Search results for: career model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17323

Search results for: career model

15973 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable

Authors: Xinyuan Y. Song, Kai Kang

Abstract:

Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.

Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data

Procedia PDF Downloads 147
15972 Factors Influencing University Student's Acceptance of New Technology

Authors: Fatma Khadra

Abstract:

The objective of this research is to identify the acceptance of new technology in a sample of 150 Participants from Qatar University. Based on the Technology Acceptance Model (TAM), we used the Davis’s scale (1989) which contains two item scales for Perceived Usefulness and Perceived Ease of Use. The TAM represents an important theoretical contribution toward understanding how users come to accept and use technology. This model suggests that when people are presented with a new technology, a number of variables influence their decision about how and when they will use it. The results showed that participants accept more technology because flexibility, clarity, enhancing the experience, enjoying, facility, and useful. Also, results showed that younger participants accept more technology than others.

Keywords: new technology, perceived usefulness, perceived ease of use, technology acceptance model

Procedia PDF Downloads 324
15971 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties

Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni

Abstract:

Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.

Keywords: multiscale model, tropocollagen, fibrils, ligaments commas

Procedia PDF Downloads 160
15970 Temporal and Spatial Distribution Prediction of Patinopecten yessoensis Larvae in Northern China Yellow Sea

Authors: RuiJin Zhang, HengJiang Cai, JinSong Gui

Abstract:

It takes Patinopecten yessoensis larvae more than 20 days from spawning to settlement. Due to the natural environmental factors such as current, Patinopecten yessoensis larvae are transported to a distance more than hundreds of kilometers, leading to a high instability of their spatial and temporal distribution and great difficulties in the natural spat collection. Therefore predicting the distribution is of great significance to improve the operating efficiency of the collecting. Hydrodynamic model of Northern China Yellow Sea was established and the motions equations of physical oceanography and verified by the tidal harmonic constants and the measured data velocities of Dalian Bay. According to the passivity drift characteristics of the larvae, combined with the hydrodynamic model and the particle tracking model, the spatial and temporal distribution prediction model was established and the spatial and temporal distribution of the larvae under the influence of flow and wind were simulated. It can be concluded from the model results: ocean currents have greatest impacts on the passive drift path and diffusion of Patinopecten yessoensis larvae; the impact of wind is also important, which changed the direction and speed of the drift. Patinopecten yessoensis larvae were generated in the sea along Zhangzi Island and Guanglu-Dachangshan Island, but after two months, with the impact of wind and currents, the larvae appeared in the west of Dalian and the southern of Lvshun, and even in Bohai Bay. The model results are consistent with the relevant literature on qualitative analysis, and this conclusion explains where the larvae come from in the perspective of numerical simulation.

Keywords: numerical simulation, Patinopecten yessoensis larvae, predicting model, spatial and temporal distribution

Procedia PDF Downloads 306
15969 Building Education Leader Capacity through an Integrated Information and Communication Technology Leadership Model and Tool

Authors: Sousan Arafeh

Abstract:

Educational systems and schools worldwide are increasingly reliant on information and communication technology (ICT). Unfortunately, most educational leadership development programs do not offer formal curricular and/or field experiences that prepare students for managing ICT resources, personnel, and processes. The result is a steep learning curve for the leader and his/her staff and dissipated organizational energy that compromises desired outcomes. To address this gap in education leaders’ development, Arafeh’s Integrated Technology Leadership Model (AITLM) was created. It is a conceptual model and tool that educational leadership students can use to better understand the ICT ecology that exists within their schools. The AITL Model consists of six 'infrastructure types' where ICT activity takes place: technical infrastructure, communications infrastructure, core business infrastructure, context infrastructure, resources infrastructure, and human infrastructure. These six infrastructures are further divided into 16 key areas that need management attention. The AITL Model was created by critically analyzing existing technology/ICT leadership models and working to make something more authentic and comprehensive regarding school leaders’ purview and experience. The AITL Model then served as a tool when it was distributed to over 150 educational leadership students who were asked to review it and qualitatively share their reactions. Students said the model presented crucial areas of consideration that they had not been exposed to before and that the exercise of reviewing and discussing the AITL Model as a group was useful for identifying areas of growth that they could pursue in the leadership development program and in their professional settings. While development in all infrastructures and key areas was important for students’ understanding of ICT, they noted that they were least aware of the importance of the intangible area of the resources infrastructure. The AITL Model will be presented and session participants will have an opportunity to review and reflect on its impact and utility. Ultimately, the AITL Model is one that could have significant policy and practice implications. At the very least, it might help shape ICT content in educational leadership development programs through curricular and pedagogical updates.

Keywords: education leadership, information and communications technology, ICT, leadership capacity building, leadership development

Procedia PDF Downloads 117
15968 Estimating the Volatilite of Stock Markets in Case of Financial Crisis

Authors: Gultekin Gurcay

Abstract:

In this paper, effects and responses of stock were analyzed. This analysis was done periodically. The dimensions of the financial crisis impact on the stock market were investigated by GARCH model. In this context, S&P 500 stock market is modeled with DAX, NIKKEI and BIST100. In this way, The effects of the changing in S&P 500 stock market were examined on European and Asian stock markets. Conditional variance coefficient will be calculated through garch model. The scope of the crisis period, the conditional covariance coefficient will be analyzed comparatively.

Keywords: conditional variance coefficient, financial crisis, garch model, stock market

Procedia PDF Downloads 296
15967 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach

Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie

Abstract:

The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.

Keywords: ductile failure, cohesive model, GTN model, numerical simulation

Procedia PDF Downloads 151
15966 The Assessment of Some Biological Parameters With Dynamic Energy Budget of Mussels in Agadir Bay

Authors: Zahra Okba, Hassan El Ouizgani

Abstract:

Anticipating an individual’s behavior to the environmental factors allows for having relevant ecological forecasts. The Dynamic Energy Budget model facilitates prediction, and it is mechanically dependent on biology to abiotic factors but is generally field verified under relatively stable physical conditions. Dynamic Energy Budget Theory (DEB) is a robust framework that can link the individual state to environmental factors, and in our work, we have tested its ability to account for variability by looking at model predictions in the Agadir Bay, which is characterized by a semi-arid climate and temperature is strongly influenced by the trade winds front and nutritional availability. From previous works in our laboratory, we have collected different biological DEB model parameters of Mytilus galloprovincialis mussel in Agadir Bay. We mathematically formulated the equations that make up the DEB model and then adjusted our analytical functions with the observed biological data of our local species. We also assumed the condition of constant immersion, and then we integrated the details of the tidal cycles to calculate the metabolic depression at low tide. Our results are quite satisfactory concerning the length and shape of the shell in one part and the gonadosomatic index in another part.

Keywords: dynamic energy budget, mussels, mytilus galloprovincialis, agadir bay, DEB model

Procedia PDF Downloads 115
15965 Modeling and Simulation of Fluid Catalytic Cracking Process

Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee

Abstract:

Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model.

Keywords: fluid catalytic cracking, simulation, plant data, process design

Procedia PDF Downloads 530
15964 Axle Load Estimation of Moving Vehicles Using BWIM Technique

Authors: Changgil Lee, Seunghee Park

Abstract:

Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model.

Keywords: bridge weigh-in-motion(BWIM) system, precision analysis model, dynamic characteristic of bridge, numerical simulation

Procedia PDF Downloads 295
15963 Influence of Behavior Models on the Response of a Reinforced Concrete Frame: Multi-Fiber Approach

Authors: A. Kahil, A. Nekmouche, N. Khelil, I. Hamadou, M. Hamizi, Ne. Hannachi

Abstract:

The objective of this work is to study the influence of the nonlinear behavior models of the concrete (concrete_BAEL and concrete_UNI) as well as the confinement brought by the transverse reinforcement on the seismic response of reinforced concrete frame (RC/frame). These models as well as the confinement are integrated in the Cast3m finite element calculation code. The consideration of confinement (TAC, taking into account the confinement) provided by the transverse reinforcement and the non-consideration of confinement (without consideration of containment, WCC) in the presence and absence of a vertical load is studied. The application was made on a reinforced concrete frame (RC/frame) with 3 levels and 2 spans. The results show that on the one hand, the concrete_BAEL model slightly underestimates the resistance of the RC/frame in the plastic field, whereas the concrete_uni model presents the best results compared to the simplified model "concrete_BAEL", on the other hand, for the concrete-uni model, taking into account the confinement has no influence on the behavior of the RC/frame under imposed displacement up to a vertical load of 500 KN.

Keywords: reinforced concrete, nonlinear calculation, behavior laws, fiber model confinement, numerical simulation

Procedia PDF Downloads 165
15962 How to Perform Proper Indexing?

Authors: Watheq Mansour, Waleed Bin Owais, Mohammad Basheer Kotit, Khaled Khan

Abstract:

Efficient query processing is one of the utmost requisites in any business environment to satisfy consumer needs. This paper investigates the various types of indexing models, viz. primary, secondary, and multi-level. The investigation is done under the ambit of various types of queries to which each indexing model performs with efficacy. This study also discusses the inherent advantages and disadvantages of each indexing model and how indexing models can be chosen based on a particular environment. This paper also draws parallels between various indexing models and provides recommendations that would help a Database administrator to zero-in on a particular indexing model attributed to the needs and requirements of the production environment. In addition, to satisfy industry and consumer needs attributed to the colossal data generation nowadays, this study has proposed two novel indexing techniques that can be used to index highly unstructured and structured Big Data with efficacy. The study also briefly discusses some best practices that the industry should follow in order to choose an indexing model that is apposite to their prerequisites and requirements.

Keywords: indexing, hashing, latent semantic indexing, B-tree

Procedia PDF Downloads 161
15961 Dynamic Modelling of Hepatitis B Patient Using Sihar Model

Authors: Alakija Temitope Olufunmilayo, Akinyemi, Yagba Joy

Abstract:

Hepatitis is the inflammation of the liver tissue that can cause whiteness of the eyes (Jaundice), lack of appetite, vomiting, tiredness, abdominal pain, diarrhea. Hepatitis is acute if it resolves within 6 months and chronic if it last longer than 6 months. Acute hepatitis can resolve on its own, lead to chronic hepatitis or rarely result in acute liver failure. Chronic hepatitis may lead to scarring of the liver (Cirrhosis), liver failure and liver cancer. Modelling Hepatitis B may become necessary in order to reduce its spread. So, dynamic SIR model can be used. This model consists of a system of three coupled non-linear ordinary differential equation which does not have an explicit formula solution. It is an epidemiological model used to predict the dynamics of infectious disease by categorizing the population into three possible compartments. In this study, a five-compartment dynamic model of Hepatitis B disease was proposed and developed by adding control measure of sensitizing the public called awareness. All the mathematical and statistical formulation of the model, especially the general equilibrium of the model, was derived, including the nonlinear least square estimators. The initial parameters of the model were derived using nonlinear least square embedded in R code. The result study shows that the proportion of Hepatitis B patient in the study population is 1.4 per 1,000,000 populations. The estimated Hepatitis B induced death rate is 0.0108, meaning that 1.08% of the infected individuals die of the disease. The reproduction number of Hepatitis B diseases in Nigeria is 6.0, meaning that one individual can infect more than 6.0 people. The effect of sensitizing the public on the basic reproduction number is significant as the reproduction number is reduced. The study therefore recommends that programme should be designed by government and non-governmental organization to sensitize the entire Nigeria population in order to reduce cases of Hepatitis B disease among the citizens.

Keywords: hepatitis B, modelling, non-linear ordinary differential equation, sihar model, sensitization

Procedia PDF Downloads 91
15960 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold

Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho

Abstract:

The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.

Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold

Procedia PDF Downloads 146
15959 Drinking Water Quality Assessment Using Fuzzy Inference System Method: A Case Study of Rome, Italy

Authors: Yas Barzegar, Atrin Barzegar

Abstract:

Drinking water quality assessment is a major issue today; technology and practices are continuously improving; Artificial Intelligence (AI) methods prove their efficiency in this domain. The current research seeks a hierarchical fuzzy model for predicting drinking water quality in Rome (Italy). The Mamdani fuzzy inference system (FIS) is applied with different defuzzification methods. The Proposed Model includes three fuzzy intermediate models and one fuzzy final model. Each fuzzy model consists of three input parameters and 27 fuzzy rules. The model is developed for water quality assessment with a dataset considering nine parameters (Alkalinity, Hardness, pH, Ca, Mg, Fluoride, Sulphate, Nitrates, and Iron). Fuzzy-logic-based methods have been demonstrated to be appropriate to address uncertainty and subjectivity in drinking water quality assessment; it is an effective method for managing complicated, uncertain water systems and predicting drinking water quality. The FIS method can provide an effective solution to complex systems; this method can be modified easily to improve performance.

Keywords: water quality, fuzzy logic, smart cities, water attribute, fuzzy inference system, membership function

Procedia PDF Downloads 77
15958 From Bureaucracy to Organizational Learning Model: An Organizational Change Process Study

Authors: Vania Helena Tonussi Vidal, Ester Eliane Jeunon

Abstract:

This article aims to analyze the change processes of management related bureaucracy and learning organization model. The theoretical framework was based on Beer and Nohria (2001) model, identified as E and O Theory. Based on this theory the empirical research was conducted in connection with six key dimensions: goal, leadership, focus, process, reward systems and consulting. We used a case study of an educational Institution located in Barbacena, Minas Gerais. This traditional center of technical knowledge for long time adopted the bureaucratic way of management. After many changes in a business model, as the creation of graduate and undergraduate courses they decided to make a deep change in management model that is our research focus. The data were collected through semi-structured interviews with director, managers and courses supervisors. The analysis were processed by the procedures of Collective Subject Discourse (CSD) method, develop by Lefèvre & Lefèvre (2000), Results showed the incremental growing of management model toward a learning organization. Many impacts could be seeing. As negative factors we have: people resistance; poor information about the planning and implementation process; old politics inside the new model and so on. Positive impacts are: new procedures in human resources, mainly related to manager skills and empowerment; structure downsizing, open discussions channel; integrated information system. The process is still under construction and now great stimulus is done to managers and employee commitment in the process.

Keywords: bureaucracy, organizational learning, organizational change, E and O theory

Procedia PDF Downloads 435
15957 Sustainable Management of Agricultural Resources in Irrigated Agriculture

Authors: Basil Manos, Parthena Chatzinikolaou, Fedra Kiomourtzi

Abstract:

This paper presents a mathematical model for the sustainable management of agricultural resources in irrigated agriculture. This is a multicriteria mathematical programming model and used as a tool for the planning, analysis and simulation of farm plans in rural irrigated areas, as well as for the study of impacts of the various policies in irrigated agriculture. The model can achieve the optimum farm plan of an agricultural region taking in account different conflicting criteria as the maximization of gross margin and the minimization of fertilizers used, under a set of constraints for land, labor, available capital, common agricultural policy etc. The proposed model was applied to four prefectures in central Greece. The results show that in all prefectures, the optimum farm plans achieve greater income and less environmental impacts (less irrigated water use and less fertilizers use) than the existent plans.

Keywords: sustainable use of agricultural resources, irrigated agriculture, multicriteria analysis, optimum income

Procedia PDF Downloads 327
15956 The Impact of Transaction Costs on Rebalancing an Investment Portfolio in Portfolio Optimization

Authors: B. Marasović, S. Pivac, S. V. Vukasović

Abstract:

Constructing a portfolio of investments is one of the most significant financial decisions facing individuals and institutions. In accordance with the modern portfolio theory maximization of return at minimal risk should be the investment goal of any successful investor. In addition, the costs incurred when setting up a new portfolio or rebalancing an existing portfolio must be included in any realistic analysis. In this paper rebalancing an investment portfolio in the presence of transaction costs on the Croatian capital market is analyzed. The model applied in the paper is an extension of the standard portfolio mean-variance optimization model in which transaction costs are incurred to rebalance an investment portfolio. This model allows different costs for different securities, and different costs for buying and selling. In order to find efficient portfolio, using this model, first, the solution of quadratic programming problem of similar size to the Markowitz model, and then the solution of a linear programming problem have to be found. Furthermore, in the paper the impact of transaction costs on the efficient frontier is investigated. Moreover, it is shown that global minimum variance portfolio on the efficient frontier always has the same level of the risk regardless of the amount of transaction costs. Although efficient frontier position depends of both transaction costs amount and initial portfolio it can be concluded that extreme right portfolio on the efficient frontier always contains only one stock with the highest expected return and the highest risk.

Keywords: Croatian capital market, Markowitz model, fractional quadratic programming, portfolio optimization, transaction costs

Procedia PDF Downloads 389
15955 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: finite element method, heat transfer, moisture transfer, porous materials, wood

Procedia PDF Downloads 401
15954 Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails

Authors: Barenten Suciu, Ryoichi Kinoshita

Abstract:

In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies.

Keywords: double-curved rail, octave analysis, vibration model, ride comfort, railway vehicle

Procedia PDF Downloads 318
15953 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 227
15952 Handling Missing Data by Using Expectation-Maximization and Expectation-Maximization with Bootstrapping for Linear Functional Relationship Model

Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, A. H. M. R. Imon

Abstract:

Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in two types of LFRM namely the full model of LFRM and in LFRM when the slope is estimated using a nonparametric method. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.

Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators

Procedia PDF Downloads 456
15951 Emulation Model in Architectural Education

Authors: Ö. Şenyiğit, A. Çolak

Abstract:

It is of great importance for an architectural student to know the parameters through which he/she can conduct his/her design and makes his/her design effective in architectural education. Therefore; an empirical application study was carried out through the designing activity using the emulation model to support the design and design approaches of architectural students. During the investigation period, studies were done on the basic design elements and principles of the fall semester, and the emulation model, one of the designing methods that constitute the subject of the study, was fictionalized as three phased “recognition-interpretation-application”. As a result of the study, it was observed that when students were given a key method during the design process, their awareness increased and their aspects improved as well.

Keywords: basic design, design education, design methods, emulation

Procedia PDF Downloads 236
15950 AI-based Optimization Model for Plastics Biodegradable Substitutes

Authors: Zaid Almahmoud, Rana Mahmoud

Abstract:

To mitigate the environmental impacts of throwing away plastic waste, there has been a recent interest in manufacturing and producing biodegradable plastics. Here, we study a new class of biodegradable plastics which are mixed with external natural additives, including catalytic additives that lead to a successful degradation of the resulting material. To recommend the best alternative among multiple materials, we propose a multi-objective AI model that evaluates the material against multiple objectives given the material properties. As a proof of concept, the AI model was implemented in an expert system and evaluated using multiple materials. Our findings showed that Polyethylene Terephalate is potentially the best biodegradable plastic substitute based on its material properties. Therefore, it is recommended that governments shift the attention to the use of Polyethylene Terephalate in the manufacturing of bottles to gain a great environmental and sustainable benefits.

Keywords: plastic bottles, expert systems, multi-objective model, biodegradable substitutes

Procedia PDF Downloads 116
15949 Second Order Cone Optimization Approach to Two-stage Network DEA

Authors: K. Asanimoghadam, M. Salahi, A. Jamalian

Abstract:

Data envelopment analysis is an approach to measure the efficiency of decision making units with multiple inputs and outputs. The structure of many decision making units also has decision-making subunits that are not considered in most data envelopment analysis models. Also, the inputs and outputs of the decision-making units usually are considered desirable, while in some real-world problems, the nature of some inputs or outputs are undesirable. In this thesis, we study the evaluation of the efficiency of two stage decision-making units, where some outputs are undesirable using two non-radial models, the SBM and the ASBM models. We formulate the nonlinear ASBM model as a second order cone optimization problem. Finally, we compare two models for both external and internal evaluation approaches for two real world example in the presence of undesirable outputs. The results show that, in both external and internal evaluations, the overall efficiency of ASBM model is greater than or equal to the overall efficiency value of the SBM model, and in internal evaluation, the ASBM model is more flexible than the SBM model.

Keywords: network DEA, conic optimization, undesirable output, SBM

Procedia PDF Downloads 195
15948 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation

Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang

Abstract:

Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.

Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method

Procedia PDF Downloads 214
15947 The Role of Speed Reduction Model in Urban Highways Tunnels Accidents

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing travel demand in cities, bridges and tunnels are viewed as one of the fundamental components of cities transportation systems. Normally, due to geometric constraints forms in the tunnels, the considered speed in the tunnels is lower than the speed in connected highways. Therefore, drivers tend to reduce the speed near the entrance of the tunnels. In this paper, the effect of speed reduction on accident happened in the entrance of the tunnels has been discussed. The relation between accidents frequency and the parameters of speed, traffic volume and time of the accident in the mentioned tunnel has been analyzed and the mathematical model has been proposed.

Keywords: urban highway, accident, tunnel, mathematical model

Procedia PDF Downloads 473
15946 Effect of Variable Fluxes on Optimal Flux Distribution in a Metabolic Network

Authors: Ehsan Motamedian

Abstract:

Finding all optimal flux distributions of a metabolic model is an important challenge in systems biology. In this paper, a new algorithm is introduced to identify all alternate optimal solutions of a large scale metabolic network. The algorithm reduces the model to decrease computations for finding optimal solutions. The algorithm was implemented on the Escherichia coli metabolic model to find all optimal solutions for lactate and acetate production. There were more optimal flux distributions when acetate production was optimized. The model was reduced from 1076 to 80 variable fluxes for lactate while it was reduced to 91 variable fluxes for acetate. These 11 more variable fluxes resulted in about three times more optimal flux distributions. Variable fluxes were from 12 various metabolic pathways and most of them belonged to nucleotide salvage and extra cellular transport pathways.

Keywords: flux variability, metabolic network, mixed-integer linear programming, multiple optimal solutions

Procedia PDF Downloads 436
15945 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity

Authors: N. P. Yadav, Deepti Verma

Abstract:

This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.

Keywords: buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid

Procedia PDF Downloads 418
15944 Fault Prognostic and Prediction Based on the Importance Degree of Test Point

Authors: Junfeng Yan, Wenkui Hou

Abstract:

Prognostics and Health Management (PHM) is a technology to monitor the equipment status and predict impending faults. It is used to predict the potential fault and provide fault information and track trends of system degradation by capturing characteristics signals. So how to detect characteristics signals is very important. The select of test point plays a very important role in detecting characteristics signal. Traditionally, we use dependency model to select the test point containing the most detecting information. But, facing the large complicated system, the dependency model is not built so easily sometimes and the greater trouble is how to calculate the matrix. Rely on this premise, the paper provide a highly effective method to select test point without dependency model. Because signal flow model is a diagnosis model based on failure mode, which focuses on system’s failure mode and the dependency relationship between the test points and faults. In the signal flow model, a fault information can flow from the beginning to the end. According to the signal flow model, we can find out location and structure information of every test point and module. We break the signal flow model up into serial and parallel parts to obtain the final relationship function between the system’s testability or prediction metrics and test points. Further, through the partial derivatives operation, we can obtain every test point’s importance degree in determining the testability metrics, such as undetected rate, false alarm rate, untrusted rate. This contributes to installing the test point according to the real requirement and also provides a solid foundation for the Prognostics and Health Management. According to the real effect of the practical engineering application, the method is very efficient.

Keywords: false alarm rate, importance degree, signal flow model, undetected rate, untrusted rate

Procedia PDF Downloads 380