S. Art-in

Abstract:

This research was a survey research. The objective of this study was to study current situation and need in learning management for developing the analytical thinking of teachers in basic education of Thailand. The target group consisted of 400 teachers teaching in basic education level. They were selected by multi-stage random sampling. The instrument used in this study was the questionnaire asking current situation and need in learning management for developing the analytical thinking, 5 level rating scale. Data were analyzed by calculating the frequency, mean, standard deviation, percentage and content analysis. The research found that: 1) For current situation, the teachers provided learning management for developing analytical thinking, in overall, in “high” level. The issue with lowest level of practice: the teachers had competency in designing and establishing the learning management plan for developing the students’ analytical thinking. Considering each aspect it was found that: 1.1) the teacher aspect; the issue with lowest level of practice was: the teachers had competency in designing and establishing the learning management plan for developing the students’ analytical thinking, and 1.2) the learning management aspect for developing the students’ analytical thinking, the issue with lowest level of practice was: the learning activities provided opportunity for students to evaluate their analytical thinking process in each learning session. 2) The teachers showed their need in learning management for developing the analytical thinking, in overall, in “the highest” level. The issue with highest level of the need was: to obtain knowledge and competency in model, technique, and method for learning management or steps of learning management for developing the students’ analytical thinking. Considering each aspect it was found that: 2.1) teacher aspect; the issue with highest level of the need was: to obtain knowledge and comprehension in model, technique, and method for learning management or steps of learning management for developing the students’ analytical thinking, and 2.2) learning management aspect for developing the analytical thinking, the issue with highest level of need consisted of the determination of learning activities as problem situation, and the opportunity for students to comprehend the problem situation as well as practice their analytical thinking in order to find the answer.

Keywords: current situation and need, learning management, analytical thinking, teachers in basic education level, Thailand

Procedia PDF Downloads 352
12694 Components of Effective Learning Environments: Global Perspectives on Student Perceptions

Authors: Victoria Appatova

Abstract:

internal and external, that are largely shaped by the student’s perceptions. Since 2006, the ELE concept has been studied by an international group of scholars through the creation of an ELE survey which was administered in nine countries and translated into five languages. The survey compares students’ perceptions of their learning environments and self-efficacy across A student’s effective learning environment (ELE) is comprised of multiple factors, both cultures as well as distinguishes similarities and differences in the students’ needs related to their learning. The main objectives of this international project include the following: Determine a system of components constituting ELE from the perspective of students and other academic populations Analyze students’ expectations, and their chances to succeed in college based on their expectations Conceptualize a comprehensive approach for assessing the effectiveness of a learning environment Compare the actualization of the ELE concept in American schools versus other national educational systems Compare student perceptions of ELE with those of faculty, administrators, and professional staff Four major factors influencing student learning across cultures and various national educational systems were determined: students’ initiative in using support services; learning skills; external comfort; and curriculum. Recent changes in the students’ perceptions, resulting from technology advances and a rapid shift to online learning, are being explored. The findings call for administrative and pedagogical actions which would cultivate more equitable education systems.

Keywords: learning environment, student perception, global perspectives, self-efficacy

Procedia PDF Downloads 88
12693 Congruency of English Teachers’ Assessments Vis-à-Vis 21st Century Skills Assessment Standards

Authors: Mary Jane Suarez

Abstract:

A massive educational overhaul has taken place at the onset of the 21st century addressing the mismatches of employability skills with that of scholastic skills taught in schools. For a community to thrive in an ever-developing economy, the teaching of the necessary skills for job competencies should be realized by every educational institution. However, in harnessing 21st-century skills amongst learners, teachers, who often lack familiarity and thorough insights into the emerging 21st-century skills, are chained with the restraint of the need to comprehend the physiognomies of 21st-century skills learning and the requisite to implement the tenets of 21st-century skills teaching. With the endeavor to espouse 21st-century skills learning and teaching, a United States-based national coalition called Partnership 21st Century Skills (P21) has identified the four most important skills in 21st-century learning: critical thinking, communication, collaboration, and creativity and innovation with an established framework for 21st-century skills standards. Assessment of skills is the lifeblood of every teaching and learning encounter. It is correspondingly crucial to look at the 21st century standards and the assessment guides recognized by P21 to ensure that learners are 21st century ready. This mixed-method study sought to discover and describe what classroom assessments were used by English teachers in a public secondary school in the Philippines with course offerings on science, technology, engineering, and mathematics (STEM). The research evaluated the assessment tools implemented by English teachers and how these assessment tools were congruent to the 21st assessment standards of P21. A convergent parallel design was used to analyze assessment tools and practices in four phases. In the data-gathering phase, survey questionnaires, document reviews, interviews, and classroom observations were used to gather quantitative and qualitative data simultaneously, and how assessment tools and practices were consistent with the P21 framework with the four Cs as its foci. In the analysis phase, the data were treated using mean, frequency, and percentage. In the merging and interpretation phases, a side-by-side comparison was used to identify convergent and divergent aspects of the results. In conclusion, the results yielded assessments tools and practices that were inconsistent, if not at all, used by teachers. Findings showed that there were inconsistencies in implementing authentic assessments, there was a scarcity of using a rubric to critically assess 21st skills in both language and literature subjects, there were incongruencies in using portfolio and self-reflective assessments, there was an exclusion of intercultural aspects in assessing the four Cs and the lack of integrating collaboration in formative and summative assessments. As a recommendation, a harmonized assessment scheme of P21 skills was fashioned for teachers to plan, implement, and monitor classroom assessments of 21st-century skills, ensuring the alignment of such assessments to P21 standards for the furtherance of the institution’s thrust to effectively integrate 21st-century skills assessment standards to its curricula.

Keywords: 21st-century skills, 21st-century skills assessments, assessment standards, congruency, four Cs

Procedia PDF Downloads 193
12692 Nurture Early for Optimal Nutrition: A Community-Based Randomized Controlled Trial to Improve Infant Feeding and Care Practices Using Participatory Learning and Actions Approach

Authors: Priyanka Patil, Logan Manikam

Abstract:

Background: The first 1000 days of life are a critical window and can result in adverse health consequences due to inadequate nutrition. South-Asian (SA) communities face significant health disparities, particularly in maternal and child health. Community-based interventions, often employing Participatory-Learning and Action (PLA) approaches, have effectively addressed health inequalities in lower-income nations. The aim of this study was to assess the feasibility of implementing a PLA intervention to improve infant feeding and care practices in SA communities living in London. Methods: Comprehensive analyses were conducted to assess the feasibility/fidelity of this pilot randomized controlled trial. Summary statistics were computed to compare key metrics, including participant consent rates, attendance, retention, intervention support, and perceived effectiveness, against predefined progression rules guiding toward a definitive trial. Secondary outcomes were analyzed, drawing insights from multiple sources, such as The Children’s-Eating-Behaviour Questionnaire (CEBQ), Parental-Feeding-Style Questionnaires (PFSQ), Food-diary, and the Equality-Impact-Assessment (EIA) tool. A video analysis of children's mealtime behavior trends was conducted. Feedback interviews were collected from study participants. Results: Process-outcome measures met predefined progression rules for a definitive trial, which deemed the intervention as feasible and acceptable. The secondary outcomes analysis revealed no significant changes in children's BMI z-scores. This could be attributed to the abbreviated follow-up period of 6 months, reduced from 12 months, due to COVID-19-related delays. CEBQ analysis showed increased food responsiveness, along with decreased emotional over/undereating. A similar trend was observed in PFSQ. The EIA tool found no potential discrimination areas, and video analysis revealed a decrease in force-feeding practices. Participant feedback revealed improved awareness and knowledge sharing. Conclusion: This study demonstrates that a co-adapted PLA intervention is feasible and well-received in optimizing infant-care practices among South-Asian community members in a high-income country. These findings highlight the potential of community-based interventions to enhance health outcomes, promoting health equity.

Keywords: child health, childhood obesity, community-based, infant nutrition

Procedia PDF Downloads 56
12691 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 156
12690 Developing a Customizable Serious Game and Its Applicability in the Classroom

Authors: Anita Kéri

Abstract:

Recent developments in the field of education have led to a renewed interest in teaching methodologies and practices. Gamification is fast becoming a key instrument in the education of new generations and besides other methods, serious games have become the center of attention. Ready-built serious games are available for most higher education institutions to buy and implement. However, monetary restraints and the unalterable nature of the games might deter most higher education institutions from the application of these serious games. Therefore, there is a continuously growing need for a customizable serious game that has been developed based on a concrete need analysis and experts’ opinion. There has been little evidence so far of serious games that have been created based on relevant and current need analysis from higher education institution teachers, professional practitioners and students themselves. Therefore, the aim of this current paper is to analyze the needs of higher education institution educators with special emphasis on their needs, the applicability of serious games in their classrooms, and exploring options for the development of a customizable serious game framework. The paper undertakes to analyze workshop discussions on implementing serious games in education and propose a customizable serious game framework applicable in the education of the new generation. Research results show that the most important feature of a serious game is its customizability. The fact that practitioners are able to manage different scenarios and upload their own content to a game seems to be a key to the increasingly widespread application of serious games in the classroom.

Keywords: education, gamification, game-based learning, serious games

Procedia PDF Downloads 158
12689 Professionals’ Learning from Casework in Child Protection: The View from Within

Authors: Jude Harrison

Abstract:

Child protection is a complex and sensitive practice. The core responsibility is the care and protection of children and young people who have been subject to or who are at risk from abuse and neglect. The work involves investigating allegations of harm, preparing for and making representations to the legal system, and case planning and management across a continuum of complicated care interventions. Professionals’ learning for child protection practice is evident in a range of literature investigating multiple learning processes such as university preparation, student placements, professional supervision, training, and other post-qualifying professional development experiences at work. There is, however, very limited research into how caseworkers learn in and through their daily practice. Little is known, therefore, about how learning at work unfolds for caseworkers, the dimensions in which it can be understood or the ways in which it can be best facilitated and supported. Compounding this, much of the current child protection learning literature reflects an orthodox conception of learning as mentalistic and individualised, in which knowledge is typically understood as abstract theory or as technical skill or competency. This presentation outlines key findings from a PhD research study that explored learning at work for statutory child protection caseworkers from an alternative interpretation of learning using a practice theory approach. Practice theory offers an interpretation of learning as performative and grounded in situated experience. The findings of the study show that casework practice is both a mode and site of learning. The study was ethnographic in design based and followed 17 child protection caseworkers via in-depth interviews, observations and participant reflective journaling. Inductive and abductive analysis was used to organise and interpret the data and expand analysis, leading to themes. Key findings show learning to be a sociomaterial property of doing; the social ontological character of learning; and teleoaffectivity as a feature of learning. The findings contribute to theoretical and practical understandings of learning and practice in child protection, child welfare and the professional learning literature more broadly. The findings have potential to contribute to policy directions at state, territory and national levels to enhance child protection practice and systems.

Keywords: adiult learning, workplace learning, child welfare, sociomaterial, practice theory

Procedia PDF Downloads 76
12688 Exploring Motivation and Attitude to Second Language Learning in Ugandan Secondary Schools

Authors: Nanyonjo Juliet

Abstract:

Across Sub-Saharan Africa, it’s increasingly becoming an absolute necessity for either parents or governments to encourage learners, most particularly those attending high schools, to study a second or foreign language other than the “official language” or the language of instruction in schools. The major second or foreign languages under consideration include but are not necessarily limited to English, French, German, Arabic, Swahili/Kiswahili, Spanish and Chinese. The benefits of learning a second (foreign) language in the globalized world cannot be underestimated. Amongst others, it has been expounded to especially involve such opportunities related to traveling, studying abroad and widening one’s career prospects. Research has also revealed that beyond these non-cognitive rewards, learning a second language enables learners to become more thoughtful, considerate and confident, make better decisions, keep their brain healthier and generally – speaking, broaden their world views. The methodology of delivering a successful 2nd language – learning process by a professionally qualified teacher is located in motivation. We strongly believe that the psychology involved in teaching a foreign language is of paramount importance to a learner’s successful learning experience. The aim of this paper, therefore, is to explore and show the importance of motivation in the teaching and learning of a given 2nd (foreign) language in the local Ugandan high schools.

Keywords: second language, foreign language, language learning, language teaching, official language, language of instruction, globalized world, cognitive rewards, non-cognitive rewards, learning process, motivation

Procedia PDF Downloads 68
12687 Building Knowledge Partnership for Collaborative Learning in Higher Education – An On-Line ‘Eplanete’ Knowledge Mediation Platform

Authors: S. K. Ashiquer Rahman

Abstract:

This paper presents a knowledge mediation platform, “ePLANETe Blue” that addresses the challenge of building knowledge partnerships for higher education. The purpose is to present, as an institutional perception, the ‘ePLANETe' idea and functionalities as a practical and pedagogical innovation program contributing to the collaborative learning goals in higher education. In consequence, the set of functionalities now amalgamated in ‘ePLANETe’ can be seen as an investigation of the challenges of “Collaborative Learning Digital Process.” It can exploit the system to facilitate collaborative education, research and student learning in higher education. Moreover, the platform is projected to support the identification of best practices at explicit levels of action and to inspire knowledge interactions in a “virtual community” and thus to advance in deliberation and learning evaluation of higher education through the engagement of collaborative activities of different sorts.

Keywords: mediation, collaboration, deliberation, evaluation

Procedia PDF Downloads 140
12686 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective

Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli

Abstract:

In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.

Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks

Procedia PDF Downloads 82
12685 Goal Orientation, Learning Strategies and Academic Performance in Adult Distance Learning

Authors: Ying Zhou, Jian-Hua Wang

Abstract:

Based upon the self-determination theory and self-regulated learning theory, this study examined the predictiveness of goal orientation and self-regulated learning strategies on academic achievement of adult students in distance learning. The results show a positive relation between goal orientation and the use of self-regulated strategies, and academic achievements. A significant and positive indirect relation of mastery goal orientation through self-regulated learning strategies was also found. In addition, results pointed to a positive indirect impact of performance-approach goal orientation on academic achievement. The effort regulation strategy fully mediated this relation. The theoretical and instructional implications are discussed. Interventions can be made to motivate students’ mastery or performance approach goal orientation and help them manage their time or efforts.

Keywords: goal orientation, self-regulated strategies, achievement, adult distance students

Procedia PDF Downloads 274
12684 Impacts of E-Learning on Educational Policy: Policy of Sensitization and Training in E-Learning in Saudi Arabia

Authors: Layla Albdr

Abstract:

Saudi Arabia instituted the policy of Sensitizing and Training Stakeholders for E-learning and witnessed wide adoption in many institutions. However, it is at the infancy stage and needs time to develop to mirror the US and UK. The majority of the higher education institutions in Saudi Arabia have adopted E-learning as an alternative to traditional methods to advance education. Conversely, effective implementation of the policy of sensitization and training of stakeholders for E-learning implementation has not been attained because of various challenges. The objectives included determining the challenges and opportunities of the E-learning policy of sensitization and training of stakeholders in Saudi Arabia's higher education and examining if sensitization and training of stakeholder's policy will help promote the implementation of E-learning in institutions. The study employed a descriptive research design based on qualitative analysis. The researcher recruited 295 students and 60 academic staff from four Saudi Arabian universities to participate in the study. An online questionnaire was used to collect the data. The data was then analyzed and reported both quantitatively and qualitatively. The analysis provided an in-depth understanding of the opportunities and challenges of E-learning policy in Saudi Arabian universities. The main challenges identified as internal challenges were the lack of educators’ interest in adopting the policy, and external challenges entailed lack of ICT infrastructure and Internet connectivity. The study recommends encouraging, sensitizing, and training all stakeholders to address these challenges and adopt the policy.

Keywords: e-learning, educational policy, Saudi Arabia, policy of sensitization and training

Procedia PDF Downloads 157
12683 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 16
12682 Values-based Physical Education in a Diverse South African Context

Authors: C. F. Jones Couto

Abstract:

The implementation of quality Physical Education (PE) inspires and instils lasting healthy behavioural patterns, hence have the potential as an educational tool to teach values in today’s society. The goal of PE should be to contribute to the acceptance of the infinite qualities of South Africa’s (RSA) diversity and to claim RSA’s diversity as a source of strength that forms a universal bond of a common set of values. There is a global change in the interaction of children with their environment; their lives are shaped by forces that do not necessarily assist them in learning and applying values. In most countries today, the responsibility for developing values is assigned to schools in formal teaching settings. Values-based education offers an investment in individual and societal improvement through attendance to a values framework. The aim of this qualitative research is to develop a PE programme aligned with the current South African curriculum, enriched with values of Olympism and Ubuntuism, and to present PE teacher training workshops (TTW). Participatory action research will be used as the basis of how data will be collected, analysed, and presented on an ongoing, cyclical basis. PE teachers from different schools in the Tshwane District of RSA will participate as they can best inform the research questions and enhance the understanding of the phenomenon under study. The outcomes of using PE as a tool to teach values can propose recommendations to the Department of Basic Education of RSA to improve and implement a quality PE curriculum that is applicable to practice and that will optimize the chances of meeting the South African National Curriculum Statement standards. A PE programme with the aim of holistic development, based on the values of Olympism and Ubuntuism, can strive to ensure that the values set out in RSA’s constitution are part of PE organization, planning, and teaching at each South African school.

Keywords: olympism, physical education, teacher training, ubuntuism, values-based education

Procedia PDF Downloads 105
12681 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka

Procedia PDF Downloads 296
12680 Semi-Supervised Learning Using Pseudo F Measure

Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian

Abstract:

Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.

Keywords: PU learning, semi-supervised learning, pseudo f measure, classification

Procedia PDF Downloads 235
12679 Digital Skill Framework Required by Students of Building Technology in Nigerian Higher Institutions

Authors: Shirka Kassam Jwasshaka

Abstract:

Graduates from higher educational institutions in Nigeria need to leave with the necessary skills to be independent in the emergence work environment. The goal of this study is to develop a framework of digital skills that Nigerian graduates in building construction need to be proficient in various digital skills to comfortably fit into the global advances in a technological labour market. The descriptive survey design was used in this investigation. The study's population consisted of building construction experts selected from different sites within the North Central geographical zones of Nigeria. Using random sampling approaches, 120 seasoned experts were chosen. Three research questions raised by the researchers guided the study. The data was gathered using a 60-item, structured questionnaire. The questions were formulated around three key skill areas such as digital skills related to ICT, digital skills related to general workforce, and basic digital literacy skills that students should have. A building construction specialist validated the questionnaire. Winstep in conjunction with SPSS was used to determine the Cronbach Alpha reliability of the items' internal consistency and person separation,item measure, item fit based on PTMEA CORR, polarity items, misfit items, unidimensionality, and a person-item map. The Cronbach Coefficient reliability of items for the three sub constructs was 0.70. The results showed nearly every sub component within the three areas of digital skills was regarded as significant to be learn by experts. The researchers recommended among other things, that all parties involved in the education sector should work together to develop a curriculum that covers digital skills which can meet employer’s' needs.

Keywords: lifelong learning, digital skill, framework, building technology

Procedia PDF Downloads 61
12678 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments

Authors: Naduni Ranasinghe

Abstract:

E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.

Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model

Procedia PDF Downloads 157
12677 The Level of Job Satisfaction among English as a Foreign Language Instructors

Authors: Hashem A. Alsamadani

Abstract:

Identifying the level of job satisfaction has many positive benefits for both the worker and employer. The purpose of the study was to examine the overall level of job satisfaction among English as a Foreign Language (EFL) instructors. During the past years, multiple methods were utilized to collect data to determine the level of job satisfaction among teachers. This study was conducted using survey research method. A questionnaire was coded and analyzed using the SPSS. The findings revealed that the overall level of job satisfaction among EFL instructors is high. The study recommended improving conditions of instructors working at public universities so as to gain a high level of job satisfaction and improve outcomes of the teaching-learning process.

Keywords: job satisfaction, EFL teachers, Saudi Arabia, instruction

Procedia PDF Downloads 407
12676 Apply Activity-Based Costing Management System by Key Success Paths to Promote the Competitive Advantages and Operation Performance

Authors: Mei-Fang Wu, Shu-Li Wang, Feng-Tsung Cheng

Abstract:

Highly developed technology and highly competitive global market highlight the important role of competitive advantages and operation performances in sustainable company operation. Activity-Based Costing (ABC) provides accurate operation cost and operation performance information. Rich literature provide relevant research with cases study on Activity-Based Costing application, and yet, there is no research studying on cause relationship between key success factors of applying Activity-Based Costing and its specific outcomes, such as profitability or share market. These relationships provide the ways to handle the key success factors to achieve the specific outcomes for ensuring to promote the competitive advantages and operation performances. The main purposes of this research are exploring the key success paths by Key Success Paths approach which will lead the ways to apply Activity-Base Costing. The Key Success Paths is the innovative method which is exploring the cause relationships and explaining what are the effects of key success factors to specific outcomes of Activity-Based Costing implementation. The cause relationships between key success factors and successful specific outcomes are Key Success Paths (KSPs). KSPs are the guidelines to lead the cost management strategies to achieve the goals of competitive advantages and operation performances. The research findings indicate that good management system design may impact the good outcomes of Activity-Based Costing application and achieve to outstanding competitive advantage, operating performance and profitability as well by KSPs exploration.

Keywords: activity-based costing, key success factors, key success paths approach, key success paths, key failure paths

Procedia PDF Downloads 389
12675 Determinants of Success of University Industry Collaboration in the Science Academic Units at Makerere University

Authors: Mukisa Simon Peter Turker, Etomaru Irene

Abstract:

This study examined factors determining the success of University-Industry Collaboration (UIC) in the science academic units (SAUs) at Makerere University. This was prompted by concerns about weak linkages between industry and the academic units at Makerere University. The study examined institutional, relational, output, and framework factors determining the success of UIC in the science academic units at Makerere University. The study adopted a predictive cross-sectional survey design. Data was collected using a questionnaire survey from 172 academic staff from the six SAUs at Makerere University. Stratified, proportionate, and simple random sampling techniques were used to select the samples. The study used descriptive statistics and linear multiple regression analysis to analyze data. The study findings reveal a coefficient of determination (R-square) of 0.403 at a significance level of 0.000, suggesting that UIC success was 40.3% at a standardized error of estimate of 0.60188. The strength of association between Institutional factors, Relational factors, Output factors, and Framework factors, taking into consideration all interactions among the study variables, was at 64% (R= 0.635). Institutional, Relational, Output and Framework factors accounted for 34% of the variance in the level of UIC success (adjusted R2 = 0.338). The remaining variance of 66% is explained by factors other than Institutional, Relational, Output, and Framework factors. The standardized coefficient statistics revealed that Relational factors (β = 0.454, t = 5.247, p = 0.000) and Framework factors (β = 0.311, t = 3.770, p = 0.000) are the only statistically significant determinants of the success of UIC in the SAU in Makerere University. Output factors (β = 0.082, t =1.096, p = 0.275) and Institutional factors β = 0.023, t = 0.292, p = 0.771) turned out to be statistically insignificant determinants of the success of UIC in the science academic units at Makerere University. The study concludes that Relational Factors and Framework Factors positively and significantly determine the success of UIC, but output factors and institutional factors are not statistically significant determinants of UIC in the SAUs at Makerere University. The study recommends strategies to consolidate Relational and Framework Factors to enhance UIC at Makerere University and further research on the effects of Institutional and Output factors on the success of UIC in universities.

Keywords: university-industry collaboration, output factors, relational factors, framework factors, institutional factors

Procedia PDF Downloads 61
12674 An Exploratory Case Study of the Transference of Skills and Dispositions Used by a Newly Qualified Teacher

Authors: Lynn Machin

Abstract:

Using the lens of a theoretical framework relating to learning to learn the intention of the case study was to explore how transferable the teaching and learning skills of a newly qualified teacher (post-compulsory education) were when used in an overseas, unfamiliar and challenging post-compulsory educational environment. Particularly, the research sought to explore how this newly qualified teacher made use of the skills developed during their teacher training and to ascertain if, and what, other skills were necessary in order for them to have a positive influence on their learners and for them to be able to thrive within a different country and learning milieu. This case study looks at the experience of a trainee teacher who recently qualified in the UK to teach in post compulsory education (i.e. post 16 education). Rather than gaining employment in a UK based academy or college of further education this newly qualified teacher secured her first employment as a teacher in a province in China. Moreover, the newly qualified teacher had limited travel experience and had never travelled to Asia. She was one of the quieter and more reserved members on the one year teacher training course and was the least likely of the group to have made the decision to work abroad. How transferable the pedagogical skills that she had gained during her training would be when used in a culturally different and therefore (to her, challenging) environment was a key focus of the study. Another key focus was to explore the dispositions being used by the newly qualified teacher in order for her to teach and to thrive in an overseas educational environment. The methodological approach used for this study was both interpretative and qualitative. Associated methods were: Observation: observing the wider and operational practice of the newly qualified teacher over a five day period, and their need, ability and willingness to be reflective, resilient, reciprocal and resourceful. Interview: semi-structured interview with the newly qualified teacher following the observation of her practice. Findings from this case study illuminate the modifications made by the newly qualified teacher to her bank of teaching and learning strategies as well as the essentiality of dispositions used by her to know how to learn and also, crucially, to be ready and willing to do so. Such dispositions include being resilient, resourceful, reciprocal and reflective; necessary in order to adapt to the emerging challenges encountered by the teacher during their first months of employment in China. It is concluded that developing the skills to teach is essential for good teaching and learning practices. Having dispositions that enable teachers to work in ever changing conditions and surroundings is, this paper argues, essential for transferability and longevity of use of these skills.

Keywords: learning, post-compulsory, resilience, transferable

Procedia PDF Downloads 292
12673 Developing a Simulation-Based Optimization Framework to Perform Energy Simulation for Indian Buildings

Authors: Sujoy Anirudha Das, Albert Thomas

Abstract:

Building sector is a major consumer of energy globally, and it has corresponding effects to the environment with respect to the carbon emissions. Given the fact that India is expected to add 40-billion square meter of new buildings till 2050, we need frameworks that help in reducing the overall energy consumption in the building sector. Even though several simulation-based frameworks that help in analyzing the building energy consumption are developed globally, in the Indian context, to the best of our knowledge, there is a lack of a comprehensive, yet user-friendly framework to simulate and optimize the effects of various energy influencing factors, specifically for Indian buildings. Therefore, this study is aimed at developing a simulation-based optimization framework to model the energy interactions in different types of Indian buildings by considering the dynamic nature of various energy influencing factors. This comprehensive framework can be used by various building stakeholders to test the energy effects of different factors such as, but not limited to, the various building materials, the orientation, the weather fluctuations, occupancy changes and the type of the building (e.g., office, residential). The results from the case study involving several building types would help us in gaining insights to build new energy-efficient buildings as well as retrofit the existing structures in a more convenient way to consume less energy, exclusively for an Indian scenario.

Keywords: building energy consumption, building energy simulations, energy efficient buildings, optimization framework

Procedia PDF Downloads 177
12672 Confluence of Relations: An Auto-Ethnographic Account of Field Recording in the Anthropocene Age

Authors: Freya Zinovieff

Abstract:

In the age of the Anthropocene, all ecosystems, no matter how remote, is influenced by the relations between humans and technology. These influences are evidenced by current extinction rates, changes in species diversity, and species adaptation to pollution. Field recording is a tool through which we are able to document the extent to which life forms associated with the place are entangled with human-technology relationships. This paper documents the convergence of interaction between technologies, species, and landscape via an auto-ethnographic account of a field recording taken from a cell phone tower in Bali, Indonesia. In the recording, we hear a confluence of relations where critter and technology meet. The electrical hum of the tower merges with frogs and the amaranthine throb of crickets, in such a way that it is hard to tell where technology begins and the voice of creatures ends. The outcomes of this venture resulted in a framework for evaluating the sensorial relations within field recording. The framework calls for the soundscape to be understood as a multilayered ontology through which there is a convergence of multispecies relationships, or entanglements, across time and geographic location. These entanglements are not necessarily obvious. Sometimes quiet, sometimes elusive, sometimes only audible through the mediated conduit of digital technology. The paper argues that to be aware of these entanglements is to open ourselves to a type of beauty that is firmly rooted in the present paradigm of extinction and loss. By virtue of this understanding, we are bestowed with an opportunity to embrace the grave reality of the current sixth mass extinction and move forwards with what activist Joanna Macy calls the compassionate action.

Keywords: anthropocene, human-technology relationships, multispecies ethnography, field recording

Procedia PDF Downloads 150
12671 Effect of Institution Volume on Mortality and Outcomes in Osteoporotic Hip Fracture Care

Authors: J. Milton, C. Uzoigwe, O. Ayeko, B. Offorha, K. Anderson, R. G. Middleton

Abstract:

Background: We used the UK National Hip Fracture database to determine the effect of institution hip fracture case volume on hip fracture healthcare outcomes in 2019. Using logistic regression for each healthcare outcome, we compared the best performing 50 units with the poorest performing 50 units in order to determine if the unit volume was associated with performance for each particular outcome. Method: We analysed 175 institutions treating a total of 67,673 patients over the course of a year. Results: The number of hip fractures seen per unit ranged between 86 and 952. Larger units tendered to perform health assessments more consistently and mobilise patients more expeditiously post-operatively. Patients treated at large institutions had shorter lengths of stay. With regard to most other outcomes, there was no association between unit case volume and performance, notably compliance with the Best Practice Tariff, time to surgery, proportion of eligible patients undergoing total hip arthroplasty, length of stay, delirium risk, and pressure sore risk assessments. Conclusion: There is no relationship between unit volume and the majority of health care outcomes. It would seem that larger institutions tend to perform better at parameters that are dependent upon personnel numbers. However, where the outcome is contingent, even partially, on physical infrastructure capacity, there was no difference between larger and smaller units.

Keywords: institution volume, mortality, neck of femur fractures, osteoporosis

Procedia PDF Downloads 96
12670 Digital Literacy, Assessment and Higher Education

Authors: James Moir

Abstract:

Recent evidence suggests that academic staff face difficulties in applying new technologies as a means of assessing higher order assessment outcomes such as critical thinking, problem solving and creativity. Although higher education institutional mission statements and course unit outlines purport the value of these higher order skills there is still some question about how well academics are equipped to design curricula and, in particular, assessment strategies accordingly. Despite a rhetoric avowing the benefits of these higher order skills, it has been suggested that academics set assessment tasks up in such a way as to inadvertently lead students on the path towards lower order outcomes. This is a controversial claim, and one that this papers seeks to explore and critique in terms of challenging the conceptual basis of assessing higher order skills through new technologies. It is argued that the use of digital media in higher education is leading to a focus on students’ ability to use and manipulate of these products as an index of their flexibility and adaptability to the demands of the knowledge economy. This focus mirrors market flexibility and encourages programmes and courses of study to be rhetorically packaged as such. Curricular content has become a means to procure more or less elaborate aggregates of attributes. Higher education is now charged with producing graduates who are entrepreneurial and creative in order to drive forward economic sustainability. It is argued that critical independent learning can take place through the democratisation afforded by cultural and knowledge digitization and that assessment needs to acknowledge the changing relations between audience and author, expert and amateur, creator and consumer.

Keywords: higher education, curriculum, new technologies, assessment, higher order skills

Procedia PDF Downloads 375
12669 Efficacy of Social-emotional Learning Programs Amongst First-generation Immigrant Children in Canada and The United States- A Scoping Review

Authors: Maria Gabrielle "Abby" Dalmacio

Abstract:

Social-emotional learning is a concept that is garnering more importance when considering the development of young children. The aim of this scoping literature review is to explore the implementation of social-emotional learning programs conducted with first-generation immigrant young children ages 3-12 years in North America. This review of literature focuses on social-emotional learning programs taking place in early childhood education centres and elementary school settings that include the first-generation immigrant children population to determine if and how their understanding of social-emotional learning skills may be impacted by the curriculum being taught through North American educational pedagogy. Research on early childhood education and social-emotional learning reveals the lack of inter-cultural adaptability in social emotional learning programs and the potential for immigrant children as being assessed as developmentally delayed due to programs being conducted through standardized North American curricula. The results of this review point to a need for more research to be conducted with first-generation immigrant children to help reform social-emotional learning programs to be conducive for each child’s individual development. There remains to be a gap of knowledge in the current literature on social-emotional learning programs and how educators can effectively incorporate the intercultural perspectives of first-generation immigrant children in early childhood education.

Keywords: early childhood education, social-emotional learning, first-generation immigrant children, north america, inter-cultural perspectives, cultural diversity, early educational frameworks

Procedia PDF Downloads 101