Search results for: heat transfer model
19018 Designing an Automatic Mechanical System to Prevent Cancers Caused by Drinks
Authors: Ghasem Yazadani, Hamidreza Ahmadi, Masoud Ahmadi, Sajad Rezazadeh
Abstract:
In this paper with designing and proposing a compound of a heating and cooling system has been tried to show effect of this system on preventing esophagus cancer that can be caused by hot and cold drinks such as tea, coffee and ice water. This system has been simulated mechanically by fluent software and also has been validated by experimental way and a comprehensive result has been presented. Both of solution ways show that this system can reduce or increase temperature of drink to safe very dramatically and it can be a huge step toward consuming drinks safely and also it can be efficient about time issues. The system consists of a temperature sensor and an electronic controller that has a computer program to act automatically this task. Also this system has been presented after many different simulations and has been tried to find the best one in the point view of velocity of heating and cooling.Keywords: fluent, heat transfer, controller, esophagus cancer
Procedia PDF Downloads 38519017 Experimental Study of Complete Loss of Coolant Flow (CLOF) Test by System–Integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL) with Passive Residual Heat Removal System (PRHRS)
Authors: Jin Hwa Yang, Hwang Bae, Sung Uk Ryu, Byong Guk Jeon, Sung Jae Yi, Hyun Sik Park
Abstract:
Experimental studies using a large-scale thermal-hydraulic integral test facility, System–integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL), have been carried out to validate the performance of the prototype, SMART. After Fukushima accident, the passive safety systems have been dealt as important designs for retaining of nuclear safety. One of the concerned scenarios for evaluating the passive safety system is a Complete Loss of Coolant Flow (CLOF). The flowrate of coolant in the primary system is maintained by Reactor Coolant Pump (RCP). When the supply of electric power of RCP is shut off, the flowrate of coolant decreases sharply, and the temperature of the coolant increases rapidly. Therefore, the reactor trip signal is activated to prevent the over-heating of the core. In this situation, Passive Residual Heat Removal System (PRHRS) plays a significant role to assure the soundness of the SMART. The PRHRS using a two-phase natural circulation is a passive safety system in the SMART to eliminate the heat of steam generator in the secondary system with heat exchanger submarined in the Emergency Cooling Tank (ECT). As the RCPs continue to coast down, inherent natural circulation in the primary system transfers heat to the secondary system. The transferred heat is removed by PRHRS in the secondary system. In this paper, the progress of the CLOF accident is described with experimental data of transient condition performed by SMART-ITL. Finally, the capability of passive safety system and inherent natural circulation will be evaluated.Keywords: CLOF, natural circulation, PRHRS, SMART-ITL
Procedia PDF Downloads 43719016 Effect of Magnetic Field on Unsteady MHD Poiseuille Flow of a Third Grade Fluid Under Exponential Decaying Pressure Gradient with Ohmic Heating
Authors: O. W. Lawal, L. O. Ahmed, Y. K. Ali
Abstract:
The unsteady MHD Poiseuille flow of a third grade fluid between two parallel horizontal nonconducting porous plates is studied with heat transfer. The two plates are fixed but maintained at different constant temperature with the Joule and viscous dissipation taken into consideration. The fluid motion is produced by a sudden uniform exponential decaying pressure gradient and external uniform magnetic field that is perpendicular to the plates. The momentum and energy equations governing the flow are solved numerically using Maple program. The effects of magnetic field and third grade fluid parameters on velocity and temperature profile are examined through several graphs.Keywords: exponential decaying pressure gradient, MHD flow, Poiseuille flow, third grade fluid
Procedia PDF Downloads 48319015 Improving the Employee Transfer Experience within an Organization
Authors: Drew Fockler
Abstract:
This research examines how to improve an employee’s experience when transferring between departments within an organization. This research includes a historical review of a Canadian retail organization. Based on this historical review, gaps are identified between current and future visions to show where problems with existing training and development practices need to be resolved to reduce front-line employee turnover within an organization. The strategies within this paper support leaders through the LEAD: Listen, Explore, Act and Develop, Change Management Model. The LEAD Change Management Model supports the change process. This research proposes three possible solutions to improve an employee who is transferring between departments. The best solution to resolve the problem of improving an employee moving between departments experience is creating a Training Manager position within the retail store. A Training Manager position could support both employees and leadership with training and development of staff who are moving between departments. Within this research, an implementation plan using the TransX Model was created. The TransX Model is a hybrid of Leader-Member Exchange Theory and Transformational Leadership Theory to facilitate this organizational change within an organization by creating a common vision. Finally, this research provides the next steps as well as future considerations to enhance the training manager role within an organization.Keywords: employee transfers, employee engagement, human resources, employee induction, TransX model, lead change management model
Procedia PDF Downloads 7719014 Variation of Fertility-Related Traits in Italian Tomato Landraces under Mild Heat Stress
Authors: Maurizio E. Picarella, Ludovica Fumelli, Francesca Siligato, Andrea Mazzucato
Abstract:
Studies on reproductive dynamics in crops subjected to heat stress are crucial to breed more tolerant cultivars. In tomato, cultivars, breeding lines, and wild species have been thoroughly evaluated for the response to heat stress in several studies. Here, we address the reaction to temperature stress in a panel of selected landraces representing genotypes cultivated before the advent of professional varieties that usually show high adaptation to local environments. We adopted an experimental design with two open field trials, where transplanting was spaced by one month. In the second field, plants were thus subjected to mild stress with natural temperature fluctuations. The genotypes showed wide variation for both vegetative (plant height) and reproductive (stigma exsertion, pollen viability, number of flowers per inflorescence, and fruit set) traits. On average, all traits were affected by heat conditions; except for the number of flowers per inflorescence, the “G*E” interaction was always significant. In agreement with studies based on different materials, estimated broad sense heritability was high for plant height, stigma exsertion, and pollen viability and low for the number of flowers per inflorescence and fruit set. Despite the interaction, traits recorded in control and in heat conditions were positively correlated. The first two principal components estimated by multivariate analysis explained more than 50% of the total variability. The study indicated that landraces present a wide variability for the response of reproductive traits to temperature stress and that such variability could be very informative to dissect the traits with higher heritability and identify new QTL useful for breeding more resilient varieties.Keywords: fruit set, heat stress, solanum lycopersicum L., style exsertion, tomato
Procedia PDF Downloads 12919013 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump
Authors: C. Patrascioiu, Cao Minh Ahn
Abstract:
The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.Keywords: absorption, distillation, heat pump, Unisim design
Procedia PDF Downloads 33819012 Energy Efficiency of Secondary Refrigeration with Phase Change Materials and Impact on Greenhouse Gases Emissions
Authors: Michel Pons, Anthony Delahaye, Laurence Fournaison
Abstract:
Secondary refrigeration consists of splitting large-size direct-cooling units into volume-limited primary cooling units complemented by secondary loops for transporting and distributing cold. Such a design reduces the refrigerant leaks, which represents a source of greenhouse gases emitted into the atmosphere. However, inserting the secondary circuit between the primary unit and the ‘users’ heat exchangers (UHX) increases the energy consumption of the whole process, which induces an indirect emission of greenhouse gases. It is thus important to check whether that efficiency loss is sufficiently limited for the change to be globally beneficial to the environment. Among the likely secondary fluids, phase change slurries offer several advantages: they transport latent heat, they stabilize the heat exchange temperature, and the formerly evaporators still can be used as UHX. The temperature level can also be adapted to the desired cooling application. Herein, the slurry {ice in mono-propylene-glycol solution} (melting temperature Tₘ of 6°C) is considered for food preservation, and the slurry {mixed hydrate of CO₂ + tetra-n-butyl-phosphonium-bromide in aqueous solution of this salt + CO₂} (melting temperature Tₘ of 13°C) is considered for air conditioning. For the sake of thermodynamic consistency, the analysis encompasses the whole process, primary cooling unit plus secondary slurry loop, and the various properties of the slurries, including their non-Newtonian viscosity. The design of the whole process is optimized according to the properties of the chosen slurry and under explicit constraints. As a first constraint, all the units must deliver the same cooling power to the user. The other constraints concern the heat exchanges areas, which are prescribed, and the flow conditions, which prevent deposition of the solid particles transported in the slurry, and their agglomeration. Minimization of the total energy consumption leads to the optimal design. In addition, the results are analyzed in terms of exergy losses, which allows highlighting the couplings between the primary unit and the secondary loop. One important difference between the ice-slurry and the mixed-hydrate one is the presence of gaseous carbon dioxide in the latter case. When the mixed-hydrate crystals melt in the UHX, CO₂ vapor is generated at a rate that depends on the phase change kinetics. The flow in the UHX, and its heat and mass transfer properties are significantly modified. This effect has never been investigated before. Lastly, inserting the secondary loop between the primary unit and the users increases the temperature difference between the refrigerated space and the evaporator. This results in a loss of global energy efficiency, and therefore in an increased energy consumption. The analysis shows that this loss of efficiency is not critical in the first case (Tₘ = 6°C), while the second case leads to more ambiguous results, partially because of the higher melting temperature.The consequences in terms of greenhouse gases emissions are also analyzed.Keywords: exergy, hydrates, optimization, phase change material, thermodynamics
Procedia PDF Downloads 13119011 The Effects of Different Parameters of Wood Floating Debris on Scour Rate Around Bridge Piers
Authors: Muhanad Al-Jubouri
Abstract:
A local scour is the most important of the several scours impacting bridge performance and security. Even though scour is widespread in bridges, especially during flood seasons, the experimental tests could not be applied to many standard highway bridges. A computational fluid dynamics numerical model was used to solve the problem of calculating local scouring and deposition for non-cohesive silt and clear water conditions near single and double cylindrical piers with the effect of floating debris. When FLOW-3D software is employed with the Rang turbulence model, the Nilsson bed-load transfer equation and fine mesh size are considered. The numerical findings of single cylindrical piers correspond pretty well with the physical model's results. Furthermore, after parameter effectiveness investigates the range of outcomes based on predicted user inputs such as the bed-load equation, mesh cell size, and turbulence model, the final numerical predictions are compared to experimental data. When the findings are compared, the error rate for the deepest point of the scour is equivalent to 3.8% for the single pier example.Keywords: local scouring, non-cohesive, clear water, computational fluid dynamics, turbulence model, bed-load equation, debris
Procedia PDF Downloads 6919010 Geothermal Energy Evaluation of Lower Benue Trough Using Spectral Analysis of Aeromagnetic Data
Authors: Stella C. Okenu, Stephen O. Adikwu, Martins E. Okoro
Abstract:
The geothermal energy resource potential of the Lower Benue Trough (LBT) in Nigeria was evaluated in this study using spectral analysis of high-resolution aeromagnetic (HRAM) data. The reduced to the equator aeromagnetic data was divided into sixteen (16) overlapping blocks, and each of the blocks was analyzed to obtain the radial averaged power spectrum which enabled the computation of the top and centroid depths to magnetic sources. The values were then used to assess the Curie Point Depth (CPD), geothermal gradients, and heat flow variations in the study area. Results showed that CPD varies from 7.03 to 18.23 km, with an average of 12.26 km; geothermal gradient values vary between 31.82 and 82.50°C/km, with an average of 51.21°C/km, while heat flow variations range from 79.54 to 206.26 mW/m², with an average of 128.02 mW/m². Shallow CPD zones that run from the eastern through the western and southwestern parts of the study area correspond to zones of high geothermal gradient values and high subsurface heat flow distributions. These areas signify zones associated with anomalous subsurface thermal conditions and are therefore recommended for detailed geothermal energy exploration studies.Keywords: geothermal energy, curie-point depth, geothermal gradient, heat flow, aeromagnetic data, LBT
Procedia PDF Downloads 7619009 Urban Vegetation as a Mitigation Strategy for Urban Heat Island Effect a Case of Kerala
Authors: Athul T.
Abstract:
Kerala cities in India are grappling with an alarming rise in temperatures fueled by the Urban Heat Island (UHI) effect. This phenomenon, exacerbated by rapid urbanization and climate change, poses a significant threat to public health and environmental well-being. In response to this growing concern, this study investigates the potential of urban vegetation as a powerful mitigation strategy against UHI. The study delves into the intricate relationship between micro-climate changes, UHI intensity, and the strategic placement of greenery in alleviating these effects. Utilizing advanced simulation software, the most effective vegetation types and configurations for maximizing UHI reduction will be identified. By analyzing the current state of Kozhikode's urban vegetation and its influence on microclimates, this study aims to tailor actionable strategies for Kerala cities, potentially paving the way for a more sustainable and thermally comfortable urban future.Keywords: urban heat island, climate change, micro climate, urban vegetation
Procedia PDF Downloads 6319008 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software
Authors: Elham Zamiri
Abstract:
In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 ◦C to 70 ◦C. This investigation is developable for any geometry and material used in the nuclear reactor.Keywords: nuclear fuel fission, numberal simulation, fuel rod, reactor, Fluent software
Procedia PDF Downloads 16619007 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 7519006 Thermal Comfort and Energy Saving Evaluation of a Combined System in an Office Room Using Displacement Ventilation
Authors: A. Q. Ahmed, S. Gao
Abstract:
In this paper, the energy saving and human thermal comfort in a typical office room are investigated. The impact of a combined system of exhaust inlet air with light slots located at the ceiling level in a room served by displacement ventilation system is numerically modelled. Previous experimental data are used to validate the computational fluid dynamic (CFD) model. A case study of simulated office room includes two seating occupants, two computers, two data loggers and four lamps. The combined system is located at the ceiling level above the heat sources. A new method of calculation for the cooling coil load in stratified air distribution (STRAD) system is used in this study. The results show that 47.4 % energy saving of space cooling load can be achieved by combing the exhaust inlet air with light slots at the ceiling level above the heat sources.Keywords: air conditioning, displacement ventilation, energy saving, thermal comfort
Procedia PDF Downloads 48319005 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber
Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo
Abstract:
Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties
Procedia PDF Downloads 35319004 Temperature-Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat Vs. Open Flame
Authors: Caighley Logan
Abstract:
The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FT-IR), and X-Ray Fluorescence (XRF), the data collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (8.5ft x 8ft) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p=<0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.Keywords: forensic anthropology, thermal alterations, porcine bone, FTIR, XRF
Procedia PDF Downloads 8519003 Sustaining Language Learning: A Case Study of Multilingual Writers' ePortfolios
Authors: Amy Hodges, Deanna Rasmussen, Sherry Ward
Abstract:
This paper examines the use of ePortfolios in a two-course sequence for ESL (English as a Second Language) students at an international branch campus in Doha, Qatar. ePortfolios support the transfer of language learning, but few have examined the sustainability of that transfer across an ESL program. Drawing upon surveys and interviews with students, we analyze three case studies that complicate previous research on metacognition, language learning, and ePortfolios. Our findings have implications for those involved in ESL programs and assessment of student writing.Keywords: TESOL, electronic portfolios, assessment, technology
Procedia PDF Downloads 26119002 Electric Field Impact on the Biomass Gasification and Combustion Dynamics
Authors: M. Zake, I. Barmina, R. Valdmanis, A. Kolmickovs
Abstract:
Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3 % and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10 % increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10 %Keywords: biomass, combustion, electrodynamic control, gasification
Procedia PDF Downloads 44419001 The Optimization of Sun Collector Parameters
Authors: István Patkó, Hosam Bayoumi Hamuda, András Szeder
Abstract:
In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.Keywords: heat energy, tilt angle, direction of sun collector, contamination of surface
Procedia PDF Downloads 43319000 Controlled Doping of Graphene Monolayer
Authors: Vedanki Khandenwal, Pawan Srivastava, Kartick Tarafder, Subhasis Ghosh
Abstract:
We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations.Keywords: graphene, doping, charge transfer, liquid phase exfoliation
Procedia PDF Downloads 6518999 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting
Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos
Abstract:
Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning
Procedia PDF Downloads 10718998 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map
Procedia PDF Downloads 10418997 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters
Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng
Abstract:
Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum
Procedia PDF Downloads 16218996 Effect of Post Hardening on PVD Coated Tools
Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli
Abstract:
In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing
Procedia PDF Downloads 35618995 Linking Business Owners’ Choice of Organizational Form to Appraisers’ Determination of Value: An Agency Theory Perspective
Authors: Majdi Anwar Quttainah, William Paczkowski, Ali Muhammad
Abstract:
Determining the value of a privately held firms confound those in academia as well as practitioners in the fields of appraisal, forensic accounting, and law. Divergent parties to the transfer look to apply the valuation technique to serve their own best interests. This paper seeks to explore how agency theory induces owners to choose the form of their businesses at inception and how this choice will affect the appraisers’ valuation of the firm at the transfer of ownership.Keywords: organizational form, agency theory, value
Procedia PDF Downloads 43118994 Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates
Authors: L. O. Luengas, E. V. Morales, L. F. G. De Souza, I. S. Bott
Abstract:
Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation.Keywords: duplex stainless steels, HAZ, microstructural characterization, physical simulation
Procedia PDF Downloads 27718993 Building Information Management in Context of Urban Spaces, Analysis of Current Use and Possibilities
Authors: Lucie Jirotková, Daniel Macek, Andrea Palazzo, Veronika Malinová
Abstract:
Currently, the implementation of 3D models in the construction industry is gaining popularity. Countries around the world are developing their own modelling standards and implement the use of 3D models into their individual permitting processes. Another theme that needs to be addressed are public building spaces and their subsequent maintenance, where the usage of BIM methodology is directly offered. The significant benefit of the implementation of Building Information Management is the information transfer. The 3D model contains not only the spatial representation of the item shapes but also various parameters that are assigned to the individual elements, which are easily traceable, mainly because they are all stored in one place in the BIM model. However, it is important to keep the data in the models up to date to achieve useability of the model throughout the life cycle of the building. It is now becoming standard practice to use BIM models in the construction of buildings, however, the building environment is very often neglected. Especially in large-scale development projects, the public space of buildings is often forwarded to municipalities, which obtains the ownership and are in charge of its maintenance. A 3D model of the building surroundings would include both the above-ground visible elements of the development as well as the underground parts, such as the technological facilities of water features, electricity lines for public lighting, etc. The paper shows the possibilities of a model in the field of information for the handover of premises, the following maintenance and decision making. The attributes and spatial representation of the individual elements make the model a reliable foundation for the creation of "Smart Cities". The paper analyses the current use of the BIM methodology and presents the state-of-the-art possibilities of development.Keywords: BIM model, urban space, BIM methodology, facility management
Procedia PDF Downloads 12418992 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram
Authors: Mona Hejazi, Ali Motie Nasrabadi
Abstract:
Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG
Procedia PDF Downloads 46918991 Thermal Stress and Computational Fluid Dynamics Analysis of Coatings for High-Temperature Corrosion
Authors: Ali Kadir, O. Anwar Beg
Abstract:
Thermal barrier coatings are among the most popular methods for providing corrosion protection in high temperature applications including aircraft engine systems, external spacecraft structures, rocket chambers etc. Many different materials are available for such coatings, of which ceramics generally perform the best. Motivated by these applications, the current investigation presents detailed finite element simulations of coating stress analysis for a 3- dimensional, 3-layered model of a test sample representing a typical gas turbine component scenario. Structural steel is selected for the main inner layer, Titanium (Ti) alloy for the middle layer and Silicon Carbide (SiC) for the outermost layer. The model dimensions are 20 mm (width), 10 mm (height) and three 1mm deep layers. ANSYS software is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion/corrosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. To recreate gas turbine scenarios; in the stress analysis simulations, static loading and thermal environment conditions of up to 1000 N and 1000 degrees Kelvin are imposed. The default solver was used to set the controls for the simulation with the fixed support being set as one side of the model while subjecting the opposite side to a tabular force of 500 and 1000 Newtons. Equivalent elastic strain, total deformation, equivalent stress and strain energy were computed for all cases. Each analysis was duplicated twice to remove one of the layers each time, to allow testing of the static and thermal effects with each of the coatings. ANSYS FLUENT simulation was conducted to study the effect of corrosion on the model under similar thermal conditions. The momentum and energy equations were solved and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A Discrete Phase Model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection (particles prescribed 5 m/s velocity and 1273.15 K). Extensive visualization of results is provided. The simulations reveal interesting features associated with coating response to realistic gas turbine loading conditions including significantly different stress concentrations with different coatings.Keywords: thermal coating, corrosion, ANSYS FEA, CFD
Procedia PDF Downloads 13518990 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India
Authors: Dharmendra Jariwala, Robin Christian
Abstract:
Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.Keywords: relative humidity, textile industry, thermal stress, WBGT
Procedia PDF Downloads 17318989 Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis
Authors: Sayali Vyas, Atharva Desai, Shreyas Badave, Apurv Kulkarni, B. Rajiv
Abstract:
The Failure Modes and Effect Analysis (FMEA) is an efficient evaluation technique to identify potential failures in products, processes, and services. FMEA is designed to identify and prioritize failure modes. It proves to be a useful method for identifying and correcting possible failures at its earliest possible level so that one can avoid consequences of poor performance. In this paper, FMEA tool is used in detection of failures of various components of heat exchanger cycle and to identify critical failures of the components which may hamper the system’s performance. Further, a detailed Pareto analysis is done to find out the most critical components of the cycle, the causes of its failures, and possible recommended actions. This paper can be used as a checklist which will help in maintainability of the system.Keywords: FMEA, heat exchanger cycle, Ishikawa diagram, pareto analysis, RPN (Risk Priority Number)
Procedia PDF Downloads 402