Search results for: fuel theft
344 Mathematical Analysis of Variation in Inlet Shock Wave Angle on Specific Impulse of Scramjet Engine
Authors: Shrikant Ghadage
Abstract:
Study of shock waves generated in the Scramjet engine is typically restricted to pressure, temperature, density, entropy and Mach number variation across the shock wave. The present work discusses the impact of inlet shock wave angles on the specific impulse of the Scramjet engine. A mathematical analysis has done for the isentropic hypersonic flow of air flowing through a Scramjet with hydrogen fuel at an altitude of 30 km. Analysis has been done in order to get optimum shock wave angle to achieve maximum impulse. Since external drag has excluded from the analysis, the losses due to friction are not considered for the present analysis. When Mach number of the airflow at the entry of the nozzle reaches unity, then that flow is choked. This condition puts limitations on increasing the inlet shock wave angle. As inlet shock wave angle increases, speed of the flow entering into the nozzle decreases, which results in an increase in the specific impulse of the engine. When the speed of the flow at the entry of the nozzle reduces below sonic speed, then there is no further increase in the specific impulse of the engine. Here the Conclusion is the thrust and specific impulse of a scramjet engine, which increases gradually with an increase in inlet shock wave angle up to the condition when airflow speed reaches sonic velocity at the exit of the combustor. In addition to that, variation in drag force at the inlet of the scramjet and variation in hypersonic flow conditions at every stage of the scramjet also studied in order to understand variation on flow characteristics with respect to flow deflection angle. Essentially, it helps in designing inlet profile for the Scramjet engine to achieve optimum specific impulse.Keywords: hypersonic flow, scramjet, shock waves, specific impulse, mathematical analysis
Procedia PDF Downloads 168343 The Roles of Muslims Scholars in Minifying Religious Extremism for Religious Tolerance and Peace Building in Nigeria
Authors: Mukhtar Sarkin-Kebbi
Abstract:
Insurgency, religious extremism and other related religious crises become hydra-headed in Nigeria, which caused destruction of human lives and properties worth of billions naira. As result, millions people were displaced and million children were out of school most of whom from Muslims community. The wrong teaching and misinterpretation of Islam by some Muslim community fuel the spread of extremist ideology hatred among Muslim sects, non-Muslims and emergency of extremist groups, like Boko Haram. A multi-religious country like Nigeria to realise its development in all human aspects, there must be unity and religious tolerance. Many agreed that changing the ideologies of insurgents and religious extremism will require intellectual role with vigorous campaign. Muslim scholars can play a vital role in promoting social reform and peaceful coexistence. This paper discusses the importance of unity among Muslim community and religious tolerance in light of the Qur’an and the Hadith. The paper also reviews the relationship between Muslims and non Muslims during the life time the Prophet (S.A.W.) in order to serve as exemplary model. Contemporary issues such as religious extremism, sectarians, intolerance and their consequences were examined. To minify religious intolerance and extremism,the paper identifies the roles to be played by Muslim scholars with references from Qur’an and Sunnah. The paper concludes that to realise overall human development and eternal salvation, Muslim should shun away from any religious crises and embrace unity and religious tolerance. Finally the paper recommends among others that only pious and learned scholars should be allowed to preach in any religious gathering, Muslim should exercise patience, tolerance in dealing with Muslims and non Muslims. Muslims should leave by example from the teaching of Qur’an and Sunnah of the Prophet (S.A.W.).Keywords: Muslim scholars, peace building, religious extremism, religious tolerance
Procedia PDF Downloads 213342 Studies on the Use of Sewage Sludge in Agriculture or in Incinerators
Authors: Catalina Iticescu, Lucian Georgescu, Mihaela Timofti, Dumitru Dima, Gabriel Murariu
Abstract:
The amounts of sludge resulting from the treatment of domestic and industrial wastewater can create serious environmental problems if no solutions are found to eliminate them. At present, the predominant method of sewage sludge disposal is to store and use them in agricultural applications. The sewage sludge has fertilizer properties and can be used to enrich agricultural soils due to the nutrient content. In addition to plant growth (nitrogen and phosphorus), the sludge also contains heavy metals in varying amounts. An increasingly used method is the incineration of sludge. Thermal processes can be used to convert large amounts of sludge into useful energy. The sewage sludge analyzed for the present paper was extracted from the Wastewater Treatment Station (WWTP) Galati, Romania. The physico-chemical parameters determined were: pH (upH), nutrients and heavy metals. The determination methods were electrochemical, spectrophotometric and energy dispersive X–ray analyses (EDX). The results of the tests made on the content of nutrients in the sewage sludge have shown that existing nutrients can be used to increase the fertility of agricultural soils. The conclusion reached was that these sludge can be safely used on agricultural land and with good agricultural productivity results. To be able to use sewage sludge as a fuel, we need to know its calorific values. For wet sludge, the caloric power is low, while for dry sludge it is high. Higher calorific value and lower calorific value are determined only for dry solids. The apparatus used to determine the calorific power was a Parr 6755 Solution Calorimeter Calorimeter (Parr Instrument Company USA 2010 model). The calorific capacities for the studied sludge indicate that they can be used successfully in incinerators. Mixed with coal, they can also be used to produce electricity. The advantages are: it reduces the cost of obtaining electricity and considerably reduces the amount of sewage sludge.Keywords: agriculture, incinerators, properties, sewage sludge
Procedia PDF Downloads 171341 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities
Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh
Abstract:
Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene
Procedia PDF Downloads 372340 Analysis of the Behavior of the Structure Under Internal Anfo Explosion
Authors: Seung-Min Ko, Seung-Jai Choi, Gun Jung, Jang-Ho Jay Kim
Abstract:
Although extensive explosion-related research has been performed in the past several decades, almost no research has focused on internal blasts. However, internal blast research is needed to understand about the behavior of a containment structure or building under internal blast loading, as in the case of the Chornobyl and Fukushima nuclear accidents. Therefore, the internal blast study concentrated on RC and PSC structures is performed. The test data obtained from reinforced concrete (RC) and prestressed concrete (PSC) tubular structures applied with an internal explosion using ammonium nitrate/fuel oil (ANFO) charge are used to assess their deformation resistance and ultimate failure load based on the structural stiffness change under various charge weight. For the internal blast charge weight, ANFO explosive charge weights of 15.88, 20.41, 22.68 and 24.95 kg were selected for the RC tubular structures, and 22.68, 24.95, 27.22, 29.48, and 31.75 kg were selected for PSC tubular structures, which were detonated at the center of cross section at the mid-span with a standoff distance of 1,000mm to the inner wall surface. Then, the test data were used to predict the internal charge weight required to fail a real scale reinforced concrete containment vessels (RCCV) and prestressed concrete containment vessel (PCCV). Then, the analytical results based on the experimental data were derived using the simple assumptions of the models, and another approach using the stiffness, deformation and explosion weight relationship was used to formulate a general method for analyzing internal blasted tubular structures. A model of the internal explosion of a steel tube was used as an example for validation. The proposed method can be used generically, using factors according to the material characteristics of the target structures. The results of the study are discussed in detail in the paper.Keywords: internal blast, reinforced concrete, RCCV, PCCV, stiffness, blast safety
Procedia PDF Downloads 79339 Dual Metal Organic Framework Derived N-Doped Fe3C Nanocages Decorated with Ultrathin ZnIn2S4 Nanosheets for Efficient Photocatalytic Hydrogen Generation
Authors: D. Amaranatha Reddy
Abstract:
Highly efficient and stable co-catalysts materials is of great important for boosting photo charge carrier’s separation, transportation efficiency, and accelerating the catalytic reactive sites of semiconductor photocatalysts. As a result, it is of decisive importance to fabricate low price noble metal free co-catalysts with high catalytic reactivity, but it remains very challenging. Considering this challenge here, dual metal organic frame work derived N-Doped Fe3C nanocages have been rationally designed and decorated with ultrathin ZnIn2S4 nanosheets for efficient photocatalytic hydrogen generation. The fabrication strategy precisely integrates co-catalyst nanocages with ultrathin two-dimensional (2D) semiconductor nanosheets by providing tightly interconnected nano-junctions and helps to suppress the charge carrier’s recombination rate. Furthermore, constructed highly porous hybrid structures expose ample active sites for catalytic reduction reactions and harvest visible light more effectively by light scattering. As a result, fabricated nanostructures exhibit superior solar driven hydrogen evolution rate (9600 µmol/g/h) with an apparent quantum efficiency of 3.6 %, which is relatively higher than the Pt noble metal co-catalyst systems and earlier reported ZnIn2S4 based nanohybrids. We believe that the present work promotes the application of sulfide based nanostructures in solar driven hydrogen production.Keywords: photocatalysis, water splitting, hydrogen fuel production, solar-driven hydrogen
Procedia PDF Downloads 133338 Potential of Rice Husk Ash as a Partial Cement Replacement in Concrete for Highways Application
Authors: Ash Ahmed, Fraser Hyndman, Heni Fitriani, John Kamau
Abstract:
The highway pavement is the biggest structural asset a government can construct and maintain. Concrete rigid pavements are used to carry traffic in large volumes across countries safely and efficiently. Pavement quality concrete mixes have high levels of cement which contribute to up to 10% of global CO₂ emissions. Currently the UK specifies (ground granulated blastfurnace slag) GGBS and (pulverised fuel ash) PFA to reduce the quantity of cement used in pavement construction. GGBS and PFA come from heavy industry that should not be relied upon to improve the sustainability of construction materials. This report shows that cement in pavement quality concrete can be replaced with rice husk ash (RHA) without causing adverse effects to the mechanical properties required for highways. RHA comes from the food production industry and is vital for the growing global population. It is thus a socially responsible objective to use a pozzolan in highway pavement construction that is sourced from an environmentally friendly industry. The report investigates the properties of RHA mixes and compares them to existing pavement quality mixes already used and specified. The report found that sieving RHA and not grinding it gives the best performance. Due to the low density of RHA the investigation found that replacing cement by volume rather than weight provided the best results. Findings showed that CEM II mixed with 20% RHA meets the required specification for pavement quality concrete and mitigates using the comparative CEM I. The investigation also notes that RHA is observed to be more reactive with CEM II rather than CEM I and suits early strength gains required for pavement construction. The report concludes that RHA is a sustainable material that reduces the embodied CO₂ of pavement quality concrete, which is well suited for UK highway specifications and has the potential to improve the lives of people living in the developing countries.Keywords: pavement, pozzolan, rice husk ash, sustainable concrete
Procedia PDF Downloads 172337 Creativity as a National System: An Exploratory Model towards Enhance Innovation Ecosystems
Authors: Oscar Javier Montiel Mendez
Abstract:
The link between knowledge-creativity-innovation-entrepreneurship is well established, and broadly emphasized the importance of national innovation systems (NIS) as an approach stresses that the flow of information and technology among people, organizations and institutions are key to its process. Understanding the linkages among the actors involved in innovation is relevant to NIS. Creativity is supposed to fuel NIS, mainly focusing on a personal, group or organizational level, leaving aside the fourth one, as a national system. It is suggested that NIS takes Creativity for granted, an ex-ante stage already solved through some mechanisms, like programs for nurturing it at elementary and secondary schools, universities, or public/organizational specific programs. Or worse, that the individual already has this competence, and that the elements of the NIS will communicate between in a way that will lead to the creation of S curves, with an impact on national systems/programs on entrepreneurship, clusters, and the economy. But creativity constantly appears at any time during NIS, being the key input. Under an initial, exploratory, focused and refined literature review, based on Csikszentmihalyi’s systemic model, Amabile's componential theory, Kaufman and Beghetto’s 4C model, and the OECD’s (Organisation for Economic Co-operation and Development) NIS model (expanded), an NCS theoretical model is elaborated. Its suggested that its implementation could become a significant factor helping strengthen local, regional and national economies. The results also suggest that the establishment of a national creativity system (NCS), something that appears not been previously addressed, as a strategic/vital companion for a NIS, installing it not only as a national education strategy, but as its foundation, managing it and measuring its impact on NIS, entrepreneurship and the rest of the ecosystem, could make more effective public policies. Likewise, it should have a beneficial impact on the efforts of all the stakeholders involved and should help prevent some of the possible failures that NIS present.Keywords: national creativity system, national innovation system, entrepreneurship ecosystem, systemic creativity
Procedia PDF Downloads 430336 Quantifying the Impact of Climate Change on Agritourism: The Transformative Role of Solar Energy in Enhancing Growth and Resilience in Eritrea
Authors: Beyene Daniel Abrha
Abstract:
Agritourism in Eritrea is increasingly threatened by climate change, manifesting through rising temperatures, shifting rainfall patterns, and resource scarcity. This study employs quantitative methods to assess the economic and environmental impacts of climate change on agritourism, utilizing metrics such as annual income fluctuations, changes in visitor numbers, and energy consumption patterns. The methodology relies on secondary data sourced from the World Bank, government reports, and academic publications to analyze the economic viability of integrating solar energy into agritourism operations. Key variables include the Benefits from Renewable Energy (BRE), encompassing cost savings from reduced energy expenses and the monetized value of avoided greenhouse gas emissions. Using a net present value (NPV) framework, the research compares the impact of solar energy against traditional fossil fuel sources by evaluating the Value of Reduced Greenhouse Gas Emissions (CO2) and the Value of Health-Related Costs (VHRC) due to air pollution. The preliminary findings of this research are of utmost importance. They indicate that the adoption of solar energy can enhance energy independence by up to 40%, reduce operational costs by 25%, and stabilize agritourism activities in climate-sensitive regions. This research aims to provide actionable insights for policymakers and stakeholders, supporting the sustainable development of agritourism in Eritrea and contributing to broader climate adaptation strategies. By employing a comprehensive cost-benefit analysis, the study highlights the economic advantages and environmental benefits of transitioning to renewable energy in the face of climate change.Keywords: agritourism, climate change, renewable energy, cost benefit analysis, resilience, cost-benefit analysis
Procedia PDF Downloads 11335 Hardware-In-The-Loop Relative Motion Control: Theory, Simulation and Experimentation
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper presents a Guidance and Control (G&C) strategy to address spacecraft maneuvering problem for future Rendezvous and Docking (RVD) missions. The proposed strategy allows safe and propellant efficient trajectories for space servicing missions including tasks such as approaching, inspecting and capturing. This work provides the validation test results of the G&C laws using a Hardware-In-the-Loop (HIL) setup with two robotic mockups representing the chaser and the target spacecraft. Through this paper, the challenges of the relative motion control in space are first summarized, and in particular, the constraints imposed by the mission, spacecraft and, onboard processing capabilities. Second, the proposed algorithm is introduced by presenting the formulation of constrained Model Predictive Control (MPC) to optimize the fuel consumption and explicitly handle the physical and geometric constraints in the system, e.g. thruster or Line-Of-Sight (LOS) constraints. Additionally, the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description and accordingly explained. The resulting convex optimization problem allows real-time implementation capability based on a detailed discussion on the computational time requirements and the obtained results with respect to the onboard computer and future trends of space processors capabilities. Finally, the performance of the algorithm is presented in the scope of a potential future mission and of the available equipment. The results also cover a comparison between the proposed algorithms with Linear–quadratic regulator (LQR) based control law to highlight the clear advantages of the MPC formulation.Keywords: autonomous vehicles, embedded optimization, real-time experiment, rendezvous and docking, space robotics
Procedia PDF Downloads 124334 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode
Authors: Sh. Heidari, A. J. Andrews, A. Oberoi
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon
Procedia PDF Downloads 500333 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures
Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher
Abstract:
Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.Keywords: CO₂ capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions
Procedia PDF Downloads 166332 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm
Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan
Abstract:
Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power
Procedia PDF Downloads 85331 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis
Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath
Abstract:
The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression
Procedia PDF Downloads 197330 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation
Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher
Abstract:
Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment
Procedia PDF Downloads 118329 DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks
Authors: Mao-Sheng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies.Keywords: DFT, MOFs, CO₂ capture, catalyst
Procedia PDF Downloads 28328 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents
Authors: Neha Budhwani
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsor¬bents of natural origin including sawdust (shiham), coconut fiber, neem bark, chitin, activated charcol. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.Keywords: natural adsorbent, PAHs, TPO, coconut fiber, wood powder (shisham), naphthalene, acenaphthene, biphenyl and anthracene
Procedia PDF Downloads 231327 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal
Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity
Procedia PDF Downloads 577326 Investment Trend Analysis of Dhaka Stock Exchange: A Comparative Study
Authors: Azaz Zaman, Mirazur Rahman
Abstract:
Capital market is a crucial financial market place where companies and the government can raise long-term funds and, at the same time, investors get the opportunity to invest in the listed companies. Capital markets play a vital role not only in shifting the funds from surplus entity to deficit for investment, but also in the overall economic development of any developing country like Bangladesh. Being the first and biggest capital market of Bangladesh, Dhaka Stock Exchange (DSE) is the prime bourse of the country. The differences in the investment preference— among three broad categories of investors in DSE including individual investors, institutional investors, and government— are easily observed. Authors of this article have used five categories of investors such as sponsors or directors of the company, institutional investors, foreign investors, government, and the general public in order to present a comparative analysis of their investment patterns. Obtaining data on the percentage of investment by these five types of investors in different sectors from the DSE website, this study aims to analyze the sector-wise investment preference of these investors using August 2018 data. The study has found that the sponsors or directors of the company have the highest percentage of investment in the textile industry which is close to 16%. The Bangladesh government, as an investor, has the highest percentage of investment in the fuel & power sector, approximately 32%. It has also found that the mutual funds' sector is mostly financed by institutional investors, nearly 28%. Foreign investors have their most investments in the banking sector, which is close to 22%. It has also revealed that the textile sector is mostly financed by the general public, close to 17%. Nevertheless, general public, surprisingly, has the lowest percentage of investment in the telecommunication sector, which is 0.10%.Keywords: stock market investment, Dhaka stock exchange, capital market, Bangladesh
Procedia PDF Downloads 119325 Climate Change Impacts, Vulnerability, and Adaptation among Rural Households in Ethiopia
Authors: Birtukan Atinkut Asmare
Abstract:
Climate change disproportionately affects many Africans who heavily rely on climate-exposed sectors such as rain-fed agriculture and fishing, rendering them highly vulnerable. Gender plays a significant role, as men and women experience unequal impacts and vulnerabilities due to gender norms, labor divisions, resource access, and power dynamics. Drawing on an integrated framework, this study sheds light on the gendered impacts of climate change on household’s livelihood, their vulnerability, and adaptation in rural Ethiopia's Lake Tana Basin. This study utilized mixed research methods, integrating diverse qualitative techniques such as focus group discussions, key informant interviews, and field observations, along with quantitative data gathered through household surveys. The findings reveal that women-headed households were more vulnerable to climate change than male-headed households. Flood was the major climate-induced hazards in the area that threatened the lives and livelihoods of households. In response to climate change, households undertook different adaptation measures such as agroforestry practices, crop diversification, seasonal migration, petty trading, charcoal and fuel wood sales. However, the adaptation strategies were slightly varied based on the gender of the household head. Women-headed households specifically engaged in fuelwood collection and selling and petty trading activities. The main constraints for adaptation were limited access to technologies, extension services, information, and financial services. Therefore, this research urges attention from research, policy, and advisory services on rural households who are trying to survive in the face of climate change.Keywords: agriculture, climate change impacts, ethiopia, gender
Procedia PDF Downloads 59324 Environmental Degradation of Natural Resources in Broghil National Park in the High Mountains of Pakistan – Empirical Evidence From Local Community and Geoinformatics
Authors: Siddique Ullah Baig, Alisha Manzoor
Abstract:
The remotest, mountainous, and icy Broghil Valley is a high-profile protected area as a national park, which hosts one of the highest altitude permanent human settlements on the earth. This park hosts a distributed but diverse range of habitats. Due to a lack of infrastructures, higher altitudes, and harsh environmental conditions, poverty-stricken inhabitants mostly rely on its resources, causing ecological dis-balance. This study aims to investigate the environmental degradation of natural resources of the park based on empirical evidence from stakeholders and geoinformatics. The result shows that one-fourth of the park is a gently undulating basin dotted with water bodies / grass, and agricultural land and three fourth is entirely rugged with steep mountains and glaciers. There are virtually no forests as the arid cold tundra climate and high altitude prevent tree growth. Rapid three-decadal land cover changes have led to ecological disequilibrium of the park, narrowing the traditional diverse food base, decreasing the resilience of biodiversity and local livelihoods as crop-land has shifted towards fallow, alpine-grass to peat-land and snow/glacial ice area to bare-soil/rocks. The local community believes in exploiting whatever vegetation or organic material is available for use as food, fodder, and fuel. The permanent presence of the community and limited cost-effective options in the park will be a challenge forever to maintain undisturbed natural processes as the objective of a national park.Keywords: Broghil National Park, natural resources, environmental degradation, land cover
Procedia PDF Downloads 66323 J-Integral Method for Assessment of Structural Integrity of a Pressure Vessel
Authors: Karthik K. R, Viswanath V, Asraff A. K
Abstract:
The first stage of a new-generation launch vehicle of ISRO makes use of large pressure vessels made of Aluminium alloy AA2219 to store fuel and oxidizer. These vessels have many weld joints that may contain cracks or crack-like defects during their fabrication. These defects may propagate across the vessel during pressure testing or while in service under the influence of tensile stresses leading to catastrophe. Though ductile materials exhibit significant stable crack growth prior to failure, it is not generally acceptable for an aerospace component. There is a need to predict the initiation of stable crack growth. The structural integrity of the vessel from fracture considerations can be studied by constructing the Failure Assessment Diagram (FAD) that accounts for both brittle fracture and plastic collapse. Critical crack sizes of the pressure vessel may be highly conservative if it is predicted from FAD alone. If the J-R curve for material under consideration is available apriori, the critical crack sizes can be predicted to a certain degree of accuracy. In this paper, a novel approach is proposed to predict the integrity of a weld in a pressure vessel made of AA2219 material. Fracture parameter ‘J-integral’ at the crack front, evaluated through finite element analyses, is used in the new procedure. Based on the simulation of tension tests carried out on SCT specimens by NASA, a cut-off value of J-integral value (J?ᵤₜ_ₒ??) is finalised. For the pressure vessel, J-integral at the crack front is evaluated through FE simulations incorporating different surface cracks at long seam weld in a cylinder and in dome petal welds. The obtained J-integral, at vessel level, is compared with a value of J?ᵤₜ_ₒ??, and the integrity of vessel weld in the presence of the surface crack is firmed up. The advantage of this methodology is that if SCT test data of any metal is available, the critical crack size in hardware fabricated using that material can be predicted to a better level of accuracy.Keywords: FAD, j-integral, fracture, surface crack
Procedia PDF Downloads 187322 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers
Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash
Abstract:
Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system
Procedia PDF Downloads 419321 Life Cycle Analysis of the Antibacterial Gel Product Using Iso 14040 and Recipe 2016 Method
Authors: Pablo Andres Flores Siguenza, Noe Rodrigo Guaman Guachichullca
Abstract:
Sustainable practices have received increasing attention from academics and companies in recent decades due to, among many factors, the market advantages they generate, global commitments, and policies aimed at reducing greenhouse gas emissions, addressing resource scarcity, and rethinking waste management. The search for ways to promote sustainability leads industries to abandon classical methods and resort to the use of innovative strategies, which in turn are based on quantitative analysis methods and tools such as life cycle analysis (LCA), which is the basis for sustainable production and consumption, since it is a method that analyzes objectively, methodically, systematically, and scientifically the environmental impact caused by a process/product during its entire life cycle. The objective of this study is to develop an LCA of the antibacterial gel product throughout its entire supply chain (SC) under the methodology of ISO 14044 with the help of Gabi software and the Recipe 2016 method. The selection of the case study product was made based on its relevance in the current context of the COVID-19 pandemic and its exponential increase in production. For the development of the LCA, data from a Mexican company are used, and 3 scenarios are defined to obtain the midpoint and endpoint environmental impacts both by phases and globally. As part of the results, the most outstanding environmental impact categories are climate change, fossil fuel depletion, and terrestrial ecotoxicity, and the stage that generates the most pollution in the entire SC is the extraction of raw materials. The study serves as a basis for the development of different sustainability strategies, demonstrates the usefulness of an LCA, and agrees with different authors on the role and importance of this methodology in sustainable development.Keywords: sustainability, sustainable development, life cycle analysis, environmental impact, antibacterial gel
Procedia PDF Downloads 55320 IOT Based Automated Production and Control System for Clean Water Filtration Through Solar Energy Operated by Submersible Water Pump
Authors: Musse Mohamud Ahmed, Tina Linda Achilles, Mohammad Kamrul Hasan
Abstract:
Deterioration of the mother nature is evident these day with clear danger of human catastrophe emanating from greenhouses (GHG) with increasing CO2 emissions to the environment. PV technology can help to reduce the dependency on fossil fuel, decreasing air pollution and slowing down the rate of global warming. The objective of this paper is to propose, develop and design the production of clean water supply to rural communities using an appropriate technology such as Internet of Things (IOT) that does not create any CO2 emissions. Additionally, maximization of solar energy power output and reciprocally minimizing the natural characteristics of solar sources intermittences during less presence of the sun itself is another goal to achieve in this work. The paper presents the development of critical automated control system for solar energy power output optimization using several new techniques. water pumping system is developed to supply clean water with the application of IOT-renewable energy. This system is effective to provide clean water supply to remote and off-grid areas using Photovoltaics (PV) technology that collects energy generated from the sunlight. The focus of this work is to design and develop a submersible solar water pumping system that applies an IOT implementation. Thus, this system has been executed and programmed using Arduino Software (IDE), proteus, Maltab and C++ programming language. The mechanism of this system is that it pumps water from water reservoir that is powered up by solar energy and clean water production was also incorporated using filtration system through the submersible solar water pumping system. The filtering system is an additional application platform which is intended to provide a clean water supply to any households in Sarawak State, Malaysia.Keywords: IOT, automated production and control system, water filtration, automated submersible water pump, solar energy
Procedia PDF Downloads 88319 Effect of Nanostructure on Hydrogen Embrittlement Resistance of the Severely Deformed 316LN Austenitic Steel
Authors: Frank Jaksoni Mweta, Nozomu Adachi, Yoshikazu Todaka, Hirokazu Sato, Yuta Sato, Hiromi Miura, Masakazu Kobayashi, Chihiro Watanabe, Yoshiteru Aoyagi
Abstract:
Advances in the consumption of hydrogen fuel increase demands of high strength steel pipes and storage tanks. However, high strength steels are highly sensitive to hydrogen embrittlement. Because the introduction of hydrogen into steel during the fabrication process or from the environment is unavoidable, it is essential to improve hydrogen embrittlement resistance of high strength steels through microstructural control. In the present study, the heterogeneous nanostructure with a tensile strength of about 1.8 GPa and the homogeneous nanostructure with a tensile strength of about 2.0 GPa of 316LN steels were generated after 92% heavy cold rolling and high-pressure torsion straining, respectively. The heterogeneous nanostructure is composed of twin domains, shear bands, and lamellar grains. The homogeneous nanostructure is composed of uniformly distributed ultrafine nanograins. The influence of heterogeneous and homogenous nanostructures on the hydrogen embrittlement resistance was investigated. The specimen for each nanostructure was electrochemically charged with hydrogen for 3, 6, 12, and 24 hours, respectively. Under the same hydrogen charging time, both nanostructures show almost the same concentration of the diffusible hydrogen based on the thermal desorption analysis. The tensile properties of the homogenous nanostructure were severely affected by the diffusible hydrogen. However, the diffusible hydrogen shows less impact on the tensile properties of the heterogeneous nanostructure. The difference in embrittlement behavior between the heterogeneous and homogeneous nanostructures was elucidated based on the mechanism of the cracks' growth observed in the tensile fractography. The hydrogen embrittlement was suppressed in the heterogeneous nanostructure because the twin domain became an obstacle for crack growth. The homogeneous nanostructure was not consisting an obstacle such as a twin domain; thus, the crack growth resistance was low in this nanostructure.Keywords: diffusible hydrogen, heterogeneous nanostructure, homogeneous nanostructure, hydrogen embrittlement
Procedia PDF Downloads 124318 Tritium Activities in Romania, Potential Support for Development of ITER Project
Authors: Gheorghe Ionita, Sebastian Brad, Ioan Stefanescu
Abstract:
In any fusion device, tritium plays a key role both as a fuel component and, due to its radioactivity and easy incorporation, as tritiated water (HTO). As for the ITER project, to reduce the constant potential of tritium emission, there will be implemented a Water Detritiation System (WDS) and an Isotopic Separation System (ISS). In the same time, during operation of fission CANDU reactors, the tritium content increases in the heavy water used as moderator and cooling agent (due to neutron activation) and it has to be reduced, too. In Romania, at the National Institute for Cryogenics and Isotopic Technologies (ICIT Rm-Valcea), there is an Experimental Pilot Plant for Tritium Removal (Exp. TRF), with the aim of providing technical data on the design and operation of an industrial plant for heavy water depreciation of CANDU reactors from Cernavoda NPP. The selected technology is based on the catalyzed isotopic exchange process between deuterium and liquid water (LPCE) combined with the cryogenic distillation process (CD). This paper presents an updated review of activities in the field carried out in Romania after the year 2000 and in particular those related to the development and operation of Tritium Removal Experimental Pilot Plant. It is also presented a comparison between the experimental pilot plant and industrial plant to be implemented at Cernavoda NPP. The similarities between the experimental pilot plant from ICIT Rm-Valcea and water depreciation and isotopic separation systems from ITER are also presented and discussed. Many aspects or 'opened issues' relating to WDS and ISS could be checked and clarified by a special research program, developed within ExpTRF. By these achievements and results, ICIT Rm - Valcea has proved its expertise and capability concerning tritium management therefore its competence may be used within ITER project.Keywords: ITER project, heavy water detritiation, tritium removal, isotopic exchange
Procedia PDF Downloads 413317 Studying the Evolution of Soot and Precursors in Turbulent Flames Using Laser Diagnostics
Authors: Muhammad A. Ashraf, Scott Steinmetz, Matthew J. Dunn, Assaad R. Masri
Abstract:
This study focuses on the evolution of soot and soot precursors in three different piloted diffusion turbulent flames. The fuel composition is as follow flame A (ethylene/nitrogen, 2:3 by volume), flame B (ethylene/air, 2:3 by volume), and flame C (pure methane). These flames are stabilized using a 4mm diameter jet surrounded by a pilot annulus with an outer diameter of 15 mm. The pilot issues combustion products from stoichiometric premixed flames of hydrogen, acetylene, and air. In all cases, the jet Reynolds number is 10,000, and air flows in the coflow stream at a velocity of 5 m/s. Time-resolved laser-induced fluorescence (LIF) is collected at two wavelength bands in the visible (445 nm) and UV regions (266 nm) along with laser-induced incandescence (LII). The combined results are employed to study concentration, size, and growth of soot and precursors. A set of four fast photo-multiplier tubes are used to record emission data in temporal domain. A 266nm laser pulse preferentially excites smaller nanoparticles which emit a fluorescence spectrum which is analysed to track the presence, evolution, and destruction of nanoparticles. A 1064nm laser pulse excites sufficiently large soot particles, and the resulting incandescence is collected at 1064nm. At downstream and outer radial locations, intermittency becomes a relevant factor. Therefore, data collected in turbulent flames is conditioned to account for intermittency so that the resulting mean profiles for scattering, fluorescence, and incandescence are shown for the events that contain traces of soot. It is found that in the upstream regions of the ethylene-air and ethylene-nitrogen flames, the presence of soot precursors is rather similar. However, further downstream, soot concentration grows larger in the ethylene-air flames.Keywords: laser induced incandescence, laser induced fluorescence, soot, nanoparticles
Procedia PDF Downloads 146316 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria
Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar
Abstract:
Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.Keywords: biocapacity, carbon footprint, ecological footprint assessment, energy consumption
Procedia PDF Downloads 147315 Characterization of Single-Walled Carbon Nano Tubes Forest Decorated with Chromium
Authors: Ana Paula Mousinho, Ronaldo D. Mansano, Nelson Ordonez
Abstract:
Carbon nanotubes are one of the main elements in nanotechnologies; their applications are in microelectronics, nano-electronics devices (photonics, spintronic), chemical sensors, structural material and currently in clean energy devices (supercapacitors and fuel cells). The use of magnetic particle decorated carbon nanotubes increases the applications in magnetic devices, magnetic memory, and magnetic oriented drug delivery. In this work, single-walled carbon nanotubes (CNTs) forest decorated with chromium were deposited at room temperature by high-density plasma chemical vapor deposition (HDPCVD) system. The CNTs forest was obtained using pure methane plasmas and chromium, as precursor material (seed) and for decorating the CNTs. Magnetron sputtering deposited the chromium on silicon wafers before the CNTs' growth. Scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy, and X-ray diffraction characterized the single-walled CNTs forest decorated with chromium. In general, the CNTs' spectra show a unique emission band, but due to the presence of the chromium, the spectra obtained in this work showed many bands that are related to the CNTs with different diameters. The CNTs obtained by the HDPCVD system are highly aligned and showed metallic features, and they can be used as photonic material, due to the unique structural and electrical properties. The results of this work proved the possibility of obtaining the controlled deposition of aligned single-walled CNTs forest films decorated with chromium by high-density plasma chemical vapor deposition system.Keywords: CNTs forest, high density plasma deposition, high-aligned CNTs, nanomaterials
Procedia PDF Downloads 117