Search results for: initial geometric imperfection
2456 Comparison of Non-destructive Devices to Quantify the Moisture Content of Bio-Based Insulation Materials on Construction Sites
Authors: Léa Caban, Lucile Soudani, Julien Berger, Armelle Nouviaire, Emilio Bastidas-Arteaga
Abstract:
Improvement of the thermal performance of buildings is a high concern for the construction industry. With the increase in environmental issues, new types of construction materials are being developed. These include bio-based insulation materials. They capture carbon dioxide, can be produced locally, and have good thermal performance. However, their behavior with respect to moisture transfer is still facing some issues. With a high porosity, the mass transfer is more important in those materials than in mineral insulation ones. Therefore, they can be more sensitive to moisture disorders such as mold growth, condensation risks or decrease of the wall energy efficiency. For this reason, the initial moisture content on the construction site is a piece of crucial knowledge. Measuring moisture content in a laboratory is a mastered task. Diverse methods exist but the easiest and the reference one is gravimetric. A material is weighed dry and wet, and its moisture content is mathematically deduced. Non-destructive methods (NDT) are promising tools to determine in an easy and fast way the moisture content in a laboratory or on construction sites. However, the quality and reliability of the measures are influenced by several factors. Classical NDT portable devices usable on-site measure the capacity or the resistivity of materials. Water’s electrical properties are very different from those of construction materials, which is why the water content can be deduced from these measurements. However, most moisture meters are made to measure wooden materials, and some of them can be adapted for construction materials with calibration curves. Anyway, these devices are almost never calibrated for insulation materials. The main objective of this study is to determine the reliability of moisture meters in the measurement of biobased insulation materials. The determination of which one of the capacitive or resistive methods is the most accurate and which device gives the best result is made. Several biobased insulation materials are tested. Recycled cotton, two types of wood fibers of different densities (53 and 158 kg/m3) and a mix of linen, cotton, and hemp. It seems important to assess the behavior of a mineral material, so glass wool is also measured. An experimental campaign is performed in a laboratory. A gravimetric measurement of the materials is carried out for every level of moisture content. These levels are set using a climatic chamber and by setting the relative humidity level for a constant temperature. The mass-based moisture contents measured are considered as references values, and the results given by moisture meters are compared to them. A complete analysis of the uncertainty measurement is also done. These results are used to analyze the reliability of moisture meters depending on the materials and their water content. This makes it possible to determine whether the moisture meters are reliable, and which one is the most accurate. It will then be used for future measurements on construction sites to assess the initial hygrothermal state of insulation materials, on both new-build and renovation projects.Keywords: capacitance method, electrical resistance method, insulation materials, moisture transfer, non-destructive testing
Procedia PDF Downloads 1312455 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 312454 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks
Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang
Abstract:
Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks
Procedia PDF Downloads 6092453 Effect of Thermal Radiation on Flow, Heat, and Mass Transfer of a Nanofluid over a Stretching Horizontal Cylinder Embedded in a Porous Medium with Suction/Injection
Authors: Elsayed M. A. Elbashbeshy, T. G. Emam, M. S. El-Azab, K. M. Abdelgaber
Abstract:
The effect of thermal radiation on flow, heat and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder embedded in a porous medium with suction/injection is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.Keywords: laminar flow, boundary layer, stretching horizontal cylinder, thermal radiation, suction/injection, nanofluid
Procedia PDF Downloads 3852452 Gene Expression Analysis for Corals / Zooxanthellae under High Seawater Temperature Stress
Authors: Haruka Ito, Toru Maruyama, Michihiro Ito, Chuya Shinzato, Hiroyuki Fujimura, Yoshikatsu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama
Abstract:
Clarifying symbiotic relationships is one of the most important theme for understanding the marine eco-system. Coral reef has been regarded as an important environmental resource. Coral holobiont composed by coral, symbiotic microalgae zooxanthellae, and bacteria have complexed relationship. Zooxanthellae mainly supply organic matter to the host corals through their photosynthetic activity. The symbiotic relationship is indispensable for corals but may easily collapses due to the rise of seawater temperature. However, the molecular mechanism how seawater temperature influences their relationships still remain unclear. In this study, the transcriptomic analysis has applied to elucidate the coral-zooxanthellae relationships under high seawater temperature stress. To observe reactions of corals and zooxanthellae against the rise of seawater temperature, meta-gene expression in coral have been analyzed. The branches from six different colonies of a stony coral, Acropora tenuis, were sampled at nine times by 2016 at two locations, Ishikawabaru and South of Sesoko Island, Okinawa, Japan. The mRNAs extracted from the branches including zooxanthellae were sequenced by illumina HiSeq. Gene Set Enrichment Analysis (GSEA) based on hyper geometric distribution was performed. The seawater temperature at 2016 summer was unusually high, which was caused by El Niño event, and the number of zooxanthellae in coral was decreased in August. GSEA derived the several specific genes expressed in A. tenuis under heat stress conditions. The upregulated genes under heat stress highly related with infection immunity. The downregulated genes significantly contained cell cycle related genes. Thu, it is considered that heat stress cause disorder in cell metabolism of A. tenuis, resulting in serious influence to coral holobiont.Keywords: coral, symbiosis, thermal stress response, transcriptome analysis
Procedia PDF Downloads 2752451 Characterization of a Newfound Manganese Tungstate Mineral of Hübnerite in Turquoise Gemstone from Miduk Mine, Kerman, Iran
Authors: Zahra Soleimani Rad, Fariborz Masoudi, Shirin Tondkar
Abstract:
Turquoise is one of the most well-known gemstones in Iran. The mineralogy, crystallography, and gemology of Shahr-e-Babak turquoise in Kerman were investigated and the results are presented in this research. The Miduk porphyry copper deposit is positioned in the Shahr-Babak area in Kerman province, Iran. This deposit is located 85 km NW of the Sar-Cheshmeh porphyry copper deposit. Preliminary mineral exploration was carried out from 1967 to 1970. So far, more than fifty diamond drill holes, each reaching a maximum depth of 1013 meters, have provided evidence supporting the presence of significant and promising porphyry copper mineralization at the Miduk deposit. The mineral deposit harbors a quantity of 170 million metric tons of ore, characterized by a mean composition of 0.86% copper (Cu), 0.007% molybdenum (Mo), 82 parts-per-billion gold (Au), and 1.8 parts-per-million silver (Ag). The Supergene enrichment layer, which constitutes the predominant source of copper ore, exhibits an approximate thickness of 50 meters. Petrography shows that the texture is homogeneous. In terms of a gemstone, greasy luster and blue color are seen, and samples are similar to what is commonly known as turquoise. The geometric minerals were detected in XRD analysis by analyzing the data using the x-pert software. From the mineralogical point of view; the turquoise gemstones of Miduk of Kerman consist of turquoise, quartz, mica, and hübnerite. In this article, to our best knowledge, we are stating the hübnerite mineral identified and seen in the Persian turquoise. Based on the obtained spectra, the main mineral of the Miduk samples from the six members of the turquoise family is the turquoise type with identical peaks that can be used as a reference for identification of the Miduk turquoise. This mineral is structurally composed of phosphate units, units of Al, Cu, water, and hydroxyl units, and does not include a Fe unit. In terms of gemology, the quality of a gemstone depends on the quantity of the turquoise phase and the amount of Cu in it according to SEM and XRD analysis.Keywords: turquoise, hübnerite, XRD analysis, Miduk, Kerman, Iran
Procedia PDF Downloads 732450 Conflicts Identification Approach among Stakeholders in Goal-Oriented Requirements Analysis
Authors: Muhammad Suhaib
Abstract:
Requirements Analysis are the most important part of software Engineering for both system application development, and project requirements. Conflicts often arise during the requirements gathering and analysis phase. This research aims to identify conflicts during the requirements gathering phase in software development life cycle, Research, Development, and Technology converted the world into a global village. During requirements elicitation/gathering phase it’s very difficult to understand the main objective of stakeholders, after completion of requirements elicitation task final results are used for Software Requirements Specification (SRS), SRS is the highly important outcome of the requirements analysis phase. this is the foundation between the developers and stakeholders or customers, proposed methodology will be helpful to identify those conflicts in a very easy manner during the initial phase of the project.Keywords: goal oriented requirements analysis, conflicts identification model, requirements analysis, requirements engineering
Procedia PDF Downloads 1392449 Study of the Performance of Metal Tanks with a Floating Roof
Authors: Rezki Akkouche
Abstract:
This work exposes metal tanks in general and floating roofs in particular by listing the codes and standards which study this kind of structure. Initial research discusses the types of tanks, how they are designed, and the disadvantages and advantages that each type has. Then, in-depth research was carried out carefully in order to popularize the floating roof tank and the principles of its design and operation while defining the different types of this kind of roof, how and what they are designed, naming the main installation accessories for these roofs and the dangers that a malfunction of these accessories would cause, also exposing the problems likely to be encountered on these roofs and the considerable and important advantages that floating roof tanks bring. A simplification of the two API 650 and Eurocode 3 regulations - Tanks part - has been made by explaining and mentioning the design rules and laws of this type of structure. Thus a comparison of the two regulations is accomplished by exemplifying this with a study of an actual project.Keywords: tanks of metal, floating roof, performance, comparative analysis
Procedia PDF Downloads 1322448 Phenol Degradation via Photocatalytic Oxidation Using Fe Doped TiO₂
Authors: Sherif Ismail
Abstract:
Degradation of phenol-contaminated wastewater using Photocatalytic oxidation process was investigated in batch experiments using Fe doped TiO₂. Moreover, the effect of oxygen aeration on the performance of photocatalytic oxidation process by iron (Fe⁺²) doped titanium dioxide (TiO₂) was assessed. Photocatalytic oxidation using Fe doped TiO₂ effectively reduce the phenol concentration in wastewater with optimum condition of light intensity, pH, catalyst-dosing and initial concentration of phenol were 50 W/m2, 5.3, 600 mg/l and 10 mg/l respectively. The results obtained that removal efficiency of phenol was 88% after 180 min in case of N₂ addition. However, aeration by oxygen resulted in a 99% removal efficiency in 120 min. The results of photo-catalysis oxidation experiments fitted the pseudo-first-order kinetic equation with high correlation. Costs estimation of 30 m3/d full-scale photo-catalysis oxidation plant was assessed.Keywords: phenol degradation, Fe-doped TiO2, AOPs, cost analysis
Procedia PDF Downloads 1672447 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1622446 The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples
Authors: Jeremy Attard, Jordan François, Serge Lazzarini, Thierry Masson
Abstract:
Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories.Keywords: BEHGHK (Higgs) mechanism, conformal gravity, gauge theory, spontaneous symmetry breaking, symmetry reduction, twistors and tractors
Procedia PDF Downloads 2412445 Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing
Authors: Yu Li, Jingwu He, Yuexi Xiong
Abstract:
The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics.Keywords: active structural stiffness design theory, high-aspect-ratio wing, flight load cases, layout of spars
Procedia PDF Downloads 3272444 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite
Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun
Abstract:
In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.Keywords: fiber treatment, impact modifier, natural fibers, ultrasound
Procedia PDF Downloads 4952443 Kinetic and Thermodynamic Study of Nitrates Removal by Sorption on Biochar
Authors: Amira Touil, Achouak Arfaoui, Ibtissem Mannaii
Abstract:
The aim of this work is to monitor the process adsorption of nitrates by the biochar via studying the influence of various parameters on the adsorption of this pollutant by biochar in a synthetic aqueous solution. The results which obtained indicate that the 4g/L biochar dose is the most efficient in terms of nitrates removal in aqueous solution. The biochar exhibited a good affinity for nitrates after 1hour of contact. The yield of removal of nitrate by the biochar decreases with the increase of pH of the solution and increases with increasing temperature (60°C>40°C>20°C). The best removal yield is about 80% of the initial concentration introduced (25mg/L) obtained at pH=2, T=60°C, and dose of biochar=4g/L. The second order model fit the nitrate adsorption kinetics of biochar with a high coefficient of determination (R2≥0.997); and a new equation correlating the rate constant of the reaction with temperature and pH was been built. Freundlich isotherms performed well to fit the nitrate adsorption data by biochar (R2>0.96) compared to Langmuir isotherms. The thermodynamic parameters (ΔH°, ΔG°, ΔS°) have been calculated for predicting the nature of adsorption.Keywords: pollution, biochar, nitrate, adsorption
Procedia PDF Downloads 992442 A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface
Authors: Jiewei Li, Hongyan Cui, Chunqi Chang, Yong Hu
Abstract:
It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.Keywords: robotic rehabilitation arm, brain computer interface (BCI), hemiparesis, stroke, somatosensory stimulation
Procedia PDF Downloads 3952441 Dam Break Model Using Navier-Stokes Equation
Authors: Alireza Lohrasbi, Alireza Lavaei, Mohammadali M. Shahlaei
Abstract:
The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique.Keywords: dam break, Naiver-Stokes equations, free-surface flows, Arbitrary Lagrangian-Eulerian
Procedia PDF Downloads 3462440 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems
Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan
Abstract:
Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling
Procedia PDF Downloads 922439 Model-Based Software Regression Test Suite Reduction
Authors: Shiwei Deng, Yang Bao
Abstract:
In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.Keywords: dependence analysis, EFSM model, greedy algorithm, regression test
Procedia PDF Downloads 4322438 Arsenic(III) Removal from Aqueous Solutions by Adsorption onto Fly Ash
Authors: Olushola Ayanda, Simphiwe Nelana, Eliazer Naidoo
Abstract:
In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of As(III) ions from aqueous solution onto fly ash (FA) was investigated in batch adsorption system. Prior to the adsorption studies, the FA was characterized by means of x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area determination. The effect of contact time, initial As(III) concentration, FA dosage, stirring speed, solution pH and temperature was examined on the adsorption rate. Experimental results showed a very good compliance with the pseudo-second-order equation, while the equilibrium study showed that the sorption of As(III) ions onto FA fitted the Langmuir and Freundlich isotherms. The adsorption process is endothermic and spontaneous, moreover, the maximum percentage removal of As(III) achieved with approx. 2.5 g FA mixed with 25 mL of 100 mg/L As(III) solution was 65.4 % at pH 10, 60 min contact time, temperature of 353 K and a stirring speed of 120 rpm.Keywords: arsenic, fly ash, kinetics, isotherm, thermodynamics
Procedia PDF Downloads 2452437 Procalcitonin and Other Biomarkers in Sepsis Patients: A Prospective Study
Authors: Neda Valizadeh, Soudabeh Shafiee Ardestani, Arvin Najafi
Abstract:
Objectives: The aim of this study is to evaluate the association of mid-regional pro-atrial natriuretic peptide (MRproANP), procalcitonin (PCT), proendothelin-1 (proET-1) levels with sepsis severity in Emergency ward patients. Materials and Methods: We assessed the predictive value of MRproANP, PCT, copeptin, and proET-1 in early sepsis among patients referring to the emergency ward with a suspected sepsis. Results-132 patients were enrolled in this study. 45 (34%) patients had a final diagnosis of sepsis. A higher percentage of patients with definite sepsis had systemic inflammatory response syndrome (SIRS) criteria at initial visit in comparison with no-sepsis patients (P<0.05) and were admitted to the hospital (P<0.05). PCT levels were higher in sepsis patients [P<0.05]. There was no significant differences for MRproANP or proET-1 in sepsis patients (P=0.47). Conclusion: A combination of SIRS criteria and PCT levels is beneficial for the early sepsis diagnosis in emergency ward patients with a suspicious infection disease.Keywords: emergency, prolactin, sepsis, biomarkers
Procedia PDF Downloads 4432436 Fixed-Bed Column Studies of Green Malachite Removal by Use of Alginate-Encapsulated Aluminium Pillared Clay
Authors: Lazhar mouloud, Chemat Zoubida, Ouhoumna Faiza
Abstract:
The main objective of this study, concerns the modeling of breakthrough curves obtained in the adsorption column of malachite green into alginate-encapsulated aluminium pillared clay in fixed bed according to various operating parameters such as the initial concentration, the feed rate and the height fixed bed, applying mathematical models namely: the model of Bohart and Adams, Wolborska, Bed Depth Service Time, Clark and Yoon-Nelson. These models allow us to express the different parameters controlling the performance of the dynamic adsorption system. The results have shown that all models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to the flow rate, the inlet dye concentration and the height of fixed bed.Keywords: adsorption column, malachite green, pillared clays, alginate, modeling, mathematic models, encapsulation.
Procedia PDF Downloads 5102435 Two-Step Inversion Method for Multi-mode Surface Waves
Authors: Ying Zhang
Abstract:
Surface waves provide critical constraints about the earth's structure in the crust and upper mantle. However, different modes of Love waves with close group velocities often arrive at a similar time and interfere with each other. This problem is typical for Love waves at intermediate periods that travel through the oceanic lithosphere. Therefore, we developed a two-step inversion approach to separate the waveforms of the fundamental and first higher mode of Love waves. We first solve the phase velocities of the two modes and their amplitude ratios. The misfit function is based on the sum of phase differences among the station pairs. We then solve the absolute amplitudes of the two modes and their initial phases using obtained phase velocities and amplitude ratio. The separated waveforms of each mode from the two-step inversion method can be further used in surface wave tomography to improve model resolution.Keywords: surface wave inversion, waveform separation, love waves, higher-mode interference
Procedia PDF Downloads 732434 A Single Feature Probability-Object Based Image Analysis for Assessing Urban Landcover Change: A Case Study of Muscat Governorate in Oman
Authors: Salim H. Al Salmani, Kevin Tansey, Mohammed S. Ozigis
Abstract:
The study of the growth of built-up areas and settlement expansion is a major exercise that city managers seek to undertake to establish previous and current developmental trends. This is to ensure that there is an equal match of settlement expansion needs to the appropriate levels of services and infrastructure required. This research aims at demonstrating the potential of satellite image processing technique, harnessing the utility of single feature probability-object based image analysis technique in assessing the urban growth dynamics of the Muscat Governorate in Oman for the period 1990, 2002 and 2013. This need is fueled by the continuous expansion of the Muscat Governorate beyond predicted levels of infrastructural provision. Landsat Images of the years 1990, 2002 and 2013 were downloaded and preprocessed to forestall appropriate radiometric and geometric standards. A novel approach of probability filtering of the target feature segment was implemented to derive the spatial extent of the final Built-Up Area of the Muscat governorate for the three years period. This however proved to be a useful technique as high accuracy assessment results of 55%, 70%, and 71% were recorded for the Urban Landcover of 1990, 2002 and 2013 respectively. Furthermore, the Normalized Differential Built – Up Index for the various images were derived and used to consolidate the results of the SFP-OBIA through a linear regression model and visual comparison. The result obtained showed various hotspots where urbanization have sporadically taken place. Specifically, settlement in the districts (Wilayat) of AL-Amarat, Muscat, and Qurayyat experienced tremendous change between 1990 and 2002, while the districts (Wilayat) of AL-Seeb, Bawshar, and Muttrah experienced more sporadic changes between 2002 and 2013.Keywords: urban growth, single feature probability, object based image analysis, landcover change
Procedia PDF Downloads 2772433 Particle Concentration Distribution under Idling Conditions in a Residential Underground Garage
Authors: Yu Zhao, Shinsuke Kato, Jianing Zhao
Abstract:
Particles exhausted from cars have an adverse impacts on human health. The study developed a three-dimensional particle dispersion numerical model including particle coagulation to simulate the particle concentration distribution under idling conditions in a residential underground garage. The simulation results demonstrate that particle disperses much faster in the vertical direction than that in horizontal direction. The enhancement of particle dispersion in the vertical direction due to the increase of cars with engine running is much stronger than that in the car exhaust direction. Particle dispersion from each pair of adjacent cars has little influence on each other in the study. Average particle concentration after 120 seconds exhaust is 1.8-4.5 times higher than the initial total particles at ambient environment. Particle pollution in the residential underground garage is severe.Keywords: dispersion, idling conditions, particle concentration, residential underground garage
Procedia PDF Downloads 5542432 The Influence of COVID-19 Pandemic: Global Policies Towards Chinese International Students
Authors: Xuefan Li, Donghua Li, Juanjuan Li
Abstract:
This study explores the changes in policies toward Chinese students studying abroad in different countries during the pre-pandemic, pandemic, and post-pandemic periods. Interviews and questionnaire surveys were conducted with participating institutions at the China International Education Exhibition. The results indicate that institutions were impacted by the pandemic differently, with a gradual recovery in the two years following the initial outbreak. Institutions encourage and support Chinese students to resume offline studies during the post-pandemic period. The impact of the pandemic on the recruitment of Chinese students by international institutions varied, with different measures being adopted by different institutions. Compared with universities, colleges were more affected in terms of student employment rates. Some institutions were able to respond quickly and effectively to the pandemic due to their online teaching platforms. Overall, this study is expected to provide insights into the changes in policies toward Chinese students studying abroad during the pandemic and highlights the diverse responses of international institutions.Keywords: international education, Chinese international education, COVID-19 pandemic, international institutions
Procedia PDF Downloads 922431 Cost Effectiveness and Performance Study of Perpetual Pavement Using ABAQUS
Authors: Mansour Fakhri, Monire Zokaei
Abstract:
Where there are many demolitions on conventional asphalt pavements, heavy costs are paid to repair and reconstruct the pavement roads annually. Recently some research has been done in order to increase the pavement life. Perpetual pavement is regarded as one of them which can improve the pavement life and minimize the maintenance activity and cost. In this research, ABAQUS which is a finite element software is implemented for analyzing and simulation of perpetual pavement. Viscoelastic model of material is used and loading wheel is considered to be dynamic. Effect of different parameters on pavement function has been considered. Because of high primary cost these pavements are not widely used. In this regard, life cost analysis was also carried out to compare perpetual pavement to conventional asphalt concrete pavement. It was concluded that although the initial cost of perpetual pavement is higher than that of conventional asphalt pavement, life cycle cost analysis during 50 years of service life showed that the performance of this pavement is better and the whole life cost of that is less.Keywords: ABAQUS, lifecycle cost analysis, mechanistic empirical, perpetual pavement
Procedia PDF Downloads 3872430 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network
Authors: Amel Ourici
Abstract:
An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.Keywords: doubly fed induction machine, PWM inverter, inter turn stator fault, Park’s vector approach, neural network
Procedia PDF Downloads 6132429 Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers
Authors: Rios A. S., Hild F., Deus E. P., Aimedieu P., Benallal A.
Abstract:
The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region.Keywords: coconut fiber, mechanical behavior, digital image correlation, micromechanism
Procedia PDF Downloads 4622428 Isolation of Biosurfactant Producing Spore-Forming Bacteria from Oman: Potential Applications in Bioremediation
Authors: Saif N. Al-Bahry, Yahya M. Al-Wahaibi, Abdulkadir E. Elshafie, Ali S. Al-Bemani, Sanket J. Joshi
Abstract:
Environmental pollution is a global problem and best possible solution is identifying and utilizing native microorganisms. One possible application of microbial product -biosurfactant is in bioremediation of hydrocarbon contaminated sites. We have screened forty two different petroleum contaminated sites from Oman, for biosurfactant producing spore-forming bacterial isolates. Initial screening showed that out of 42 soil samples, three showed reduction in surface tension (ST) and interfacial tension (IFT) within 24h of incubation at 40°C. Out of those 3 soil samples, one was further selected for isolation of bacteria and 14 different bacteria were isolated in pure form. Of those 14 spore-forming, rod shaped bacteria, two showed highest reduction in ST and IFT in the range of 70mN/m to < 35mN/m and 26.69mN/m to < 9mN/m, respectively within 24h. These bacterial biosurfactants may be utilized for bioremediation of oil-spills.Keywords: bioremediation, hydrocarbon pollution, spore-forming bacteria, bio-surfactant
Procedia PDF Downloads 2992427 Experience of Using Expanding Polyurethane Resin for Ground Improvement Under Existing Shallow Foundations on The Arabian Peninsula
Authors: Evgeny N. Zakharin, Bartosz Majewski
Abstract:
Foaming polyurethane is a ground improvement technology that is increasingly used for foundation stabilization with differential settlement and controlled foundation structure lifting. This technology differs from conventional mineral grout due to its injection composition, which provides high-pressure expansion quickly due to a chemical reaction. The technology has proven efficient in the typical geological conditions of the United Arab Emirates. An in-situ trial foundation load test has been proposed to objectively assess the deformative and load-bearing characteristics of the soil after injection. The article provides a detailed description of the experiment carried out in field conditions. Based on the practical experiment's results and its finite element modeling, the deformation modulus of the soil after treatment was determined, which was more than five times higher than the initial value.Keywords: chemical grout, expanding polyurethane resin, foundation remediation, ground improvement
Procedia PDF Downloads 70