Search results for: Wire Electric Discharge Machining (WEDM)
1327 X-Ray Dosimetry by a Low-Cost Current Mode Ion Chamber
Authors: Ava Zarif Sanayei, Mustafa Farjad-Fard, Mohammad-Reza Mohammadian-Behbahani, Leyli Ebrahimi, Sedigheh Sina
Abstract:
The fabrication and testing of a low-cost air-filled ion chamber for X-ray dosimetry is studied. The chamber is made of a metal cylinder, a central wire, a BC517 Darlington transistor, a 9V DC battery, and a voltmeter in order to have a cost-effective means to measure the dose. The output current of the dosimeter is amplified by the transistor and then fed to the large internal resistance of the voltmeter, producing a readable voltage signal. The dose-response linearity of the ion chamber is evaluated for different exposure scenarios by the X-ray tube. kVp values 70, 90, and 120, and mAs up to 20 are considered. In all experiments, a solid-state dosimeter (Solidose 400, Elimpex Medizintechnik) is used as a reference device for chamber calibration. Each case of exposure is repeated three times, the voltmeter and Solidose readings are recorded, and the mean and standard deviation values are calculated. Then, the calibration curve, derived by plotting voltmeter readings against Solidose readings, provided a linear fit result for all tube kVps of 70, 90, and 120. A 99, 98, and 100% linear relationship, respectively, for kVp values 70, 90, and 120 are demonstrated. The study shows the feasibility of achieving acceptable dose measurements with a simplified setup. Further enhancements to the proposed setup include solutions for limiting the leakage current, optimizing chamber dimensions, utilizing electronic microcontrollers for dedicated data readout, and minimizing the impact of stray electromagnetic fields on the system.Keywords: dosimetry, ion chamber, radiation detection, X-ray
Procedia PDF Downloads 761326 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior
Procedia PDF Downloads 3271325 Near Bottom Concentrations of Krill in Two Arctic Fjords, Spitsbergen
Authors: Kajetan Deja, Katarzyna Draganska-Deja, Mateusz Ormanczyk, Michał Procajlo
Abstract:
Two glaciated fjords on Spitsbergen (Hornsund 77°N) and Kongsfjorden (79°N) were studied for the occurrence of macroplankton (mostly euphausids, hyperiids, chaetognaths) with the use of drop down the camera. The underwater imagery demonstrates that closer to the glacier front, where turbid and freshwater occurs, most of the macroplankters leave the upper water column and descends to the bottom (about 100m depth). Concentrations of macroplankton in the immediate vicinity of the sediment reach over 500 specimens per m² - what corresponds to the biomass of 10g C/m³. Such concentrations of macroplankton are of prime interest for fish, seals and other carnivores. Conditions in the near-bottom waters are in many respects better than in the upper water column- better oxygenated, cold, fully saline and transparent waters with rich food deposited on the seabed from the surface (sinking microplankton). We suggest that near bottom occurrence of macroplankton is related to the increase of glacier melt and freshwater discharge intensity.Keywords: arctic, ecosystem, fjords, Krill
Procedia PDF Downloads 2631324 Effects of Climate Change on Hydraulic Design Methods of Railway Infrastructures
Authors: Chiara Cesali
Abstract:
The effects of climate change are increasingly evident: increases in temperature (i.e. global warming), greater frequency of extreme weather events, i.e. storms, floods, which often affect transport infrastructures. Large-scale climatological models with long-term horizons (up to 2100) show the possibility of significant increases in precipitation in the future, according to the greenhouse gas emissions scenarios from IPCC. Consequently, the insufficiency of existing hydraulic works (i.e. bridges, culverts, drainage systems) may be more frequent, or those currently being designed may become insufficient in the future. Thus, the hydraulic design methods of transport infrastructure must begin to take into account the influence of climate change. To this purpose, criteria for applying to the hydraulic design of a railway infrastructure some of the approaches currently available for determining design rainfall intensity and/or peak discharge flow on the basis of possible climate change scenarios are defined and proposed in the paper. Some application cases are also described.Keywords: climate change, hydraulic design, precipitation, railway
Procedia PDF Downloads 1771323 Dynamics of Understanding Earthquake Precursors-A Review
Authors: Sarada Nivedita Bhuyan
Abstract:
Earthquake is the sudden, rapid movement of the earth’s crust and is the natural means of releasing stress. Tectonic plates play a major role for earthquakes as tectonic plates are the crust of the planet. The boundary lines of tectonic plates are usually known as fault lines. To understand an earthquake before its occurrence, different types of earthquake precursors are studied by different researchers. Surface temperature, strange cloud cover, earth’s electric field, geomagnetic phenomena, ground water level, active faults, ionospheric anomalies, tectonic movements are taken as parameters for earthquake study by different researchers. In this paper we tried to gather complete and helpful information of earthquake precursors which have been studied until now.Keywords: earthquake precursors, earthquake, tectonic plates, fault
Procedia PDF Downloads 3791322 Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps
Authors: L. Belkhiri, L. Mouni, A. Tiri, T.S. Narany
Abstract:
In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three.Keywords: groundwater quality, self-organizing maps, drinking water, irrigation water
Procedia PDF Downloads 2541321 Design and Development of Wind Turbine Emulator to Operate with 1.5 kW Induction Generator
Authors: Himani Ratna Dahiya
Abstract:
This paper contributes to design a Wind Emulator coupled to 1.5 kW Induction generator for Wind Energy Conversion System. A wind turbine emulator (WTE) is important equipment for developing wind energy conversion systems. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators that is hard to achieve with an actual wind turbine since the wind speed varies randomly. In this paper a wind emulator is modeled and simulated using MATLAB. Verification of the simulation results is done by experimental setup using DC motor-Induction generator set, LABVIEW and data acquisition card.Keywords: Wind Turbine Emulator, LABVIEW, matlab, induction generator
Procedia PDF Downloads 5881320 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach
Authors: Alexander S. Andreev, Olga A. Peregudova
Abstract:
In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482).Keywords: actuator dynamics, back stepping, discrete-time controller, Lyapunov function, wheeled mobile robot
Procedia PDF Downloads 4131319 The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework
Authors: Pouyan Jahanbin, Mahmoud Houshmand, Omid Fatahi Valilai
Abstract:
A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot’s control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems.Keywords: CNC machine tools, industrial robots, knowledge-based systems, manufacturing recourses integration, flexible manufacturing system (FMS), object-oriented data model
Procedia PDF Downloads 4541318 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue
Procedia PDF Downloads 1871317 Research Trends in High Voltage Power Transmission
Authors: Tlotlollo Sidwell Hlalele, Shengzhi Du
Abstract:
High voltage transmission is the most pivotal process in the electrical power industry. It requires a robust infrastructure that can last for decades without causing impairment in human life. Due to the so-called global warming, power transmission system has started to experience some challenges which could presumably escalate more in future. These challenges are earthquake resistance, transmission power losses, and high electromagnetic field. In this paper, research efforts aim to address these challenges are discussed. We focus in particular on the research in regenerative electric energy such as: wind, hydropower, biomass and sea-waves based on the energy storage and transmission possibility. We conclude by drawing attention to specific areas that we believe need more research.Keywords: power transmission, regenerative energy, power quality, energy storage
Procedia PDF Downloads 3491316 Ankle Fracture Management: A Unique Cross Departmental Quality Improvement Project
Authors: Langhit Kurar, Loren Charles
Abstract:
Introduction: In light of recent BOAST 12 (August 2016) published guidance on management of ankle fractures, the project aimed to highlight key discrepancies throughout the care trajectory from admission to point of discharge at a district general hospital. Wide breadth of data covering three key domains: accident and emergency, radiology, and orthopaedic surgery were subsequently stratified and recommendations on note documentation, and outpatient follow up were made. Methods: A retrospective twelve month audit was conducted reviewing results of ankle fracture management in 37 patients. Inclusion criterion involved all patients seen at Darent Valley Hospital (DVH) emergency department with radiographic evidence of an ankle fracture. Exclusion criterion involved all patients managed solely by nursing staff or having sustained purely ligamentous injury. Medical notes, including discharge summaries and the PACS online radiographic tool were used for data extraction. Results: Cross-examination of the A & E domain revealed limited awareness of the BOAST 12 recent publication including requirements to document skin integrity and neurovascular assessment. This had direct implications as this would have changed the surgical plan for acutely compromised patients. The majority of results obtained from the radiographic domain were satisfactory with appropriate X-rays taken in over 95% of cases. However, due to time pressures within A & E, patients were often left without a post manipulation XRAY in a backslab. Poorly reduced fractures were subsequently left for a long period resulting in swollen ankles and a time-dependent lag to surgical intervention. This had knocked on implications for prolonged inpatient stay resulting in hospital-acquired co-morbidity including pressure sores. Discussion: The audit has highlighted several areas of improvement throughout the disease trajectory from review in the emergency department to follow up as an outpatient. This has prompted the creation of an algorithm to ensure patients with significant fractures presenting to the emergency department are seen promptly and treatment expedited as per recent guidance. This includes timing for X-rays taken in A & E. Re-audit has shown significant improvement in both documentation at time of presentation and appropriate follow-up strategies. Within the orthopedic domain, we are in the process of creating an ankle fracture pathway to ensure imaging and weight bearing status are made clear to the consulting clinicians in an outpatient setting. Significance/Clinical Relevance: As a result of the ankle fracture algorithm we have adapted the BOAST 12 guidance to shape an intrinsic pathway to not only improve patient management within the emergency department but also create a standardised format for follow up.Keywords: ankle, fracture, BOAST, radiology
Procedia PDF Downloads 1791315 Enhancing Engineering Students Educational Experience: Studying Hydrostatic Pumps Association System in Fluid Mechanics Laboratories
Authors: Alexandre Daliberto Frugoli, Pedro Jose Gabriel Ferreira, Pedro Americo Frugoli, Lucio Leonardo, Thais Cavalheri Santos
Abstract:
Laboratory classes in Engineering courses are essential for students to be able to integrate theory with practical reality, by handling equipment and observing experiments. In the researches of physical phenomena, students can learn about the complexities of science. Over the past years, universities in developing countries have been reducing the course load of engineering courses, in accordance with cutting cost agendas. Quality education is the object of study for researchers and requires educators and educational administrators able to demonstrate that the institutions are able to provide great learning opportunities at reasonable costs. Didactic test benches are indispensable equipment in educational activities related to turbo hydraulic pumps and pumping facilities study, which have a high cost and require long class time due to measurements and equipment adjustment time. In order to overcome the aforementioned obstacles, aligned with the professional objectives of an engineer, GruPEFE - UNIP (Research Group in Physics Education for Engineering - Universidade Paulista) has developed a multi-purpose stand for the discipline of fluid mechanics which allows the study of velocity and flow meters, loads losses and pump association. In this work, results obtained by the association in series and in parallel of hydraulic pumps will be presented and discussed, mainly analyzing the repeatability of experimental procedures and their agreement with the theory. For the association in series two identical pumps were used, consisting of the connection of the discharge of a pump to the suction of the next one, allowing the fluid to receive the power of all machines in the association. The characteristic curve of the set is obtained from the curves of each of the pumps, by adding the heads corresponding to the same flow rates. The same pumps were associated in parallel. In this association, the discharge piping is common to the two machines together. The characteristic curve of the set was obtained by adding to each value of H (head height), the flow rates of each pump. For the tests, the input and output pressure of each pump were measured. For each set there were three sets of measurements, varying the flow rate in range from 6.0 to 8.5 m 3 / h. For the two associations, the results showed an excellent repeatability with variations of less than 10% between sets of measurements and also a good agreement with the theory. This variation agrees with the instrumental uncertainty. Thus, the results validate the use of the fluids bench designed for didactic purposes. As a future work, a digital acquisition system is being developed, using differential sensors of extremely low pressures (2 to 2000 Pa approximately) for the microcontroller Arduino.Keywords: engineering education, fluid mechanics, hydrostatic pumps association, multi-purpose stand
Procedia PDF Downloads 2191314 Study of the Feasibility of Submerged Arc Welding(SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius
Authors: Ajay Biswas, Swapan Bhaumik, Saurav Datta, Abhijit Bhowmik
Abstract:
A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. voltage, wire feed rate, travel speed, and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.Keywords: submerged arc welding, zero degree celsius, Taguchi’s design of experiment, geometry of weldment
Procedia PDF Downloads 4481313 Feasibility Study of Submerged Arc Welding (SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius
Authors: Ajay Biswas, Abhijit Bhowmik, Saurav Datta, Swapan Bhaumik
Abstract:
A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. Voltage, wire feed rate, travel speed and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.Keywords: geometry of weldment, submerged arc welding, Taguchi’s design of experiment, zero degree Celsius
Procedia PDF Downloads 4321312 Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows
Authors: Justo Rodriguez, Daming Chen, Amador M. Guzman
Abstract:
The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture.Keywords: microchannel, stretching and folding, electro kinetic flow mixing, micro-analyzer
Procedia PDF Downloads 1241311 Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies
Authors: Rebecca Angeles
Abstract:
This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e. in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the 'Technology-Organization-Environment' theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved.Keywords: environmental sustainability, radio frequency identification, technology-organization-environment framework, RFID system implementation, case study, content analysis
Procedia PDF Downloads 4411310 Investigating the Influence of Potassium Ion Doping on Lithium-Ion Battery Performance
Authors: Liyew Yizengaw Yitayih
Abstract:
This nanotechnology study focuses on how potassium ions (K+) affect lithium-ion (Li-ion) battery performance. By adding potassium ions (K+) to the lithium tin oxide (LiSnO) anode and employing styrene-butadiene rubber (SBR) as a binder, the doping of K+ was specifically studied. The methods employed in this study include computer modeling and simulation, material fabrication, and electrochemical characterization. The potassium ions (Li+) were successfully doped into the LiSnO lattice during charge/discharge cycles, which increased the lithium-ion diffusivity and electrical conductivity within the anode. However, it was found that internal doping of potassium ions (K+) into the LiSnO lattice occurred at high potassium ion concentrations (>16.6%), which hampered lithium ion transfer because of repulsion and physical blockage. The electrochemical efficiency of lithium-ion batteries was improved by this comprehensive study's presentation of potassium ions' (K+) potential advantages when present in the appropriate concentrations in electrode materials.Keywords: lithium-ion battery, LiSnO anode, potassium doping, lithium-ion diffusivity, electronic conductivity
Procedia PDF Downloads 641309 Texturing of Tool Insert Using Femtosecond Laser
Authors: Ashfaq Khan, Aftab Khan, Mushtaq Khan, Sarem Sattar, Mohammad A Sheikh, Lin Li
Abstract:
Chip removal processes are one of key processes of the manufacturing industry where chip removal is conducted by tool inserts of exceptionally hard materials. Tungsten carbide has been extensively used as tool insert for machining processes involving chip removal processes. These hard materials are generally fabricated by single step sintering process as further modification after fabrication in these materials cannot be done easily. Advances in tool surface modification have revealed that advantages such as improved tribological properties and extended tool life can be harnessed from the same tool by texturing the tool rake surface. Moreover, it has been observed that the shape and location of the texture also influences the behavior. Although texturing offers plentiful advantages the challenge lies in the generation of textures on the tool surface. Extremely hard material such as diamond is required to process tungsten carbide. Laser is unique processing tool that does not have a physical contact with the material and thus does not wear. In this research the potential of utilizing laser for texturing of tungsten carbide to develop custom features would be studied. A parametric study of texturing of Tungsten Carbide with a femtosecond laser would be conducted to investigate the process parameters and establish the feasible processing window. The effect of fluence, scan speed and number of repetition would be viewed in detail. Moreover, the mechanism for the generation of features would also be reviewed.Keywords: laser, texturing, femtosecond, tungsten carbide
Procedia PDF Downloads 6561308 Designing Floor Planning in 2D and 3D with an Efficient Topological Structure
Authors: V. Nagammai
Abstract:
Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously.Keywords: application specific noc, b* tree representation, floor planning, t tree representation
Procedia PDF Downloads 3921307 Flexible Polyaniline-Based Composite Films for High-Performance Super Capacitors
Authors: A. Khosrozadeh, M. A. Darabi, M. Xing, Q. Wang
Abstract:
Fabrication of a high-performance supercapacitor (SC) using a flexible cellulose-based composite film of polyaniline (PANI), reduced graphene oxide (RGO), and silver nanowires (AgNWs) is reported. The flexibility, high capacitive behaviour, and cyclic stability of the entire device make it a good candidate for wearable SCs. The results show that a capacitance as high as 73.4 F/g (1.6 F/cm2) at a discharge rate of 1.1 A/g is achieved by the device. In addition, the SC demonstrates a power density up to 468.8 W/kg and an energy density up to 5.1 wh/kg. The flexibility of the composite film is attributed to the binding effect of cellulose fibers as well as reinforcing effect of AgNWs. The excellent electrochemical performance of the device is found to be owing to the synergistic effect between PANI/RGO/AgNWs ternary in a cushiony cellulose matrix and porous structure of the composite.Keywords: cellulose, polyaniline, reduced graphene oxide, silver, super capacitor
Procedia PDF Downloads 4271306 Characterization of Carbon Dioxide-Rich Flue Gas Sources for Conversion to Chemicals and Fuels
Authors: Adesola Orimoloye, Edward Gobina
Abstract:
Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever - present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors.Keywords: Flue gas, carbon dioxide, membrane, catalyst, syngas
Procedia PDF Downloads 6721305 Umbilical Epidermal Inclusion Cysts, a Rare Cause of Umbilical Mass: A Case Report and Review of Literature
Authors: Christine Li, Amanda Robertson
Abstract:
Epidermal inclusion cysts occur when epidermal cells are implanted in the dermis following trauma, or surgery. They are a rare cause of an umbilical mass, with very few cases previously reported following abdominal surgery. These lesions can present with a range of symptoms, including palpable mass, pain, redness, or discharge. This paper reports a case of an umbilical epidermal inclusion cyst in a 52-year-old female presenting with a six-week history of a painful, red umbilical lump on a background of two previous diagnostic laparoscopies. Abdominal computed tomography (CT) scans revealed non-specific soft tissue thickening in the umbilical region. This was successfully treated with complete excision of the lesion. Umbilical lumps are a common presentation but can represent a diagnostic challenge. The differential diagnosis should include an epidermal inclusion cyst, particularly in a patient who has had previous abdominal surgery, including laparoscopic surgery.Keywords: epidermal inclusion cyst, laparoscopy, umbilical mass, umbilicus
Procedia PDF Downloads 811304 Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype
Authors: Tine Cencič, Marko Hočevar, Brane Širok
Abstract:
An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods.Keywords: cavitation erosion, turbine, cavitation measurement, fluid dynamics
Procedia PDF Downloads 4131303 Internet of Things based AquaSwach Water Purifier
Authors: Karthiyayini J., Arpita Chowdary Vantipalli, Darshana Sailu Tanti, Malvika Ravi Kudari, Krtin Kannan
Abstract:
This paper is propelled from the generally existing undertaking of the smart water quality management, which addresses an IoT (Internet of things) based brilliant water quality observing (SWQM) framework which we call it AquaSwach that guides in the ceaseless estimation of water conditions dependent on five actual boundaries i.e., temperature, pH, electric conductivity and turbidity properties and water virtue estimation each time you drink water. Six sensors relate to Arduino-Mega in a discrete way to detect the water parameters. Extracted data from the sensors are transmitted to a desktop application developed in the NET platform and compared with the WHO (World Health Organization) standard values.Keywords: AquaSwach, IoT, WHO, water quality
Procedia PDF Downloads 2101302 Production and Characterization of Silver Doped Hydroxyapatite Thin Films for Biomedical Applications
Authors: C. L Popa, C.S. Ciobanu, S. L. Iconaru, P. Chapon, A. Costescu, P. Le Coustumer, D. Predoi
Abstract:
In this paper, the preparation and characterization of silver doped hydroxyapatite thin films and their antimicrobial activity characterized is reported. The resultant Ag: HAp films coated on commercially pure Si disks substrates were systematically characterized by Scanning Electron Microscopy (SEM) coupled with X-ray Energy Dispersive Spectroscopy detector (X-EDS), Glow Discharge Optical Emission Spectroscopy (GDOES) and Fourier Transform Infrared spectroscopy (FT-IR). GDOES measurements show that a substantial Ag content has been deposited in the films. The X-EDS and GDOES spectra revealed the presence of a material composed mainly of phosphate, calcium, oxygen, hydrogen and silver. The antimicrobial efficiency of Ag:HAp thin films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated. Ag:HAp thin films could lead to a decrease of infections especially in the case of bone and dental implants by surface modification of implantable medical devices.Keywords: silver, hydroxyapatite, thin films, GDOES, SEM, FTIR, antimicrobial effect
Procedia PDF Downloads 4241301 A Simple Technique for Centralisation of Distal Femoral Nail to Avoid Anterior Femoral Impingement and Perforation
Authors: P. Panwalkar, K. Veravalli, M. Tofighi, A. Mofidi
Abstract:
Introduction: Anterior femoral perforation or distal anterior nail position is a known complication of femoral nailing specifically in pertrochantric fractures fixed with cephalomedullary nail. This has been attributed to wrong entry point for the femoral nail, nail with large radius of curvature or malreduced fracture. Left alone anterior perforation of femur or abutment of nail on anterior femur will result in pain and risk stress riser at distal femur and periprosthetic fracture. There have been multiple techniques described to avert or correct this problem ranging from using different nail, entry point change, poller screw to deflect the nail position, use of shorter nail or use of curved guidewire or change of nail to ensure a nail with large radius of curvature Methods: We present this technique which we have used in order to centralise the femoral nail either when the nail has been put anteriorly or when the guide wire has been inserted too anteriorly prior to the insertion of the nail. This technique requires the use of femoral reduction spool from the nailing set. This technique was used by eight trainees of different level of experience under supervision. Results: This technique was easily reproducible without any learning curve without a need for opening of fracture site or change in the entry point with three different femoral nailing sets in twenty-five cases. The process took less than 10 minutes even when revising a malpositioned femoral nail. Conclusion: Our technique of using femoral reduction spool is easily reproducible and repeatable technique for avoidance of non-centralised femoral nail insertion and distal anterior perforation of femoral nail.Keywords: femoral fracture, nailing, malposition, surgery
Procedia PDF Downloads 1381300 Wastewater Treatment Using Sodom Apple Tree in Arid Regions
Authors: D. Oulhaci, M. Zehah, S. Meguellati
Abstract:
Collected by the sewerage network, the wastewater contains many polluting elements, coming from the population, commercial, industrial and agricultural activities. These waters are collected and discharged into the natural environment and pollute it. Hence the need to transport them before discharge to a treatment plant to undergo several treatment phases. The objective of this study is to highlight the purification performance of the "Sodom apple tree" which is a very common shrub in the region of Djanet and Illizi in Algeria. As material, we used small buckets filled with sand with a gravel substrate. We sowed seeds that we let grow a few weeks. The water supply is under a horizontal flow regime under-ground. The urban wastewater used is preceded by preliminary treatment. The water obtained after purification is collected using a tap in a container placed under the seal. The comparison between the inlet and the outlet waters showed that the presence of the Sodom apple tree contributes to reducing their pollutant parameters with significant rates: 81% for COD, 84%, for BOD , 95% for SM , 82% for NO⁻² , and 85% for NO⁻³ and can be released into the environment without risk of pollutionKeywords: arid zone, pollution, purification, re-use, wastewater.
Procedia PDF Downloads 801299 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model
Authors: Li Chen, Alex Skvortsov, Chris Norwood
Abstract:
Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model
Procedia PDF Downloads 2851298 Endovascular Aneurysm Repair (Evar) with Endoanchors: For Tandem Aortic Abdominal Aneurysm (Aaa) with Hostile Neck & Proximal Penetrating Atherosclerotic Ulcer
Authors: Von Jerick Tenorio, Jonald Lucero, Marivic Vestal, Edwin Tiempo
Abstract:
In patients with hostile aortic neck anatomy, the risks of proximal seal complications and stent migration remain with EVAR despite improved endograft technology. This case report discusses how the technical challenges of the hostile neck anatomy, proximal penetrating atherosclerotic ulcer (PAU) and tortuous femoral access were addressed. The CT aortogram of a 63-year-old hypertensive and diabetic man with recurring abdominal discomfort revealed a fusiform infra-renal aneurysm measuring 8.8 cm in length and 5.7 cm in diameter. The proximal landing zone only has a 3 mm healthy neck with a conicity of > 10% and a thrombus of 4 mm thick. Proximal to the aneurysm is a PAU with a circumferential mural thrombus. The right femoral artery is tortuous with > 90o angulation. A 20% oversized Endurant II endograft and Aptus Heli-FX EndoAnchors were deployed as prophylaxis for type I endoleaks and endograft migration consequent to the conical neck and proximal aneurysm extension consequent to the PAU. A stiff Backup Meier guide wire facilitated the deployment of the endograft. Coil embolization of the right internal iliac artery was performed as prophylaxis for type II endoleaks. EndoAnchors can be used as an adjunct to EVAR as prophylaxis for proximal seal complications and stent migration in patients with hostile aortic aneurysm neck anatomy and concomitant proximal PAU.Keywords: endoAnchors, endoleaks, EVAR, hostile neck
Procedia PDF Downloads 203