Search results for: multi- criteria evaluation method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27923

Search results for: multi- criteria evaluation method

26603 Contribution to Improving the DFIG Control Using a Multi-Level Inverter

Authors: Imane El Karaoui, Mohammed Maaroufi, Hamid Chaikhy

Abstract:

Doubly Fed Induction Generator (DFIG) is one of the most reliable wind generator. Major problem in wind power generation is to generate Sinusoidal signal with very low THD on variable speed caused by inverter two levels used. This paper presents a multi-level inverter whose objective is to reduce the THD and the dimensions of the output filter. This work proposes a three-level NPC-type inverter, the results simulation are presented demonstrating the efficiency of the proposed inverter.

Keywords: DFIG, multilevel inverter, NPC inverter, THD, induction machine

Procedia PDF Downloads 248
26602 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: neural network, backpropagation, local minima, fast convergence rate

Procedia PDF Downloads 498
26601 Comparison of Dose Rate and Energy Dependence of Soft Tissue Equivalence Dosimeter with Electron and Photon Beams Using Magnetic Resonance Imaging

Authors: Bakhtiar Azadbakht, Karim Adinehvand, Amin Sahebnasagh

Abstract:

The purpose of this study was to evaluate dependence of PAGAT polymer gel dosimeter 1/T2 on different electron and photon energies as well as on different mean dose rates for a standard clinically used Co-60 therapy unit and an ELECTA linear accelerator. A multi echo sequence with 32 equidistant echoes was used for the evaluation of irradiated polymer gel dosimeters. The optimal post-manufacture irradiation and post imaging times were both determined to be one day. The sensitivity of PAGAT polymer gel dosimeter with irradiation of photon and electron beams was represented by the slope of calibration curve in the linear region measured for each modality. The response of PAGAT gel with photon and electron beams is very similar in the lower dose region. The R2-dose response was linear up to 30Gy. In electron beams the R2-dose response for doses less than 3Gy is not exact, but in photon beams the R2-dose response for doses less than 2Gy is not exact. Dosimeter energy dependence was studied for electron energies of 4, 12 and 18MeV and photon energies of 1.25, 4, 6 and 18MV. Dose rate dependence was studied in 6MeV electron beam and 6MV photon beam with the use of dose rates 80, 160, 240, 320, 400, and 480cGy/min. Evaluation of dosimeters were performed on Siemens Symphony, Germany 1.5T Scanner in the head coil. In this study no trend in polymer-gel dosimeter 1/T2 dependence was found on mean dose rate and energy for electron and photon beams.

Keywords: polymer gels, PAGAT gel, electron and photon beams, MRI

Procedia PDF Downloads 470
26600 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 517
26599 Modelling of Multi-Agent Systems for the Scheduling of Multi-EV Charging from Power Limited Sources

Authors: Manan’Iarivo Rasolonjanahary, Chris Bingham, Nigel Schofield, Masoud Bazargan

Abstract:

This paper presents the research and application of model predictive scheduled charging of electric vehicles (EV) subject to limited available power resource. To focus on algorithm and operational characteristics, the EV interface to the source is modelled as a battery state equation during the charging operation. The researched methods allow for the priority scheduling of EV charging in a multi-vehicle regime and when subject to limited source power availability. Priority attribution for each connected EV is described. The validity of the developed methodology is shown through the simulation of different scenarios of charging operation of multiple connected EVs including non-scheduled and scheduled operation with various numbers of vehicles. Performance of the developed algorithms is also reported with the recommendation of the choice of suitable parameters.

Keywords: model predictive control, non-scheduled, power limited sources, scheduled and stop-start battery charging

Procedia PDF Downloads 155
26598 Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault

Authors: Yingxin Hui

Abstract:

Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage.

Keywords: bridge engineering, seismic response feature, across faults, rupture directivity effect, fling step

Procedia PDF Downloads 429
26597 Evaluation of the Benefit of Anti-Endomysial IgA and Anti-Tissue Transglutaminase IgA Antibodies for the Diagnosis of Coeliac Disease in a University Hospital, 2010-2016

Authors: Recep Keşli, Onur Türkyılmaz, Hayriye Tokay, Kasım Demir

Abstract:

Objective: Coeliac disease (CD) is a primary small intestine disorder caused by high sensitivity to gluten which is present in the crops, characterized by inflammation in the small intestine mucosa. The goal of this study was to determine and to compare the sensitivity and specificity values of anti-endomysial IgA (EMA IgA) (IFA) and anti-tissue transglutaminase IgA (anti-tTG IgA) (ELISA) antibodies in the diagnosis of patients suspected with the CD. Methods: One thousand two hundred seventy three patients, who have applied to gastroenterology and pediatric disease polyclinics of Afyon Kocatepe University ANS Research and Practice Hospital were included into the study between 23.09.2010 and 30.05.2016. Sera samples were investigated by immunofluorescence method for EMA positiveness (Euroimmun, Luebeck, Germany). In order to determine quantitative value of Anti-tTG IgA (EIA) (Orgentec Mainz, Germany) fully automated ELISA device (Alisei, Seac, Firenze, Italy) were used. Results: Out of 1273 patients, 160 were diagnosed with coeliac disease according to ESPGHAN 2012 diagnosis criteria. Out of 160 CD patients, 120 were female, 40 were male. The EMA specificity and sensitivity were calculated as 98% and 80% respectively. Specificity and sensitivity of Anti-tTG IgA were determined as 99% and 96% respectively. Conclusion: The specificity of EMA for CD was excellent because all EMA-positive patients (n = 144) were diagnosed with CD. The presence of human anti-tTG IgA was found as a reliable marker for diagnosis and follow-up the CD. Diagnosis of CD should be established on both the clinical and serologic profiles together.

Keywords: anti-endomysial antibody, anti-tTG IgA, coeliac disease, immunofluorescence assay (IFA)

Procedia PDF Downloads 253
26596 3D Frictionless Contact Case between the Structure of E-Bike and the Ground

Authors: Lele Zhang, Hui Leng Choo, Alexander Konyukhov, Shuguang Li

Abstract:

China is currently the world's largest producer and distributor of electric bicycle (e-bike). The increasing number of e-bikes on the road is accompanied by rising injuries and even deaths of e-bike drivers. Therefore, there is a growing need to improve the safety structure of e-bikes. This 3D frictionless contact analysis is a preliminary, but necessary work for further structural design improvement of an e-bike. The contact analysis between e-bike and the ground was carried out as follows: firstly, the Penalty method was illustrated and derived from the simplest spring-mass system. This is one of the most common methods to satisfy the frictionless contact case; secondly, ANSYS static analysis was carried out to verify finite element (FE) models with contact pair (without friction) between e-bike and the ground; finally, ANSYS transient analysis was used to obtain the data of the penetration p(u) of e-bike with respect to the ground. Results obtained from the simulation are as estimated by comparing with that from theoretical method. In the future, protective shell will be designed following the stability criteria and added to the frame of e-bike. Simulation of side falling of the improved safety structure of e-bike will be confirmed with experimental data.

Keywords: frictionless contact, penalty method, e-bike, finite element

Procedia PDF Downloads 277
26595 Parallelization by Domain Decomposition for 1-D Sugarcane Equation with Message Passing Interface

Authors: Ewedafe Simon Uzezi

Abstract:

In this paper we presented a method based on Domain Decomposition (DD) for parallelization of 1-D Sugarcane Equation on parallel platform with parallel paradigms on Master-Slave platform using Message Passing Interface (MPI). The 1-D Sugarcane Equation was discretized using explicit method of discretization requiring evaluation nof temporal and spatial distribution of temperature. This platform gives better predictions of the effects of temperature distribution of the sugarcane problem. This work presented parallel overheads with overlapping communication and communication across parallel computers with numerical results across different block sizes with scalability. However, performance improvement strategies from the DD on various mesh sizes were compared experimentally and parallel results show speedup and efficiency for the parallel algorithms design.

Keywords: sugarcane, parallelization, explicit method, domain decomposition, MPI

Procedia PDF Downloads 20
26594 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach

Authors: Xinyi Le

Abstract:

In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.

Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach

Procedia PDF Downloads 438
26593 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine

Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin

Abstract:

A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.

Keywords: multi-level gear oil, engine oil, viscosity, abrasion

Procedia PDF Downloads 318
26592 Sustainable Land Use Evaluation Based on Preservative Approach: Neighborhoods of Susa City

Authors: Somaye Khademi, Elahe Zoghi Hoseini, Mostafa Norouzi

Abstract:

Determining the manner of land-use and the spatial structure of cities on the one hand, and the economic value of each piece of land, on the other hand, land-use planning is always considered as the main part of urban planning. In this regard, emphasizing the efficient use of land, the sustainable development approach has presented a new perspective on urban planning and consequently on its most important pillar, i.e. land-use planning. In order to evaluate urban land-use, it has been attempted in this paper to select the most significant indicators affecting urban land-use and matching sustainable development indicators. Due to the significance of preserving ancient monuments and the surroundings as one of the main pillars of achieving sustainability, in this research, sustainability indicators have been selected emphasizing the preservation of ancient monuments and historical observance of the city of Susa as one of the historical cities of Iran. It has also been attempted to integrate these criteria with other land-use sustainability indicators. For this purpose, Kernel Density Estimation (KDE) and the AHP model have been used for providing maps displaying spatial density and combining layers as well as providing final maps respectively. Moreover, the rating of sustainability will be studied in different districts of the city of Shush so as to evaluate the status of land sustainability in different parts of the city. The results of the study show that different neighborhoods of Shush do not have the same sustainability in land-use such that neighborhoods located in the eastern half of the city, i.e. the new neighborhoods, have a higher sustainability than those of the western half. It seems that the allocation of a high percentage of these areas to arid lands and historical areas is one of the main reasons for their sustainability.

Keywords: city of Susa, historical heritage, land-use evaluation, urban sustainable development

Procedia PDF Downloads 377
26591 Multi-Objective Simulated Annealing Algorithms for Scheduling Just-In-Time Assembly Lines

Authors: Ghorbanali Mohammadi

Abstract:

New approaches to sequencing mixed-model manufacturing systems are present. These approaches have attracted considerable attention due to their potential to deal with difficult optimization problems. This paper presents Multi-Objective Simulated Annealing Algorithms (MOSAA) approaches to the Just-In-Time (JIT) sequencing problem where workload-smoothing (WL) and the number of set-ups (St) are to be optimized simultaneously. Mixed-model assembly lines are types of production lines where varieties of product models similar in product characteristics are assembled. Moreover, this type of problem is NP-hard. Two annealing methods are proposed to solve the multi-objective problem and find an efficient frontier of all design configurations. The performances of the two methods are tested on several problems from the literature. Experimentation demonstrates the relative desirable performance of the presented methodology.

Keywords: scheduling, just-in-time, mixed-model assembly line, sequencing, simulated annealing

Procedia PDF Downloads 127
26590 Extraction of Urban Building Damage Using Spectral, Height and Corner Information

Authors: X. Wang

Abstract:

Timely and accurate information on urban building damage caused by earthquake is important basis for disaster assessment and emergency relief. Very high resolution (VHR) remotely sensed imagery containing abundant fine-scale information offers a large quantity of data for detecting and assessing urban building damage in the aftermath of earthquake disasters. However, the accuracy obtained using spectral features alone is comparatively low, since building damage, intact buildings and pavements are spectrally similar. Therefore, it is of great significance to detect urban building damage effectively using multi-source data. Considering that in general height or geometric structure of buildings change dramatically in the devastated areas, a novel multi-stage urban building damage detection method, using bi-temporal spectral, height and corner information, was proposed in this study. The pre-event height information was generated using stereo VHR images acquired from two different satellites, while the post-event height information was produced from airborne LiDAR data. The corner information was extracted from pre- and post-event panchromatic images. The proposed method can be summarized as follows. To reduce the classification errors caused by spectral similarity and errors in extracting height information, ground surface, shadows, and vegetation were first extracted using the post-event VHR image and height data and were masked out. Two different types of building damage were then extracted from the remaining areas: the height difference between pre- and post-event was used for detecting building damage showing significant height change; the difference in the density of corners between pre- and post-event was used for extracting building damage showing drastic change in geometric structure. The initial building damage result was generated by combining above two building damage results. Finally, a post-processing procedure was adopted to refine the obtained initial result. The proposed method was quantitatively evaluated and compared to two existing methods in Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010, using pre-event GeoEye-1 image, pre-event WorldView-2 image, post-event QuickBird image and post-event LiDAR data. The results showed that the method proposed in this study significantly outperformed the two comparative methods in terms of urban building damage extraction accuracy. The proposed method provides a fast and reliable method to detect urban building collapse, which is also applicable to relevant applications.

Keywords: building damage, corner, earthquake, height, very high resolution (VHR)

Procedia PDF Downloads 212
26589 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 121
26588 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm

Authors: Vahid Bayrami Rad

Abstract:

In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.

Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability

Procedia PDF Downloads 64
26587 Simultaneous Determination of Cefazolin and Cefotaxime in Urine by HPLC

Authors: Rafika Bibi, Khaled Khaladi, Hind Mokran, Mohamed Salah Boukhechem

Abstract:

A high performance liquid chromatographic method with ultraviolet detection at 264nm was developed and validate for quantitative determination and separation of cefazolin and cefotaxime in urine, the mobile phase consisted of acetonitrile and phosphate buffer pH4,2(15 :85) (v/v) pumped through ODB 250× 4,6 mm, 5um column at a flow rate of 1ml/min, loop of 20ul. In this condition, the validation of this technique showed that it is linear in a range of 0,01 to 10ug/ml with a good correlation coefficient ( R>0,9997), retention time of cefotaxime, cefazolin was 9.0, 10.1 respectively, the statistical evaluation of the method was examined by means of within day (n=6) and day to day (n=5) and was found to be satisfactory with high accuracy and precision.

Keywords: cefazolin, cefotaxime, HPLC, bioscience, biochemistry, pharmaceutical

Procedia PDF Downloads 361
26586 Design and Evaluation of Corrective Orthosis Knee for Hyperextension

Authors: Valentina Narvaez Gaitan, Paula K. Rodriguez Ramirez, Derian D. Espinosa

Abstract:

Corrective orthosis has great importance in orthopedic treatments providing assistance in improving mobility and stability in order to improve the quality of life for a different patient. The corrective orthosis studied in this article can correct deformities, reduce pain, and improve the ability to perform daily activities. This work describes the design and evaluation of a corrective orthosis for knee hyperextension. This orthosis is capable of generating a progressive and variable alignment of the joint, limiting the range of motion according to medical criteria. The main objective was to design a corrective knee orthosis capable of correcting knee hyperextension progressively to return to its natural angle with greater economic affordability and adjustable size. The limiting mechanism is based on a goniometer to determine the desired angles. The orthosis was made of acrylic to reduce costs and maintenance; neoprene is also used to make comfortable contact; additionally, Velcro was used in order to adjust the orthosis for various sizes. Simulations of static and fatigue analysis of the mechanism were performed to verify its resistance and durability under normal conditions. A biomechanical gait study of gait was carried out on 10 healthy subjects without the orthosis and limiting their knee extension capacity in a normal gait cycle with the orthosis to observe the efficiency of the proposed system. In the results obtained, the knee angle curves show that the maximum extension angle was the established angle by the orthosis. Showing the efficiency of the proposed design for different leg sizes.

Keywords: biomechanical study, corrective orthosis, efficiency, goniometer, knee hyperextension.

Procedia PDF Downloads 76
26585 Optimal Power Exchange of Multi-Microgrids with Hierarchical Coordination

Authors: Beom-Ryeol Choi, Won-Poong Lee, Jin-Young Choi, Young-Hak Shin, Dong-Jun Won

Abstract:

A Microgrid (MG) has a major role in power system. There are numerous benefits, such as ability to reduce environmental impact and enhance the reliability of a power system. Hence, Multi-MG (MMG) consisted of multiple MGs is being studied intensively. This paper proposes the optimal power exchange of MMG with hierarchical coordination. The whole system architecture consists of two layers: 1) upper layer including MG of MG Center (MoMC) which is in charge of the overall management and coordination and 2) lower layer comprised of several Microgrid-Energy Management Systems (MG-EMSs) which make a decision for own schedule. In order to accomplish the optimal power exchange, the proposed coordination algorithm is applied to MMG system. The objective of this process is to achieve optimal operation for improving economics under the grid-connected operation. The simulation results show how the output of each MG can be changed through coordination algorithm.

Keywords: microgrids, multi-microgrids, power exchange, hierarchical coordination

Procedia PDF Downloads 370
26584 Nursing Experience in Improving Physical and Mental Well-Being of a Patient with Premature Menopause Osteoporosis and Sarcopenia in Nursing-Led Multi-Discipline Care

Authors: Huang Chiung Chiu

Abstract:

This article is about the nursing experience of assisting an outpatient with premature menopause, osteoporosis and sarcopenia through a multi-discipline care model. The nursing period is from September 22nd, 2020, to December 7th, 2020, collecting data through interviews with the patient, observation, and physical assessment. It was found that the main health problems were insufficient nutrition, less physical need, insomnia, and potentially dangerous falls. As an outpatient nurse, the author observed that in recent years, the age group of women with premature menopause, osteoporosis and sarcopenia had shifted downward. Integrated multi-disciplinary interventions were provided upon the initial diagnosis of osteoporosis and sarcopenia. Under the outpatient care setting, the collaborative team works between the doctors, nutritionists, osteoporosis educators, rehabilitates, physical therapists and other specialized teams were applied to provide individualized, integrated multi-disciplinary care. Through empathy and the establishment of attentive care, companionship and trust, we discussed care plans and treatment guidelines with the case, providing accurate, complete disease information and feedback education to strengthen the patient’s knowledge and motivation for exercise. Nursing guidance regarding the dietary nutrition and adjustment of daily routine was provided to increase the self-care ability, improve the health problems of muscle weakness and insomnia, and prevent falls. For patients with postmenopausal osteoporosis and sarcopenia, it is recommended that the nurses coordinate the multi-discipline integrated care model, adjust patients’ lifestyle and diet, and establish a regular exercise plan so that the cases can be evaluated holistically to improve the quality of care and physical and mental comfort.

Keywords: multi-discipline care model, premature menopause, osteoporosis, sarcopenia, insomnia

Procedia PDF Downloads 117
26583 The Emoji Method: An Approach for Identifying and Formulating Problem Ideas

Authors: Thorsten Herrmann, Alexander Laukemann, Hansgeorg Binz, Daniel Roth

Abstract:

For the analysis of already identified and existing problems, the pertinent literature provides a comprehensive collection of approaches as well as methods in order to analyze the problems in detail. But coming up with problems, which are assets worth pursuing further, is often challenging. However, the importance of well-formulated problem ideas and their influence of subsequent creative processes are incontestable and proven. In order to meet the covered challenges, the Institute for Engineering Design and Industrial Design (IKTD) developed the Emoji Method. This paper presents the Emoji Method, which support designers to generate problem ideas in a structured way. Considering research findings from knowledge management and innovation management, research into emojis and emoticons reveal insights by means of identifying and formulating problem ideas within the early design phase. The simple application and the huge supporting potential of the Emoji Method within the early design phase are only few of the many successful results of the conducted evaluation. The Emoji Method encourages designers to identify problem ideas and describe them in a structured way in order to start focused with generating solution ideas for the revealed problem ideas.

Keywords: emojis, problem ideas, innovation management, knowledge management

Procedia PDF Downloads 142
26582 Use of Numerical Tools Dedicated to Fire Safety Engineering for the Rolling Stock

Authors: Guillaume Craveur

Abstract:

This study shows the opportunity to use numerical tools dedicated to Fire Safety Engineering for the Rolling Stock. Indeed, some lawful requirements can now be demonstrated by using numerical tools. The first part of this study presents the use of modelling evacuation tool to satisfy the criteria of evacuation time for the rolling stock. The buildingEXODUS software is used to model and simulate the evacuation of rolling stock. Firstly, in order to demonstrate the reliability of this tool to calculate the complete evacuation time, a comparative study was achieved between a real test and simulations done with buildingEXODUS. Multiple simulations are performed to capture the stochastic variations in egress times. Then, a new study is done to calculate the complete evacuation time of a train with the same geometry but with a different interior architecture. The second part of this study shows some applications of Computational Fluid Dynamics. This work presents the approach of a multi scales validation of numerical simulations of standardized tests with Fire Dynamics Simulations software developed by the National Institute of Standards and Technology (NIST). This work highlights in first the cone calorimeter test, described in the standard ISO 5660, in order to characterize the fire reaction of materials. The aim of this process is to readjust measurement results from the cone calorimeter test in order to create a data set usable at the seat scale. In the second step, the modelisation concerns the fire seat test described in the standard EN 45545-2. The data set obtained thanks to the validation of the cone calorimeter test was set up in the fire seat test. To conclude with the third step, after controlled the data obtained for the seat from the cone calorimeter test, a larger scale simulation with a real part of train is achieved.

Keywords: fire safety engineering, numerical tools, rolling stock, multi-scales validation

Procedia PDF Downloads 302
26581 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 145
26580 New Heterogenous α-Diimine Nickel (II)/ MWCNT Catalysts for Ethylene Polymerization

Authors: Sasan Talebnezhad, Saeed Pormahdian, Naghi Assali

Abstract:

Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl, and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α-diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.

Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization

Procedia PDF Downloads 406
26579 New Heterogenous α-Diimine Nickel (II)/MWCNT Catalysts for Ethylene Polymerization

Authors: Sasan Talebnezhad, Saeed Pourmahdian, Naghi Assali

Abstract:

Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.

Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization

Procedia PDF Downloads 498
26578 Limits of Phase Modulated Frequency Shifted Holographic Vibrometry at Low Amplitudes of Vibrations

Authors: Pavel Psota, Vít Lédl, Jan Václavík, Roman Doleček, Pavel Mokrý, Petr Vojtíšek

Abstract:

This paper presents advanced time average digital holography by means of frequency shift and phase modulation. This technique can measure amplitudes of vibrations at ultimate dynamic range while the amplitude distribution evaluation is done independently in every pixel. The main focus of the paper is to gain insight into behavior of the method at low amplitudes of vibrations. In order to reach that, a set of experiments was performed. Results of the experiments together with novel noise suppression show the limit of the method to be below 0.1 nm.

Keywords: acusto-optical modulator, digital holography, low amplitudes, vibrometry

Procedia PDF Downloads 409
26577 Structure-Based Virtual Screening and in Silico Toxicity Test of Compounds against Mycobacterium tuberculosis 7,8-Diaminopelargonic Acid Aminotransferase (MtbBioA)

Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy

Abstract:

One of the major interferences in the Philippines’ tuberculosis control program is the widespread prevalence of Mtb strains that are resistant to known drugs, such as the MDR-TB (Multi Drug Resistant Tuberculosis) and XDR-TB (Extensively Drug Resistant Tuberculosis). Therefore, there is a pressing need to search for novel Mtb drug targets in order to be able to combat these drug resistant strains. The enzyme 7,8-diaminopelargonic acid aminotransferase enzyme, or more commonly known as BioA, is one such ideal target, as it is known that humans do not possess this enzyme. BioA primarily plays a key role in Mtb’s lipid biosynthesis pathway; more specifically in the synthesis of the enzyme cofactor biotin. In this study, structure-based pharmacophore screening, docking, and ADMET evaluation of compounds obtained from the DrugBank chemical database were performed against the MtbBioA enzyme. Results of the screening, docking, ADMET, and TOPKAT calculations revealed that out of the 6,516 compounds in the library, only 7 compounds indicated more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM), as well as good solubility and toxicity properties. Moreover, out of these 7 compounds, Molecule 6 exhibited the best solubility and toxicity properties. In the future, these lead compounds may then be subjected to bioactivity assays in vitro or in vivo for further evaluation of its therapeutic efficacy.

Keywords: 7, 8-diaminopelargonic acid aminotransferase, BioA, pharmacophore, molecular docking, ADMET, TOPKAT

Procedia PDF Downloads 456
26576 Performance Evaluation of Dynamic Signal Control System for Mixed Traffic Conditions

Authors: Aneesh Babu, S. P. Anusha

Abstract:

A dynamic signal control system combines traditional traffic lights with an array of sensors to intelligently control vehicle and pedestrian traffic. The present study focus on evaluating the performance of dynamic signal control systems for mixed traffic conditions. Data collected from four different approaches to a typical four-legged signalized intersection at Trivandrum city in the Kerala state of India is used for the study. Performance of three other dynamic signal control methods, namely (i) Non-sequential method (ii) Webster design for consecutive signal cycle using flow as input, and (iii) dynamic signal control using RFID delay as input, were evaluated. The evaluation of the dynamic signal control systems was carried out using a calibrated VISSIM microsimulation model. Python programming was used to integrate the dynamic signal control algorithm through the COM interface in VISSIM. The intersection delay obtained from different dynamic signal control methods was compared with the delay obtained from fixed signal control. Based on the study results, it was observed that the intersection delay was reduced significantly by using dynamic signal control methods. The dynamic signal control method using delay from RFID sensors resulted in a higher percentage reduction in delay and hence is a suitable choice for implementation under mixed traffic conditions. The developed dynamic signal control strategies can be implemented in ITS applications under mixed traffic conditions.

Keywords: dynamic signal control, intersection delay, mixed traffic conditions, RFID sensors

Procedia PDF Downloads 104
26575 Implementation of the Recursive Formula for Evaluation of the Strength of Daniels' Bundle

Authors: Vaclav Sadilek, Miroslav Vorechovsky

Abstract:

The paper deals with the classical fiber bundle model of equal load sharing, sometimes referred to as the Daniels' bundle or the democratic bundle. Daniels formulated a multidimensional integral and also a recursive formula for evaluation of the strength cumulative distribution function. This paper describes three algorithms for evaluation of the recursive formula and also their implementations with source codes in high-level programming language Python. A comparison of the algorithms are provided with respect to execution time. Analysis of orders of magnitudes of addends in the recursion is also provided.

Keywords: equal load sharing, mpmath, python, strength of Daniels' bundle

Procedia PDF Downloads 402
26574 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building

Authors: Kittipob Kondee, Chutima Prommak

Abstract:

In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.

Keywords: indoor positioning system, optimization system design, multi-floor building, wireless sensor networks

Procedia PDF Downloads 245