Search results for: machine learning tools and techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16672

Search results for: machine learning tools and techniques

2992 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling

Authors: Ahmad Odeh, Ahmad Jrade

Abstract:

Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.

Keywords: building information modelling, energy, life cycle analysis, sustainablity

Procedia PDF Downloads 266
2991 The Effect of Language and Literature Integration on the Teaching of English Vocabulary and Grammar in Secondary Schools in Zamfara State, Nigeria

Authors: Umar Bello

Abstract:

Literature has become an invaluable subject which has added a great value and contribution to the teaching of English language and the discovery of many other developed ideas. Literature produces an exhilarating impulse that imprints a lasting picture on the mind of a learner. Many researchers have devised various means and approaches to language Teaching methods which remain unconvinging and which yield little result, but it has remained unconvincing because it has only produced little results. Devicing a method that eliminates monotony and boredome to learners is a good factor that enhances students’ motivation to learning. In this sense, literature and language become unavoidable components that aid intellectual development. This study examines the indispensability of literature as a means of English Language teaching to secondary school classes. The researcher has developed many instructive activities which are believed will help students to improve their study in grammar and vocabulary. The researcher has used quasi-experimental approach using experimental group and control group to find out how literature enhances the students grammar as well as their vocabulary. The findings revealed a positive performance in the experimental group doing better than the control group using simple percentage. The results make it clear that literature allows learners to pay more attention and develop more interest to their studies. In giving a perspicacious linguistic development, literature therefore remains an essential tool for language teaching classrooms, thereby enhancing their grammatical and vocabulary usage.

Keywords: teaching vocabulary, integration, poetry, classroom

Procedia PDF Downloads 97
2990 3D Human Face Reconstruction in Unstable Conditions

Authors: Xiaoyuan Suo

Abstract:

3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.

Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition

Procedia PDF Downloads 147
2989 Geotechnical Education in the USA: A Comparative Analysis of Academic Schooling vs. Industry Needs in the Area of Earth Retaining Structures

Authors: Anne Lemnitzer, Eric Tavarez

Abstract:

The academic rigor of the geotechnical engineering curriculum indicates strong institutional and geographical variations. Geotechnical engineering deals with the most challenging civil engineering material, as opposed to structural engineering, environmental studies, transportation engineering, and water resources. Yet, technical expectations posed by the practicing professional community do not necessarily consider the challenges inherent to the disparity in academic rigor and disciplinary differences. To recognize the skill shortages among current graduates as well as identify opportunities to better equip graduate students in specific fields of geotechnical engineering, a two-part survey was developed in collaboration with the Earth Retaining Structures (ERS) Committee of the American Society of Civil Engineers. Earth Retaining Structures are critical components of infrastructure systems and integral components to many major engineering projects. Within the geotechnical curriculum, Earth Retaining Structures is either taught as a separate course or major subject within a foundation design class. Part 1 of the survey investigated the breadth and depth of the curriculum with respect to ERS by requesting faculty across the United States to provide data on their curricular content, integration of practice-oriented course content, student preparation for professional licensing, and level of technical competency expected upon student graduation. Part 2 of the survey enables a comparison of training provided versus training needed. This second survey addressed practicing geotechnical engineers in all sectors of the profession (e.g., private engineering consulting, governmental agencies, contractors, suppliers/manufacturers) and collected data on the expectations with respect to technical and non-technical skills of engineering graduates entering the professional workforce. Results identified skill shortages in soft skills, critical thinking, analytical and language skills, familiarity with design codes and standards, and communication with various stakeholders. The data will be used to develop educational tools to advance the proficiency and expertise of geotechnical engineering students to meet and exceed the expectations of the profession and to stimulate a lifelong interest in advancing the field of geotechnical engineering.

Keywords: geotechnical engineering, academic training, industry requirements, earth retaining structures

Procedia PDF Downloads 119
2988 The Use of Computers in Improving the Academic Performance of Students in Mathematics

Authors: Uwaruile Austin Obuh

Abstract:

This research work focuses on the use of computers in improving the academic performance of students in mathematics in Benin City, Edo State. To guide this study, two research questions were raised, and two corresponding hypotheses were formulated. A total of one hundred and twenty (120) respondents were randomly selected from four schools in the city (60 boys and 60 girls). The instrument employed for the collation of data for the study was the multiple-choice test items on geometry (MCTIOG), drawn from past senior school certificate examinations (SSCE) questions. The instrument was validated by an expert in mathematics and measurement and evaluation. The data obtained from the pre and post-test were analysed using the mean, standard deviation, and T-test. The study revealed a non-significant difference between the experimental and control group in the pre-test, and the two groups were found to be the same before treatment began. The study also revealed that the experimental group performed better than the control group. One can, therefore, conclude that the use of computers for mathematics instruction has improved the performance of students in Geometry. Therefore, the hypothesis was rejected. The study finally revealed that there was no significant difference between the boys and girls taught mathematics using a computer. Therefore, the hypothesis which states there will be no significant difference in the performance of boys and girls taught mathematics using the computer was not rejected. Consequent upon the findings of this study, a number of recommendations were postulated that would enhance the performance of teachers in the use of computer-aided instruction.

Keywords: computer, teaching, learning, mathematics

Procedia PDF Downloads 116
2987 Upward Millennium: Enterprise Resource Planning (ERP) Development and Implementation in Pakistani Organizations

Authors: Sara Aziz, Madiha Arooj, Hira Rizwani, Wasim Irshad

Abstract:

Enterprise Resource Planning (ER) as component of Information Resource System has turned up as one of the most demanding software in market for the new millennium. ERP system automates the core activities of any organization such as finance, manufacturing and supply chain management, human resource etc. to generate an access to the information in real time environment. Despite this fact many of the organizations globally particularly in developing country Pakistan are unaware and avoid adopting it. The development and implementation of ERP system is a complex and challenging process. This research was aimed to explore the benefits and coping strategies (with reference to end user reaction) of organizations those have implemented ERP. The problems addressed in this study focused the challenges and key success factors regarding implementing ERP Pakistani Organizations. Secondly, it has explored the stumbling blocks and business integration of those organizations that are not implementing ERP. The public and corporate sector organizations in Pakistan were selected to collect the data. The research finding shows that the organizational culture, openness towards adoption and learning, deployment and development, top management commitment and change systems, business processes and compatibility and user acceptance and reaction are contributing factors for successful implementation and development of ERP system. This research is thus an addition to enhance knowledge and understanding of implementation of ERP system in Pakistan.

Keywords: ERP system, user acceptance and involvement, change management, organizational culture

Procedia PDF Downloads 272
2986 Didactics of Literature within the Brechtian Theatre in Edward Albee's Who's Afraid of Virginia Woolf? and Ernest Lehman's Screenplay Adaptation from an Audiovisual Perspective

Authors: Angel Mauricio Castillo

Abstract:

The background to the way theatrical performances and music dramas- as they were known in the mid-nineteenth century, provided the audience with a complete immersion into the feelings of the characters through poetry, music and other artistic representations which create a false sense of reality. However, a novel representation on stage some eighty years later, which is non-cathartic, is significant because it represents the antithesis to the common creations of the period and is originated by the separation of the elements as a dominant. A succinct description of the basic methodologies includes the sense of defamiliarization that results as a near translation of the German word Verfremdung will be referred to along this work as the V-effect (also known as the ‘alienation effect’) and will embody the representation of the performing techniques that enables the audience to watch a play being fully aware of its nature. A play might sometimes present the audience with a constant reminder that it is only a play; therefore, all elements will be introduced to provoke dissimilar reactions and opinions. A clear indication of the major findings of the study is that there is a strong correlation between Hegel, Marx and Brecht as it is disclosed how the didactics of Literature have been influencing not only Brecht’s productions but also every educational context in which these ideas are intertwined. The result is a new dialectical process that is to say, a new thesis that creates independent thinking skills on the part of the audience. Therefore, this model opposes to the Hegelian formula thesis-antithesis-synthesis in that the synthesis in the Brechtian theatre will inevitably fall into the category of a different thesis within an enlightening type of discourse. The confronting ideas of illusion versus reality will create a new dialectical thesis instead of resulting into a synthesis.

Keywords: Brechtian theatre, didactics, literature, education

Procedia PDF Downloads 175
2985 Comparison of Different Methods of Microorganism's Identification from a Copper Mining in Pará, Brazil

Authors: Louise H. Gracioso, Marcela P.G. Baltazar, Ingrid R. Avanzi, Bruno Karolski, Luciana J. Gimenes, Claudio O. Nascimento, Elen A. Perpetuo

Abstract:

Introduction: Higher copper concentrations promote a selection pressure on organisms such as plants, fungi and bacteria, which allows surviving only the resistant organisms to the contaminated site. This selective pressure keeps only the organisms most resistant to a specific condition and subsequently increases their bioremediation potential. Despite the bacteria importance for biosphere maintenance, it is estimated that only a small fraction living microbial species has been described and characterized. Due to the molecular biology development, tools based on analysis 16S ribosomal RNA or another specific gene are making a new scenario for the characterization studies and identification of microorganisms in the environment. News identification of microorganisms methods have also emerged like Biotyper (MALDI / TOF), this method mass spectrometry is subject to the recognition of spectroscopic patterns of conserved and features proteins for different microbial species. In view of this, this study aimed to isolate bacteria resistant to copper present in a Copper Processing Area (Sossego Mine, Canaan, PA) and identifies them in two different methods: Recent (spectrometry mass) and conventional. This work aimed to use them for a future bioremediation of this Mining. Material and Methods: Samples were collected at fifteen different sites of five periods of times. Microorganisms were isolated from mining wastes by culture enrichment technique; this procedure was repeated 4 times. The isolates were inoculated into MJS medium containing different concentrations of chloride copper (1mM, 2.5mM, 5mM, 7.5mM and 10 mM) and incubated in plates for 72 h at 28 ºC. These isolates were subjected to mass spectrometry identification methods (Biotyper – MALDI/TOF) and 16S gene sequencing. Results: A total of 105 strains were isolated in this area, bacterial identification by mass spectrometry method (MALDI/TOF) achieved 74% agreement with the conventional identification method (16S), 31% have been unsuccessful in MALDI-TOF and 2% did not obtain identification sequence the 16S. These results show that Biotyper can be a very useful tool in the identification of bacteria isolated from environmental samples, since it has a better value for money (cheap and simple sample preparation and MALDI plates are reusable). Furthermore, this technique is more rentable because it saves time and has a high performance (the mass spectra are compared to the database and it takes less than 2 minutes per sample).

Keywords: copper mining area, bioremediation, microorganisms, identification, MALDI/TOF, RNA 16S

Procedia PDF Downloads 372
2984 Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser

Authors: Yanrong Song, Zikai Dong, Runqin Xu, Jinrong Tian, Kexuan Li

Abstract:

Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively.

Keywords: fiber laser, mode-locking, nonlinear polarization rotation, Raman scattering

Procedia PDF Downloads 217
2983 A Review of Accuracy Optical Surface Imaging Systems for Setup Verification During Breast Radiotherapy Treatment

Authors: Auwal Abubakar, Ahmed Ahidjo, Shazril Imran Shaukat, Noor Khairiah A. Karim, Gokula Kumar Appalanaido, Hafiz Mohd Zin

Abstract:

Background: The use of optical surface imaging systems (OSISs) is increasingly becoming popular in radiotherapy practice, especially during breast cancer treatment. This study reviews the accuracy of the available commercial OSISs for breast radiotherapy. Method: A literature search was conducted and identified the available commercial OSISs from different manufacturers that are integrated into radiotherapy practice for setup verification during breast radiotherapy. Studies that evaluated the accuracy of the OSISs during breast radiotherapy using cone beam computed tomography (CBCT) as a reference were retrieved and analyzed. The physics and working principles of the systems from each manufacturer were discussed together with their respective strength and limitations. Results: A total of five (5) different commercially available OSISs from four (4) manufacturers were identified, each with a different working principle. Six (6) studies were found to evaluate the accuracy of the systems during breast radiotherapy in conjunction with CBCT as a goal standard. The studies revealed that the accuracy of the system in terms of mean difference ranges from 0.1 to 2.1 mm. The correlation between CBCT and OSIS ranges between 0.4 and 0.9. The limit of agreements obtained using bland Altman analysis in the studies was also within an acceptable range. Conclusion: The OSISs have an acceptable level of accuracy and could be used safely during breast radiotherapy. The systems are non-invasive, ionizing radiation-free, and provide real-time imaging of the target surface at no extra concomitant imaging dose. However, the system should only be used to complement rather than replace x-ray-based image guidance techniques such as CBCT.

Keywords: optical surface imaging system, Cone beam computed tomography (CBCT), surface guided radiotherapy, Breast radiotherapy

Procedia PDF Downloads 56
2982 Neuropsychological Testing in a Multi-Lingual Society: Normative Data for South African Adults in More Than Eight Languages

Authors: Sharon Truter, Ann B. Shuttleworth-Edwards

Abstract:

South Africa is a developing country with significant diversity in languages spoken and quality of education available, creating challenges for fair and accurate neuropsychological assessments when most available neuropsychological tests are obtained from English-speaking developed countries. The aim of this research was to compare normative data on a spectrum of commonly used neuropsychological tests for English- and Afrikaans-speaking South Africans with relatively high quality of education and South Africans with relatively low quality of education who speak Afrikaans, Sesotho, Setswana, Sepedi, Tsonga, Venda, Xhosa or Zulu. The participants were all healthy adults aged 18-60 years, with 8-12 years of education. All the participants were tested in their first language on the following tests: two non-verbal tests (Rey Osterrieth Complex Figure Test and Bell Cancellation Test), four verbal fluency tests (category, phonemic, verb and 'any words'), one verbal learning test (Rey Auditory Verbal Leaning Test) and three tests that have a verbal component (Trail Making Test A & B; Symbol Digit Modalities Test and Digit Span). Descriptive comparisons of mean scores and standard deviations across the language groups and between the groups with relatively high versus low quality of education highlight the importance of using normative data that takes into account language and quality of education.

Keywords: cross-cultural, language, multi-lingual, neuropsychological testing, quality of education

Procedia PDF Downloads 160
2981 Manifestations of Tuberculosis in Otorhinolaryngology Practice: A Retrospective Study Conducted in a Coastal City of South India

Authors: Rithika Sriram, Kiran M. Bhojwani

Abstract:

Introduction : Tuberculosis of the head and neck has proved to be a diagnostic challenge for otorhinolarynologists around the world. These lesions are often misdiagnosed as cancer. So in order to contribute to a better understanding of these lesions, we have conducted our study among patients affected by TB in the head and neck region with the objective of assessing the various manifestations, presentations, diagnostic techniques, risk factors such as smoking and alcohol consumption, coexisting illnesses and treatment modalities. Materials and Methods: This was a retrospective study conducted over a three year period (2012-2014) in 2 hospitals affliated to Kasturba Medical College in Mangalore, South India. A semi structured proforma was used to capture information from the medical records pertaining to the various objectives of the study such as clinical features and history of smoking. Data was analysed using SPSS version 16.0 and results obtained were depicted as percentages. Chi square test was used to find association between the variables and p<0.05 was considered statistically significant. Results: 104 patients were found to have TB of the head and neck and among them,the most common manifestation was found to be Tubercular Lymphadenitis (86.53%), followed by laryngeal TB (4.8%), submandibular gland TB (3.8%), deep neck space abscess(3.8%) and adenotonsillar TB. FNAC was found to be the gold standard for the diagnosis of TB disease of the lymph node.26% of the patients had coexisting HIV infection and 16.3% of the patients had associated pulmonary TB. More than 20% of the patients were smokers. Most patients were treated using ATT. Conclusion: Tuberculosis affecting regions of head and neck is no longer uncommon. Sufficient knowledge and appropriate diagnostic means is required while dealing with these lesions and must be included in the differential diagnosis of pathological lesions of head and neck.

Keywords: FNAC, Mangalore, smoking, tuberculosis

Procedia PDF Downloads 274
2980 Adhesion of Biofilm to Surfaces Employed in Pipelines for Transporting Crude Oil

Authors: Hadjer Didouh, Izzaddine Sameut Bouhaik, Mohammed Hadj Meliani

Abstract:

This research delves into the intricate dynamics of biofilm adhesion on surfaces, particularly focusing on the widely employed X52 surface in oil and gas industry pipelines. Biofilms, characterized by microorganisms within a self-produced matrix, pose significant challenges due to their detrimental impact on surfaces. Our study integrates advanced molecular techniques and cutting-edge microscopy, such as scanning electron microscopy (SEM), to identify microbial communities and visually assess biofilm adhesion. Simultaneously, we concentrate on the X52 surface, utilizing impedance spectroscopy and potentiodynamic polarization to gather electrochemical responses under various conditions. In conjunction with the broader investigation, we propose a novel approach to mitigate biofilm-induced corrosion challenges. This involves environmentally friendly inhibitors derived from plants, offering a sustainable alternative to conventional chemical treatments. Our inquiry screens and selects inhibitors based on their efficacy in hindering biofilm formation and reducing corrosion rates on the X52 surface. This study contributes valuable insights into the interplay between electrochemical processes and biofilm attachment on the X52 surface. Furthermore, the outcomes of this research have broader implications for the oil and gas industry, where biofilm-related corrosion is a persistent concern. The exploration of eco-friendly inhibitors not only holds promise for corrosion control but also aligns with environmental considerations and sustainability goals. The comprehensive nature of this research aims to enhance our understanding of biofilm dynamics, provide effective strategies for corrosion mitigation, and contribute to sustainable practices in pipeline management within the oil and gas sector.

Keywords: bio-corrosion, biofilm, attachment, X52, metal/bacteria interface

Procedia PDF Downloads 42
2979 Q-Efficient Solutions of Vector Optimization via Algebraic Concepts

Authors: Elham Kiyani

Abstract:

In this paper, we first introduce the concept of Q-efficient solutions in a real linear space not necessarily endowed with a topology, where Q is some nonempty (not necessarily convex) set. We also used the scalarization technique including the Gerstewitz function generated by a nonconvex set to characterize these Q-efficient solutions. The algebraic concepts of interior and closure are useful to study optimization problems without topology. Studying nonconvex vector optimization is valuable since topological interior is equal to algebraic interior for a convex cone. So, we use the algebraic concepts of interior and closure to define Q-weak efficient solutions and Q-Henig proper efficient solutions of set-valued optimization problems, where Q is not a convex cone. Optimization problems with set-valued maps have a wide range of applications, so it is expected that there will be a useful analytical tool in optimization theory for set-valued maps. These kind of optimization problems are closely related to stochastic programming, control theory, and economic theory. The paper focus on nonconvex problems, the results are obtained by assuming generalized non-convexity assumptions on the data of the problem. In convex problems, main mathematical tools are convex separation theorems, alternative theorems, and algebraic counterparts of some usual topological concepts, while in nonconvex problems, we need a nonconvex separation function. Thus, we consider the Gerstewitz function generated by a general set in a real linear space and re-examine its properties in the more general setting. A useful approach for solving a vector problem is to reduce it to a scalar problem. In general, scalarization means the replacement of a vector optimization problem by a suitable scalar problem which tends to be an optimization problem with a real valued objective function. The Gerstewitz function is well known and widely used in optimization as the basis of the scalarization. The essential properties of the Gerstewitz function, which are well known in the topological framework, are studied by using algebraic counterparts rather than the topological concepts of interior and closure. Therefore, properties of the Gerstewitz function, when it takes values just in a real linear space are studied, and we use it to characterize Q-efficient solutions of vector problems whose image space is not endowed with any particular topology. Therefore, we deal with a constrained vector optimization problem in a real linear space without assuming any topology, and also Q-weak efficient and Q-proper efficient solutions in the senses of Henig are defined. Moreover, by means of the Gerstewitz function, we provide some necessary and sufficient optimality conditions for set-valued vector optimization problems.

Keywords: algebraic interior, Gerstewitz function, vector closure, vector optimization

Procedia PDF Downloads 210
2978 Mitigating Ruminal Methanogenesis Through Genomic and Transcriptomic Approaches

Authors: Muhammad Adeel Arshad, Faiz-Ul Hassan, Yanfen Cheng

Abstract:

According to FAO, enteric methane (CH4) production is about 44% of all greenhouse gas emissions from the livestock sector. Ruminants produce CH4 as a result of fermentation of feed in the rumen especially from roughages which yield more CH4 per unit of biomass ingested as compared to concentrates. Efficient ruminal fermentation is not possible without abating CO2 and CH4. Methane abatement strategies are required to curb the predicted rise in emissions associated with greater ruminant production in future to meet ever increasing animal protein requirements. Ecology of ruminal methanogenesis and avenues for its mitigation can be identified through various genomic and transcriptomic techniques. Programs such as Hungate1000 and the Global Rumen Census have been launched to enhance our understanding about global ruminal microbial communities. Through Hungate1000 project, a comprehensive reference set of rumen microbial genome sequences has been developed from cultivated rumen bacteria and methanogenic archaea along with representative rumen anaerobic fungi and ciliate protozoa cultures. But still many species of rumen microbes are underrepresented especially uncultivable microbes. Lack of sequence information specific to the rumen's microbial community has inhibited efforts to use genomic data to identify specific set of species and their target genes involved in methanogenesis. Metagenomic and metatranscriptomic study of entire microbial rumen populations offer new perspectives to understand interaction of methanogens with other rumen microbes and their potential association with total gas and methane production. Deep understanding of methanogenic pathway will help to devise potentially effective strategies to abate methane production while increasing feed efficiency in ruminants.

Keywords: Genome sequences, Hungate1000, methanogens, ruminal fermentation

Procedia PDF Downloads 133
2977 Collocation Errors Made by Saudi Learners of English

Authors: Pakenam Shiha, Nadine Lacsina

Abstract:

Systematic and in-depth analysis of ESL learners’ lexical errors, in general, and of collocation errors, in particular, are relatively rare. Analysis as such proves crucial in understanding how ESL learners construct and use these fixed expressions. Collocational competence of ESL learners is necessary for achieving a native-like proficiency level, which is one of the objectives of foundation programs. This study aims to examine the collocational competence of 50 Saudi foundation program students and identify the collocation errors that they often make. Furthermore, using a questionnaire, the challenges that students encounter in learning collocations and the ways in which their L1 affects their ability to recognize these expressions are identified. To identify the lexical errors and the collocational competence of the students a collocation test was administered. The 150-item lexical collocation test consists of verb-noun and adjective-noun structures. Results of the study reveal that there is a significant difference between the scores of students in the verb-noun and adjective-noun structures. The majority of errors were recorded in the adjective-noun structures due to the students’ L1 influence on the English collocations and the inability to distinguish between synonyms. Moreover, some challenges that students encountered were problems in translation, non-exposure to certain collocations, and degree of L1-L2 difference. All in all, the findings of this study can be interpreted in relation to the student's proficiency level and L2 instruction. Other findings of the study provide insights into language pedagogy—specifically strategies to help students learn collocations more effectively.

Keywords: collocations, ESL, applied linguistics, lexical collocations

Procedia PDF Downloads 118
2976 Analysis of Wheel Lock up Effects on Skidding Distance for Heavy Vehicles

Authors: Mahdieh Zamzamzadeh, Ahmad Abdullah Saifizul, Rahizar Ramli

Abstract:

The road accidents involving heavy vehicles have been showing worrying trends and, year after year, have increased the concern and awareness levels on safety of roads and transportations especially in developing countries like Malaysia. Statistics of road crashes continue to show that there are many contributing factors on the capability of a heavy vehicle to stop on safe distance and ultimately prevent traffic crashes. However, changes in the road condition due to weather variations and the vehicle dynamic specifications such as loading conditions and speed are the main risk factors because they will affect a heavy vehicle’s braking performance due to losing control and not being able to stop the vehicle, and in many cases will cause wheel lock up and accordingly skidding. Predicting heavy vehicle skidding distance is crucial for accident reconstruction and roadside safety engineers. Despite this, formal tools to study heavy vehicle skidding distance before stopping completely are totally limited, and most researchers have only considered braking distance in their studies. As a possible new tool, this work presents the iterative use of vehicle dynamic simulations to study heavy vehicle-roadway interaction in order to predict wheel lock up effects on skidding distance and safety. This research addresses the influence of the vehicle and road conditions on skidding distance after wheel lock up and presents a precise analysis of skidding phenomenon. The vehicle speed, vehicle loading condition and road friction parameters were all varied in a simulation-based analysis. In order to simulate the wheel lock up situation, a heavy vehicle model was constructed and simulated using multibody vehicle dynamics simulation software, and careful analysis was made on the conditions which caused the skidding distance to increase or decrease through a method using to predict skidding distance as part of braking distance. By applying many simulations, the results were quite revealing relation between the heavy vehicles loading condition, various sets of speed and road coefficient of friction and their interaction effect on the skidding distance. A number of results are presented which illustrate how the heavy vehicle overloading can seriously affect the skidding distance. Moreover, the results of simulation give the skid mark length, which is a necessary input data during accident reconstruction involving emergency braking.

Keywords: accident reconstruction, Braking, heavy vehicle, skidding distance, skid mark, wheel lock up

Procedia PDF Downloads 493
2975 Mineralogical Study of the Triassic Clay of Maaziz and the Miocene Marl of Akrach in Morocco: Analysis and Evaluating of the Two Geomaterials for the Construction of Ceramic Bricks

Authors: Sahar El Kasmi, Ayoub Aziz, Saadia Lharti, Mohammed El Janati, Boubker Boukili, Nacer El Motawakil, Mayom Chol Luka Awan

Abstract:

Two types of geomaterials (Red Triassic clay from the Maaziz region and Yellow Pliocene clay from the Akrach region) were used to create different mixtures for the fabrication of ceramic bricks. This study investigated the influence of the Pliocene clay on the overall composition and mechanical properties of the Triassic clay. The red Triassic clay, sourced from Maaziz, underwent various mechanical processes and treatments to facilitate its transformation into ceramic bricks for construction. The triassic clay was subjected to a drying chamber and a heating chamber at 100°C to remove moisture. Subsequently, the dried clay samples were processed using a Planetary Babs ll Mill to reduce particle size and improve homogeneity. The resulting clay material was sieved, and the fine particles below 100 mm were collected for further analysis. In parallel, the Miocene marl obtained from the Akrach region was fragmented into finer particles and subjected to similar drying, grinding, and sieving procedures as the triassic clay. The two clay samples are then amalgamated and homogenized in different proportions. Precise measurements were taken using a weighing balance, and mixtures of 90%, 80%, and 70% Triassic clay with 10%, 20%, and 30% yellow clay were prepared, respectively. To evaluate the impact of Pliocene marl on the composition, the prepared clay mixtures were spread evenly and treated with a water modifier to enhance plasticity. The clay was then molded using a brick-making machine, and the initial manipulation process was observed. Additional batches were prepared with incremental amounts of Pliocene marl to further investigate its effect on the fracture behavior of the clay, specifically their resistance. The molded clay bricks were subjected to compression tests to measure their strength and resistance to deformation. Additional tests, such as water absorption tests, were also conducted to assess the overall performance of the ceramic bricks fabricated from the different clay mixtures. The results were analyzed to determine the influence of the Pliocene marl on the strength and durability of the Triassic clay bricks. The results indicated that the incorporation of Pliocene clay reduced the fracture of the triassic clay, with a noticeable reduction observed at 10% addition. No fractures were observed when 20% and 30% of yellow clay are added. These findings suggested that yellow clay can enhance the mechanical properties and structural integrity of red clay-based products.

Keywords: triassic clay, pliocene clay, mineralogical composition, geo-materials, ceramics, akach region, maaziz region, morocco.

Procedia PDF Downloads 76
2974 R-Killer: An Email-Based Ransomware Protection Tool

Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena

Abstract:

Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.

Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine

Procedia PDF Downloads 203
2973 The Qualification and Quality of Space Sciences and Space Engineering Education in Turkey

Authors: Hatice Canan Gungor, Ahmet Akdemir

Abstract:

The fields of engineering and technological sciences are increasing in quality and quantity day by day all over the world. Countries have to follow, implement and adapt these developments in order to economical empowerments. In our era, it's possible to follow the rapidly developing technology and to produce new technologies by inquisitive, curious, numerical thinking individuals who can show several approaches to problem solving. In this case, countries should develop te result oriented and need-focused curriculums in university education. As in the whole world, there are more space studies in our country as well. Universities should undertake the task of supply the need for staff of this technological race. In this context, questions about the purpose, content and learning outcomes of the space sciences and space engineering departments in our country will be researched answers to reveal the characteristic of this section. In this study, it was determined in which universities the space engineering and the departments of basic sciences educate with formal education and the contents of this education, and the universities were compared with each other as of 2017. In our country three universities provide Aeronautical and Aerospace Engineering, two universities provide Space Sciences and Technologies, two universities provide Aerospace Engineering, two universities provide Aeronautics and Astronautics Engineering education. In all universities, specialized courses are taught after basic engineering education. But the question that needs to be answered is, do the lessons benefit in practice? The answer of this question will reveal the quality of the education. This paper suggests that surveys be conducted to search for the answer to this question. It's thought to be the base for the next works.

Keywords: education, space engineering, space science, quality of systems

Procedia PDF Downloads 279
2972 Student Project on Using a Spreadsheet for Solving Differential Equations by Euler's Method

Authors: Andriy Didenko, Zanin Kavazovic

Abstract:

Engineering students often have certain difficulties in mastering major theoretical concepts in mathematical courses such as differential equations. Student projects were proposed to motivate students’ learning and can be used as a tool to promote students’ interest in the material. Authors propose a student project that includes the use of Microsoft Excel. This instructional tool is often overlooked by both educators and students. An integral component of the experimental part of such a project is the exploration of an interactive spreadsheet. The aim is to assist engineering students in better understanding of Euler’s method. This method is employed to numerically solve first order differential equations. At first, students are invited to select classic equations from a list presented in a form of a drop-down menu. For each of these equations, students can select and modify certain key parameters and observe the influence of initial condition on the solution. This will give students an insight into the behavior of the method in different configurations as solutions to equations are given in numerical and graphical forms. Further, students could also create their own equations by providing functions of their own choice and a variety of initial conditions. Moreover, they can visualize and explore the impact of the length of the time step on the convergence of a sequence of numerical solutions to the exact solution of the equation. As a final stage of the project, students are encouraged to develop their own spreadsheets for other numerical methods and other types of equations. Such projects promote students’ interest in mathematical applications and further improve their mathematical and programming skills.

Keywords: student project, Euler's method, spreadsheet, engineering education

Procedia PDF Downloads 126
2971 Assessing and Identifying Factors Affecting Customers Satisfaction of Commercial Bank of Ethiopia: The Case of West Shoa Zone (Bako, Gedo, Ambo, Ginchi and Holeta), Ethiopia

Authors: Habte Tadesse Likassa, Bacha Edosa

Abstract:

Customer’s satisfaction was very important thing that is required for the existence of banks to be more productive and success in any organization and business area. The main goal of the study is assessing and identifying factors that influence customer’s satisfaction in West Shoa Zone of Commercial Bank of Ethiopia (Holeta, Ginchi, Ambo, Gedo and Bako). Stratified random sampling procedure was used in the study and by using simple random sampling (lottery method) 520 customers were drawn from the target population. By using Probability Proportional Size Techniques sample size for each branch of banks were allocated. Both descriptive and inferential statistics methods were used in the study. A binary logistic regression model was fitted to see the significance of factors affecting customer’s satisfaction in this study. SPSS statistical package was used for data analysis. The result of the study reveals that the overall level of customer’s satisfaction in the study area is low (38.85%) as compared those who were not satisfied (61.15%). The result of study showed that all most all factors included in the study were significantly associated with customer’s satisfaction. Therefore, it can be concluded that based on the comparison of branches on their customers satisfaction by using odd ratio customers who were using Ambo and Bako are less satisfied as compared to customers who were in Holeta branch. Additionally, customers who were in Ginchi and Gedo were more satisfied than that of customers who were in Holeta. Since the level of customers satisfaction was low in the study area, it is more advisable and recommended for concerned body works cooperatively more in maximizing satisfaction of their customers.

Keywords: customers, satisfaction, binary logistic, complain handling process, waiting time

Procedia PDF Downloads 457
2970 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes

Authors: Ipek Kivanc, Demet Ozgur-Unluakin

Abstract:

Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.

Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes

Procedia PDF Downloads 131
2969 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction

Authors: Sandeep Kaushal

Abstract:

Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.

Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS

Procedia PDF Downloads 103
2968 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete

Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen

Abstract:

The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.

Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance

Procedia PDF Downloads 300
2967 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.

Keywords: borescope, engine, low-wave-infrared, sensor

Procedia PDF Downloads 124
2966 Module Based Review over Current Regenerative Braking Landing Gear

Authors: Madikeri Rohit

Abstract:

As energy efficiency is the key concern in many aircraft manufacturing companies regenerative braking is a technique using which energy lost due to friction while braking can be regained. In the operation of an aircraft, significant energy is lost during deceleration or braking which occurs during its landing phase. This problem can be overcome using Regenerative Breaking System (RBS) in landing gear. The major problem faced is regarding the batteries and the overall efficiency gained in competence with the added weight. As the amount of energy required to store is huge we need batteries with high capacity for storage. Another obstacle by using high capacity batteries is the added weight which undermines the efficiency obtained using RBS. An approach to this problem is to either use the obtained energy immediately without storage or to store in other forms such as mechanical, pneumatic and hydraulic. Problem faced with mechanical systems is the weight of the flywheel needed to obtain required efficiency. Pneumatic and hydraulic systems are a better option at present. Using hydraulic systems for storing energy is efficient as it integrates into the overall hydraulic system present in the aircraft. Another obstacle is faced with the redundancy of this system. Conventional braking must be used along with RBS in order to provide redundancy. Major benefits obtained using RBS is with the help of the energy obtained during landing which can be used of engine less taxing. This reduces fuel consumption as well as noise and air pollution. Another added benefit of using RBS is to provide electrical supply to lighting systems, cabin pressurization system and can be used for emergency power supply in case of electric failure. This paper discusses about using RBS in landing gear, problems, prospects and new techniques being pursued to improve RBS.

Keywords: regenerative braking, types of energy conversion, landing gear, energy storage

Procedia PDF Downloads 257
2965 Thermal Characteristics of Sewage Sludge to Develop an IDPG Technology

Authors: Young Nam Chun, Mun Sup Lim, Byeo Ri Jeong

Abstract:

Sewage sludge is regarded as the residue produced by the waste water treatment process, during which liquids and solids are being separated. Thermal treatments are interesting techniques to stabilize the sewage sludge for disposal. Among the thermal treatments, pyrolysis and/or gasification has been being applied to the sewage sludge. The final goal of our NRF research is to develop a microwave In-line Drying-Pyrolysis-Gasification (IDPG) technology for the dewatered sewage sludge for the bio-waste to energy conversion. As a first step, the pyrolysis characteristics in a bench scale electric furnace was investigated at 800℃ for the dewatered sludge and dried sludge samples of which moisture contents are almost 80% and 0%, respectively. Main components of producer gas are hydrogen and carbon dioxide. Particularly, higher hydrogen for the dewatered sludge is shown as 75%. The hydrogen production for the dewatered sludge and dried sludge are 56% and 32%, respectively. However, the pyrolysis for the dried sludge produces higher carbon dioxide and other gases, while higher methane and carbon dioxide are given to 74% and 53%, respectively. Tar also generates during the pyrolysis process, showing lower value for case of the dewatered sludge. Gravimetric tar is 195 g/m3, and selected light tar like benzene, naphthalene, anthracene, pyrene are 9.4 g/m3, 2.1 g/m3, 0.5 g/m3, 0.3 g/m3, respectively. After the pyrolysis process, residual char for the dewatered sludge and dried sludge remain 1g and 1.3g, showing weight reduction rate of 93% and 57%, respectively. Through the results, this could be known that the dewatered sludge can be used to produce a clean hydrogen-rich gas fuel without the drying process. Therefore, the IDPG technology can be applied effectively to the energy conversion for dewater sludge waste without a drying pretreatment. Acknowledgment: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1A2A2A03003044).

Keywords: pyrolysis, gasification, sewage sludge, tar generation, producer gas, sludge char, biomass energy

Procedia PDF Downloads 348
2964 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds

Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal

Abstract:

EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.

Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds

Procedia PDF Downloads 316
2963 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.

Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety

Procedia PDF Downloads 156