Search results for: destination image
1840 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1161839 Integrated Geophysical Approach for Subsurface Delineation in Srinagar, Uttarakhand, India
Authors: Pradeep Kumar Singh Chauhan, Gayatri Devi, Zamir Ahmad, Komal Chauhan, Abha Mittal
Abstract:
The application of geophysical methods to study the subsurface profile for site investigation is becoming popular globally. These methods are non-destructive and provide the image of subsurface at shallow depths. Seismic refraction method is one of the most common and efficient method being used for civil engineering site investigations particularly for knowing the seismic velocity of the subsurface layers. Resistivity imaging technique is a geo-electrical method used to image the subsurface, water bearing zone, bedrock and layer thickness. Integrated approach combining seismic refraction and 2-D resistivity imaging will provide a better and reliable picture of the subsurface. These are economical and less time-consuming field survey which provide high resolution image of the subsurface. Geophysical surveys carried out in this study include seismic refraction and 2D resistivity imaging method for delineation of sub-surface strata in different parts of Srinagar, Garhwal Himalaya, India. The aim of this survey was to map the shallow subsurface in terms of geological and geophysical properties mainly P-wave velocity, resistivity, layer thickness, and lithology of the area. Both sides of the river, Alaknanda which flows through the centre of the city, have been covered by taking two profiles on each side using both methods. Seismic and electrical surveys were carried out at the same locations to complement the results of each other. The seismic refraction survey was carried out using ABEM TeraLoc 24 channel Seismograph and 2D resistivity imaging was performed using ABEM Terrameter LS equipment. The results show three distinct layers on both sides of the river up to the depth of 20 m. The subsurface is divided into three distinct layers namely, alluvium extending up to, 3 m depth, conglomerate zone lying between the depth of 3 m to 15 m, and compacted pebbles and cobbles beyond 15 m. P-wave velocity in top layer is found in the range of 400 – 600 m/s, in second layer it varies from 700 – 1100 m/s and in the third layer it is 1500 – 3300 m/s. The resistivity results also show similar pattern and were in good agreement with seismic refraction results. The results obtained in this study were validated with an available exposed river scar at one site. The study established the efficacy of geophysical methods for subsurface investigations.Keywords: 2D resistivity imaging, P-wave velocity, seismic refraction survey, subsurface
Procedia PDF Downloads 2581838 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation
Authors: Feng Yin
Abstract:
Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation
Procedia PDF Downloads 2781837 Harnessing Emerging Creative Technology for Knowledge Discovery of Multiwavelenght Datasets
Authors: Basiru Amuneni
Abstract:
Astronomy is one domain with a rise in data. Traditional tools for data management have been employed in the quest for knowledge discovery. However, these traditional tools become limited in the face of big. One means of maximizing knowledge discovery for big data is the use of scientific visualisation. The aim of the work is to explore the possibilities offered by emerging creative technologies of Virtual Reality (VR) systems and game engines to visualize multiwavelength datasets. Game Engines are primarily used for developing video games, however their advanced graphics could be exploited for scientific visualization which provides a means to graphically illustrate scientific data to ease human comprehension. Modern astronomy is now in the era of multiwavelength data where a single galaxy for example, is captured by the telescope several times and at different electromagnetic wavelength to have a more comprehensive picture of the physical characteristics of the galaxy. Visualising this in an immersive environment would be more intuitive and natural for an observer. This work presents a standalone VR application that accesses galaxy FITS files. The application was built using the Unity Game Engine for the graphics underpinning and the OpenXR API for the VR infrastructure. The work used a methodology known as Design Science Research (DSR) which entails the act of ‘using design as a research method or technique’. The key stages of the galaxy modelling pipeline are FITS data preparation, Galaxy Modelling, Unity 3D Visualisation and VR Display. The FITS data format cannot be read by the Unity Game Engine directly. A DLL (CSHARPFITS) which provides a native support for reading and writing FITS files was used. The Galaxy modeller uses an approach that integrates cleaned FITS image pixels into the graphics pipeline of the Unity3d game Engine. The cleaned FITS images are then input to the galaxy modeller pipeline phase, which has a pre-processing script that extracts, pixel, galaxy world position, and colour maps the FITS image pixels. The user can visualise image galaxies in different light bands, control the blend of the image with similar images from different sources or fuse images for a holistic view. The framework will allow users to build tools to realise complex workflows for public outreach and possibly scientific work with increased scalability, near real time interactivity with ease of access. The application is presented in an immersive environment and can use all commercially available headset built on the OpenXR API. The user can select galaxies in the scene, teleport to the galaxy, pan, zoom in/out, and change colour gradients of the galaxy. The findings and design lessons learnt in the implementation of different use cases will contribute to the development and design of game-based visualisation tools in immersive environment by enabling informed decisions to be made.Keywords: astronomy, visualisation, multiwavelenght dataset, virtual reality
Procedia PDF Downloads 911836 Estimating the Ladder Angle and the Camera Position From a 2D Photograph Based on Applications of Projective Geometry and Matrix Analysis
Authors: Inigo Beckett
Abstract:
In forensic investigations, it is often the case that the most potentially useful recorded evidence derives from coincidental imagery, recorded immediately before or during an incident, and that during the incident (e.g. a ‘failure’ or fire event), the evidence is changed or destroyed. To an image analysis expert involved in photogrammetric analysis for Civil or Criminal Proceedings, traditional computer vision methods involving calibrated cameras is often not appropriate because image metadata cannot be relied upon. This paper presents an approach for resolving this problem, considering in particular and by way of a case study, the angle of a simple ladder shown in a photograph. The UK Health and Safety Executive (HSE) guidance document published in 2014 (INDG455) advises that a leaning ladder should be erected at 75 degrees to the horizontal axis. Personal injury cases can arise in the construction industry because a ladder is too steep or too shallow. Ad-hoc photographs of such ladders in their incident position provide a basis for analysis of their angle. This paper presents a direct approach for ascertaining the position of the camera and the angle of the ladder simultaneously from the photograph(s) by way of a workflow that encompasses a novel application of projective geometry and matrix analysis. Mathematical analysis shows that for a given pixel ratio of directly measured collinear points (i.e. features that lie on the same line segment) from the 2D digital photograph with respect to a given viewing point, we can constrain the 3D camera position to a surface of a sphere in the scene. Depending on what we know about the ladder, we can enforce another independent constraint on the possible camera positions which enables us to constrain the possible positions even further. Experiments were conducted using synthetic and real-world data. The synthetic data modeled a vertical plane with a ladder on a horizontally flat plane resting against a vertical wall. The real-world data was captured using an Apple iPhone 13 Pro and 3D laser scan survey data whereby a ladder was placed in a known location and angle to the vertical axis. For each case, we calculated camera positions and the ladder angles using this method and cross-compared them against their respective ‘true’ values.Keywords: image analysis, projective geometry, homography, photogrammetry, ladders, Forensics, Mathematical modeling, planar geometry, matrix analysis, collinear, cameras, photographs
Procedia PDF Downloads 521835 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 841834 Hope in the Ruins of 'Ozymandias': Reimagining Temporal Horizons in Felicia Hemans 'the Image in Lava'
Authors: Lauren Schuldt Wilson
Abstract:
Felicia Hemans’ memorializing of the unwritten lives of women and the consequent allowance for marginalized voices to remember and be remembered has been considered by many critics in terms of ekphrasis and elegy, terms which privilege the question of whether Hemans’ poeticizing can represent lost voices of history or only her poetic expression. Amy Gates, Brian Elliott, and others point out Hemans’ acknowledgement of the self-projection necessary for imaginatively filling the absences of unrecorded histories. Yet, few have examined the complex temporal positioning Hemans inscribes in these moments of self-projection and imaginative historicizing. In poems like ‘The Image in Lava,’ Hemans maps not only a lost past, but also a lost potential future onto the image of a dead infant in its mother’s arms, the discovery and consideration of which moves the imagined viewer to recover and incorporate the ‘hope’ encapsulated in the figure of the infant into a reevaluation of national time embodied by the ‘relics / Left by the pomps of old.’ By examining Hemans’ acknowledgement and response to Percy Bysshe Shelley’s ‘Ozymandias,’ this essay explores how Hemans’ depictions of imaginative historicizing open new horizons of possibility and reevaluate temporal value structures by imagining previously undiscovered or unexplored potentialities of the past. Where Shelley’s poem mocks the futility of national power and time, this essay outlines Hemans’ suggestion of alternative threads of identity and temporal meaning-making which, regardless of historical veracity, exist outside of and against the structures Shelley challenges. Counter to previous readings of Hemans’ poem as celebration of either recovered or poetically constructed maternal love, this essay argues that Hemans offers a meditation on sites of reproduction—both of personal reproductive futurity and of national reproduction of power. This meditation culminates in Hemans’ gesturing towards a method of historicism by which the imagined viewer reinvigorates the sterile, ‘shattered visage’ of national time by forming temporal identity through the imagining of trans-historical hope inscribed on the infant body of the universal, individual subject rather than the broken monument of the king.Keywords: futurity, national temporalities, reproduction, revisionary histories
Procedia PDF Downloads 1661833 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing
Procedia PDF Downloads 1481832 Rapid Flood Damage Assessment of Population and Crops Using Remotely Sensed Data
Authors: Urooj Saeed, Sajid Rashid Ahmad, Iqra Khalid, Sahar Mirza, Imtiaz Younas
Abstract:
Pakistan, a flood-prone country, has experienced worst floods in the recent past which have caused extensive damage to the urban and rural areas by loss of lives, damage to infrastructure and agricultural fields. Poor flood management system in the country has projected the risks of damages as the increasing frequency and magnitude of floods are felt as a consequence of climate change; affecting national economy directly or indirectly. To combat the needs of flood emergency, this paper focuses on remotely sensed data based approach for rapid mapping and monitoring of flood extent and its damages so that fast dissemination of information can be done, from local to national level. In this research study, spatial extent of the flooding caused by heavy rains of 2014 has been mapped by using space borne data to assess the crop damages and affected population in sixteen districts of Punjab. For this purpose, moderate resolution imaging spectroradiometer (MODIS) was used to daily mark the flood extent by using Normalised Difference Water Index (NDWI). The highest flood value data was integrated with the LandScan 2014, 1km x 1km grid based population, to calculate the affected population in flood hazard zone. It was estimated that the floods covered an area of 16,870 square kilometers, with 3.0 million population affected. Moreover, to assess the flood damages, Object Based Image Analysis (OBIA) aided with spectral signatures was applied on Landsat image to attain the thematic layers of healthy (0.54 million acre) and damaged crops (0.43 million acre). The study yields that the population of Jhang district (28% of 2.5 million population) was affected the most. Whereas, in terms of crops, Jhang and Muzzafargarh are the ‘highest damaged’ ranked district of floods 2014 in Punjab. This study was completed within 24 hours of the peak flood time, and proves to be an effective methodology for rapid assessment of damages due to flood hazardKeywords: flood hazard, space borne data, object based image analysis, rapid damage assessment
Procedia PDF Downloads 3281831 New Possibilities for Testing UX and UI Design on Mobile Devices
Authors: Jakub Berčík, Anna Mravcová, Jana Gálová, Katarína Neomániová
Abstract:
In an era when everything is increasingly digital, consumers are always looking for new options in solutions to their everyday needs. In this context, mobile apps are developing at an exponential pace. One of the fastest growing segments of mobile technologies is, obviously, e-commerce. It can be predicted that mobile commerce will record nearly three times the global growth of e-commerce across all platforms, which indicates its importance in the given segment. The current coronavirus pandemic is also changing many of the existing paradigms both socially, economically, and technologically, which has a major impact on changing consumer behaviour and the emphasis on simplification and clarity of mobile solutions. This is the area that user experience (UX) and user interface (UI) designers deal with. Their task is to design a sufficiently attractive and interesting solution that will be available on all mobile devices and at the same time will be easy enough for the customer/visitor to get to the destination or to get the necessary information in a few clicks. The basis for changes in UX design can now be obtained not only through online analytical tools but also through neuromarketing, especially in the case of mobile devices. The paper highlights new possibilities for testing UX design applications on mobile devices using a special platform that combines a stationary eye camera (eye tracking) and facial analysis (facial coding).Keywords: emotions, mobile design, user experience, visual attention
Procedia PDF Downloads 1271830 Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques
Authors: Chen-Chang Lee, Po-Chou Chen, Jo-Chi Jao, Chun-Chung Lui, Leung-Chit Tsang, Lain-Chyr Hwang
Abstract:
Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis.Keywords: fetal MRI, FIESTA, FSPGR, motion artifact, SSFSE
Procedia PDF Downloads 5301829 Video Compression Using Contourlet Transform
Authors: Delara Kazempour, Mashallah Abasi Dezfuli, Reza Javidan
Abstract:
Video compression used for channels with limited bandwidth and storage devices has limited storage capabilities. One of the most popular approaches in video compression is the usage of different transforms. Discrete cosine transform is one of the video compression methods that have some problems such as blocking, noising and high distortion inappropriate effect in compression ratio. wavelet transform is another approach is better than cosine transforms in balancing of compression and quality but the recognizing of curve curvature is so limit. Because of the importance of the compression and problems of the cosine and wavelet transforms, the contourlet transform is most popular in video compression. In the new proposed method, we used contourlet transform in video image compression. Contourlet transform can save details of the image better than the previous transforms because this transform is multi-scale and oriented. This transform can recognize discontinuity such as edges. In this approach we lost data less than previous approaches. Contourlet transform finds discrete space structure. This transform is useful for represented of two dimension smooth images. This transform, produces compressed images with high compression ratio along with texture and edge preservation. Finally, the results show that the majority of the images, the parameters of the mean square error and maximum signal-to-noise ratio of the new method based contourlet transform compared to wavelet transform are improved but in most of the images, the parameters of the mean square error and maximum signal-to-noise ratio in the cosine transform is better than the method based on contourlet transform.Keywords: video compression, contourlet transform, discrete cosine transform, wavelet transform
Procedia PDF Downloads 4431828 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 1151827 Human Centred Design Approach for Public Transportation
Authors: Jo Kuys, Kirsten Day
Abstract:
Improving urban transportation systems requires an emphasis on users’ end-to-end journey experience, from the moment the user steps out of their home to when they arrive at their destination. In considering such end-to-end experiences, human centred design (HCD) must be integrated from the very beginning to generate viable outcomes for the public. An HCD approach will encourage innovative outcomes while acknowledging all factors that need to be understood along the journey. We provide evidence to show that when designing for public transportation, it is not just about the physical manifestation of a particular outcome; moreover, it’s about the context and human behaviours that need to be considered throughout the design process. Humans and their behavioural factors are vitally important to successful implementation of sustainable public transport systems. Through an in-depth literature review of HCD approaches for urban transportation systems, we provide a base to exploit the benefits and highlight the importance of including HCD in public transportation projects for greater patronage, resulting in more sustainable cities. An HCD approach is critical to all public transportation projects to understand different levels of transportation design, from the setting of transport policy to implementation to infrastructure, vehicle, and interface design.Keywords: human centred design, public transportation, urban planning, user experience
Procedia PDF Downloads 1871826 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads
Authors: Riaan Kleyn
Abstract:
Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.Keywords: computer vision, wine grapes, machine learning, machine harvested grapes
Procedia PDF Downloads 941825 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques
Authors: Tomas Trainys, Algimantas Venckauskas
Abstract:
Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.
Procedia PDF Downloads 1501824 Anti-crisis Public Relations and Aspects of Effective Management in Georgian Companies
Authors: Marine Kobalava
Abstract:
Introduction. The paper substantiates the crucial role of anti-crisis PR in managing the image and reputation of companies. The critical situation caused by the Covid-19 virus in various countries of the world and the actions taken have had a significant negative impact on the image of companies and public groups. The mentioned circumstance has caused some problems for companies’ products in terms of customer demand. Accordingly, the main goal of PR has become to achieve the optimal relationship between companies and society with effective management. It should also be taken into account that the range of action of PR in crisis situations is much wider than that of advertising. In the paper, Public Relations is evaluated as a determining factor of the companies' prestige, its reliability, which has a decisive effect on the goodwill, trust, and general reputation of the public towards the company. The purpose of the study is to reveal the challenges of anti-crisis PR in Georgian companies and to develop recommendations on effective management mechanisms. Methodologies. Analysis, induction, synthesis, and other methods are used in the paper; Matrix and SWOT analysis are constructed. Ways of establishing and implementing an anti-crisis PR system in companies are proposed. The main aspects of anti-crisis management are identified by using the matrix of the choice of diversification strategy of the companies' activities, the possibilities of making adequate decisions using PR are studied according to the characteristics of the companies' activities and priority directions. Conclusion. The paper draws conclusions on modern problems of anti-crisis PR, offers recommendations on ways to solve it through PR strategies.Keywords: anti-crisis PR, effective management, company, PR strategy
Procedia PDF Downloads 791823 Impacts of Electronic Dance Music towards Social Harmony: The Malaysian Perspective
Authors: Kok Meng Ng, Sulung Veronica
Abstract:
Electronic Dance Music (EDM), a musical event that so sought-after amongst the youth, is getting prevailed around the world. The emergence of this à la mode event has magnetized lots of attentions from the media as well as the public due to its high probabilities in creating social problems and menacing social harmony of one destination, for instance, two death cases occurred during the EDM events in Malaysia caused a feeling of consternation of the society. The arguments over the impacts of such events towards the society are endless. This paper focuses on the study of the impacts of EDM towards social harmony in Klang Valley area, Malaysia by scrutinizing the contradiction of statements from several experts and the local communities. This study sampled 15-20 people that represent different social background with face-to-face and online interview through snowball sampling method. This study helps to understand the social context as a whole based on the impacts of EDM events that take place in Malaysia. It also provides valuable information to EDMs’ organizer as well as local authorities for a proper event management to minimize EDM impacts towards society as part of the sustainable growth of the event industry.Keywords: electronic dance music, social harmony, impacts, Klang Valley
Procedia PDF Downloads 2561822 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 3391821 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion
Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong
Abstract:
The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor
Procedia PDF Downloads 2321820 Image Making: The Spectacle of Photography and Text in Obituary Programs as Contemporary Practice of Social Visibility in Southern Nigeria
Authors: Soiduate Ogoye-Atanga
Abstract:
During funeral ceremonies, it has become common for attendees to jostle for burial programs in some southern Nigerian towns. Beginning from ordinary typewritten text only sheets of paper in the 1980s to their current digitally formatted multicolor magazine style, burial programs continue to be collected and kept in homes where they remain as archival documents of family photo histories and as a veritable form of leveraging family status and visibility in a social economy through the inclusion of lots of choreographically arranged photographs and text. The biographical texts speak of idealized and often lofty and aestheticized accomplishments of deceased peoples, which are often corroborated by an accompanying section of tributes from first the immediate family members, and then from affiliations as well as organizations deceased people belonged, in the form of scanned letterheaded corporate tributes. Others speak of modest biographical texts when the deceased accomplished little. Usually, in majority of the cases, the display of photographs and text in these programs follow a trajectory of historical compartmentalization of the deceased, beginning from parentage to the period of youth, occupation, retirement, and old age as the case may be, which usually drives from black and white historical photographs to the color photography of today. This compartmentalization follows varied models but is designed to show the deceased in varying activities during his lifetime. The production of these programs ranges from the extremely expensive and luscious full colors of near fifty-eighty pages to bland and very simplified low-quality few-page editions in a single color and no photographs, except on the cover. Cost and quality, therefore, become determinants of varying family status and social visibility. By a critical selection of photographs and text, family members construct an idealized image of deceased people and themselves, concentrating on mutuality based on appropriate sartorial selections, socioeconomic grade, and social temperaments that are framed to corroborate the public’s perception of them. Burial magazines, therefore, serve purposes beyond their primary use; they symbolize an orchestrated social site for image-making and the validation of the social status of families, shaped by prior family histories.Keywords: biographical texts, burial programs, compartmentalization, magazine, multicolor, photo-histories, social status
Procedia PDF Downloads 1881819 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image
Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa
Abstract:
A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever
Procedia PDF Downloads 1201818 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems
Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr
Abstract:
Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing
Procedia PDF Downloads 4201817 Calpoly Autonomous Transportation Experience: Software for Driverless Vehicle Operating on Campus
Authors: F. Tang, S. Boskovich, A. Raheja, Z. Aliyazicioglu, S. Bhandari, N. Tsuchiya
Abstract:
Calpoly Autonomous Transportation Experience (CATE) is a driverless vehicle that we are developing to provide safe, accessible, and efficient transportation of passengers throughout the Cal Poly Pomona campus for events such as orientation tours. Unlike the other self-driving vehicles that are usually developed to operate with other vehicles and reside only on the road networks, CATE will operate exclusively on walk-paths of the campus (potentially narrow passages) with pedestrians traveling from multiple locations. Safety becomes paramount as CATE operates within the same environment as pedestrians. As driverless vehicles assume greater roles in today’s transportation, this project will contribute to autonomous driving with pedestrian traffic in a highly dynamic environment. The CATE project requires significant interdisciplinary work. Researchers from mechanical engineering, electrical engineering and computer science are working together to attack the problem from different perspectives (hardware, software and system). In this abstract, we describe the software aspects of the project, with a focus on the requirements and the major components. CATE shall provide a GUI interface for the average user to interact with the car and access its available functionalities, such as selecting a destination from any origin on campus. We have developed an interface that provides an aerial view of the campus map, the current car location, routes, and the goal location. Users can interact with CATE through audio or manual inputs. CATE shall plan routes from the origin to the selected destination for the vehicle to travel. We will use an existing aerial map for the campus and convert it to a spatial graph configuration where the vertices represent the landmarks and edges represent paths that the car should follow with some designated behaviors (such as stay on the right side of the lane or follow an edge). Graph search algorithms such as A* will be implemented as the default path planning algorithm. D* Lite will be explored to efficiently recompute the path when there are any changes to the map. CATE shall avoid any static obstacles and walking pedestrians within some safe distance. Unlike traveling along traditional roadways, CATE’s route directly coexists with pedestrians. To ensure the safety of the pedestrians, we will use sensor fusion techniques that combine data from both lidar and stereo vision for obstacle avoidance while also allowing CATE to operate along its intended route. We will also build prediction models for pedestrian traffic patterns. CATE shall improve its location and work under a GPS-denied situation. CATE relies on its GPS to give its current location, which has a precision of a few meters. We have implemented an Unscented Kalman Filter (UKF) that allows the fusion of data from multiple sensors (such as GPS, IMU, odometry) in order to increase the confidence of localization. We also noticed that GPS signals can easily get degraded or blocked on campus due to high-rise buildings or trees. UKF can also help here to generate a better state estimate. In summary, CATE will provide on-campus transportation experience that coexists with dynamic pedestrian traffic. In future work, we will extend it to multi-vehicle scenarios.Keywords: driverless vehicle, path planning, sensor fusion, state estimate
Procedia PDF Downloads 1441816 Improved Acoustic Source Sensing and Localization Based On Robot Locomotion
Authors: V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
This paper presents different methodology for an acoustic source sensing and localization in an unknown environment. The developed methodology includes an acoustic based sensing and localization system, a converging target localization based on the recursive direction of arrival (DOA) error minimization, and a regressive obstacle avoidance function. Our method is able to augment the existing proven localization techniques and improve results incrementally by utilizing robot locomotion and is capable of converging to a position estimate with greater accuracy using fewer measurements. The results also evinced the DOA error minimization at each iteration, improvement in time for reaching the destination and the efficiency of this target localization method as gradually converging to the real target position. Initially, the system is tested using Kinect mounted on turntable with DOA markings which serve as a ground truth and then our approach is validated using a FireBird VI (FBVI) mobile robot on which Kinect is used to obtain bearing information.Keywords: acoustic source localization, acoustic sensing, recursive direction of arrival, robot locomotion
Procedia PDF Downloads 4921815 A Comparison of Short- and Long-Haul Vacation Tourists on Evaluation of Attractiveness: The Case of Hong Kong
Authors: Zhaoyu Chen
Abstract:
In this study, an attempt was made to find reasons why tourists go to particular attractions. Tourists may be either motivated by the attractions or simply make the choice to satisfy their needs and desires. Based on the attractions in Hong Kong, this research was conducted to explore the attraction-related concepts to discuss how the attraction system works. Due to the limited studies on exploring the attractiveness of attractions through tourist movement patterns, the study aims to evaluate such indicators to determine whether tourists are motivated by attractiveness or their own needs. The investigation is conducted through the comparison of different source markets - Mainland China, short haul markets (excluding Mainland China) and long haul markets. The latest finding of Departing Visitor Survey (DVS) implemented by the Hong Kong Tourism Board (HKTB) is employed for the analysis. Various tourist movement patterns are drawn from the practical data. The managerial implication to destination management organizations (DMOs) is suggested to better allocate attractions according to the needs of tourists.Keywords: attractions, attraction system, Hong Kong, tourist movement patterns
Procedia PDF Downloads 5151814 Metaphorical Devices in Political Cartoons with Reference to Political Confrontation in Pakistan after Panama Leaks
Authors: Ayesha Ashfaq, Muhammad Ajmal Ashfaq
Abstract:
It has been assumed that metaphorical and symbolic contests are waged with metaphors, captions, and signs in political cartoons that play a significant role in image construction of political actors, situations or events in the political arena. This paper is an effort to explore the metaphorical devices in political cartoons related to the political confrontation in Pakistan between the ruling party Pakistan Muslim League Nawaz (PMLN) and opposition parties especially after Panama leaks. For this purpose, political cartoons sketched by five renowned political cartoonists on the basis of their belongings to the most highly circulated mainstream English newspapers of Pakistan and their professional experiences in their genre, were selected. The cartoons were analyzed through the Barthes’s model of Semiotics under the umbrella of the first level of agenda setting theory ‘framing’. It was observed that metaphorical devices in political cartoons are one of the key weapons of cartoonists’ armory. These devices are used to attack the candidates and contribute to the image and character building. It was found that all the selected political cartoonists used different forms of metaphors including situational metaphors and embodying metaphors. Not only the physical stature but also the debates and their activities were depicted metaphorically in the cartoons that create the scenario of comparison between the cartoons and their real political confrontation. It was examined that both forms of metaphors shed light on cartoonist’s perception and newspaper’s policy about political candidates, political parties and particular events. In addition, it was found that zoomorphic metaphors and metaphors of diminishments were also predominantly used to depict the conflict between two said political actors.Keywords: metaphor, Panama leaks, political cartoons, political communication
Procedia PDF Downloads 3071813 A Questionnaire Survey Reviewing Radiographers' Knowledge of Computed Tomography Exposure Parameters
Authors: Mohammad Rawashdeh, Mark McEntee, Maha Zaitoun, Mostafa Abdelrahman, Patrick Brennan, Haytham Alewaidat, Sarah Lewis, Charbel Saade
Abstract:
Despite the tremendous advancements that have been generated by Computed Tomography (CT) in the field of diagnosis, concerns have been raised about the potential cancer induction risk from CT because of the exponentially increased use of it in medicine. This study aims at investigating the application and knowledge of practicing radiographers in Jordan about CT radiation. In order to collect the primary data of this study, a questionnaire was designed and distributed by social media using a snow-balling sampling method. The respondents (n=54) have answered 36 questions including the questions about their demographic information, knowledge about Diagnostic Reference Levels (DRLs), CT exposure and adaptation of pediatric patients exposure. The educational level of the respondents was either at a diploma degree (35.2%) or bachelor (64.8%). The results of this study have indicated a good level of general knowledge between radiographers about the relationship between image quality, exposure parameters, and patient dose. The level of knowledge related to DRL was poor where less than 7.4 percent of the sample members were able to give specific values for a number of common anatomical fields, including abdomen, brain, and chest. Overall, Jordanian radiographers need to gain more knowledge about the expected levels of the dose when applying good practice. Additional education on DRL or DRL inclusion in educational programs is highlighted.Keywords: computed tomography, CT scan, DRLs, exposure parameters, image quality, radiation dose
Procedia PDF Downloads 1431812 Preliminary Analysis on Land Use-Land Cover Assessment of Post-Earthquake Geohazard: A Case Study in Kundasang, Sabah
Authors: Nur Afiqah Mohd Kamal, Khamarrul Azahari Razak
Abstract:
The earthquake aftermath has become a major concern, especially in high seismicity region. In Kundasang, Sabah, the earthquake on 5th June 2015 resulted in several catastrophes; landslides, rockfalls, mudflows and major slopes affected regardless of the series of the aftershocks. Certainly, the consequences of earthquake generate and induce the episodic disaster, not only life-threatening but it also affects infrastructure and economic development. Therefore, a need for investigating the change in land use and land cover (LULC) of post-earthquake geohazard is essential for identifying the extent of disastrous effects towards the development in Kundasang. With the advancement of remote sensing technology, post-earthquake geohazards (landslides, mudflows, rockfalls, debris flows) assessment can be evaluated by the employment of object-based image analysis in investigating the LULC change which consists of settlements, public infrastructure and vegetation cover. Therefore, this paper discusses the preliminary results on post-earthquakes geohazards distribution in Kundasang and evaluates the LULC classification effect upon the occurrences of geohazards event. The result of this preliminary analysis will provide an overview to determine the extent of geohazard impact on LULC. This research also provides beneficial input to the local authority in Kundasang about the risk of future structural development on the geohazard area.Keywords: geohazard, land use land cover, object-based image analysis, remote sensing
Procedia PDF Downloads 2451811 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks
Procedia PDF Downloads 331