Search results for: flanker task
784 Decision-Making Under Uncertainty in Obsessive-Compulsive Disorder
Authors: Helen Pushkarskaya, David Tolin, Lital Ruderman, Ariel Kirshenbaum, J. MacLaren Kelly, Christopher Pittenger, Ifat Levy
Abstract:
Obsessive-Compulsive Disorder (OCD) produces profound morbidity. Difficulties with decision making and intolerance of uncertainty are prominent clinical features of OCD. The nature and etiology of these deficits are poorly understood. We used a well-validated choice task, grounded in behavioral economic theory, to investigate differences in valuation and value-based choice during decision making under uncertainty in 20 unmedicated participants with OCD and 20 matched healthy controls. Participants’ choices were used to assess individual decision-making characteristics. Compared to controls, individuals with OCD were less consistent in their choices and less able to identify options that were unambiguously preferable. These differences correlated with symptom severity. OCD participants did not differ from controls in how they valued uncertain options when outcome probabilities were known (risk) but were more likely than controls to avoid uncertain options when these probabilities were imprecisely specified (ambiguity). These results suggest that the underlying neural mechanisms of valuation and value-based choices during decision-making are abnormal in OCD. Individuals with OCD show elevated intolerance of uncertainty, but only when outcome probabilities are themselves uncertain. Future research focused on the neural valuation network, which is implicated in value-based computations, may provide new neurocognitive insights into the pathophysiology of OCD. Deficits in decision-making processes may represent a target for therapeutic intervention.Keywords: obsessive compulsive disorder, decision-making, uncertainty intolerance, risk aversion, ambiguity aversion, valuation
Procedia PDF Downloads 615783 Valence and Arousal-Based Sentiment Analysis: A Comparative Study
Authors: Usama Shahid, Muhammad Zunnurain Hussain
Abstract:
This research paper presents a comprehensive analysis of a sentiment analysis approach that employs valence and arousal as its foundational pillars, in comparison to traditional techniques. Sentiment analysis is an indispensable task in natural language processing that involves the extraction of opinions and emotions from textual data. The valence and arousal dimensions, representing the intensity and positivity/negativity of emotions, respectively, enable the creation of four quadrants, each representing a specific emotional state. The study seeks to determine the impact of utilizing these quadrants to identify distinct emotional states on the accuracy and efficiency of sentiment analysis, in comparison to traditional techniques. The results reveal that the valence and arousal-based approach outperforms other approaches, particularly in identifying nuanced emotions that may be missed by conventional methods. The study's findings are crucial for applications such as social media monitoring and market research, where the accurate classification of emotions and opinions is paramount. Overall, this research highlights the potential of using valence and arousal as a framework for sentiment analysis and offers invaluable insights into the benefits of incorporating specific types of emotions into the analysis. These findings have significant implications for researchers and practitioners in the field of natural language processing, as they provide a basis for the development of more accurate and effective sentiment analysis tools.Keywords: sentiment analysis, valence and arousal, emotional states, natural language processing, machine learning, text analysis, sentiment classification, opinion mining
Procedia PDF Downloads 100782 Cultural Stereotypes in EFL Classrooms and Their Implications on English Language Procedures in Cameroon
Authors: Eric Enongene Ekembe
Abstract:
Recent calls on EFL teaching posit the centrality of context factors and argue for a correlation between effectiveness in teaching with the learners’ culture in the EFL classroom. Context is not everything; it is defined with indicators of learners’ cultural artifacts and stereotypes in meaningful interactions in the language classroom. In keeping with this, it is difficult to universalise pedagogic procedures given that appropriate procedures are context-sensitive- and contexts differ. It is necessary to investigate what counts as cultural specificities or stereotypes of specific learners to reflect on how different language learning contexts affect or are affected by English language teaching procedures, most especially in under-represented cultures, which have appropriated the English language. This paper investigates cultural stereotypes of EFL learners in the culturally diverse Cameroon to examine how they mediate teaching and learning. Data collected on mixed-method basis from 83 EFL teachers and 1321 learners in Cameroon reveal a strong presence of typical cultural artifacts and stereotypes. Statistical analysis and thematic coding demonstrate that teaching procedures in place were insensitive to the cultural artifacts and stereotypes, resulting in trending tension between teachers and learners. The data equally reveal a serious contradiction between the communicative goals of language teaching and learning: what teachers held as effective teaching was diametrically opposed to success in learning. In keeping with this, the paper argues for a ‘decentred’ teacher preparation in Cameroon that is informed by systemic learners’ feedback. On this basis, applied linguistics has the urgent task of exploring dimensions of what actually counts as contextualized practice in ELT.Keywords: cultural stereotypes, EFL, implications, procedures
Procedia PDF Downloads 129781 Developing Proof Demonstration Skills in Teaching Mathematics in the Secondary School
Authors: M. Rodionov, Z. Dedovets
Abstract:
The article describes the theoretical concept of teaching secondary school students proof demonstration skills in mathematics. It describes in detail different levels of mastery of the concept of proof-which correspond to Piaget’s idea of there being three distinct and progressively more complex stages in the development of human reflection. Lessons for each level contain a specific combination of the visual-figurative components and deductive reasoning. It is vital at the transition point between levels to carefully and rigorously recalibrate teaching to reflect the development of more complex reflective understanding. This can apply even within the same age range, since students will develop at different speeds and to different potential. The authors argue that this requires an aware and adaptive approach to lessons to reflect this complexity and variation. The authors also contend that effective teaching which enables students to properly understand the implementation of proof arguments must develop specific competences. These are: understanding of the importance of completeness and generality in making a valid argument; being task focused; having an internalised locus of control and being flexible in approach and evaluation. These criteria must be correlated with the systematic application of corresponding methodologies which are best likely to achieve success. The particular pedagogical decisions which are made to deliver this objective are illustrated by concrete examples from the existing secondary school mathematics courses. The proposed theoretical concept formed the basis of the development of methodological materials which have been tested in 47 secondary schools.Keywords: education, teaching of mathematics, proof, deductive reasoning, secondary school
Procedia PDF Downloads 242780 The Effectiveness of Using Functional Rehabilitation with Children of Cerebral Palsy
Authors: Bara Yousef
Abstract:
The development of independency and functional participation is an important therapeutic goal for many children with cerebral palsy,They was many therapeutic approach have been used for treatment those children like neurodevelopment treatment, balance training strengthening and stretching exercise. More recently, therapy for children with cerebral palsy has focused on achieving functional goals using task-oriented interventions and summer camping model, which focus on activities that relevant and meaningful to the child, to learn more efficient and effective motor skills. We explore the effectiveness of using functional rehabilitation comparing with regular rehabilitation among 40 Saudi children with cerebral palsy in pediatric unit at Sultan Bin Abdul Aziz Humanitarian City-Ksa ,where 20 children randomly assign in control group who received rehabilitation based on regular therapy approach and other 20 children assign on experiment group who received rehabilitation based on functional therapy approach with an average of 45min OT treatment and 45 min PT treatment- daily within a period of 6 week. Our finding reported that children in experiment group has improved in gross motor function with an average from 49.4 to 57.6 based on GMFM 66 as primary outcome measure and improved in WeeFIM with an average from 52 to 62 while children in control group has improved with an average from 48.4 to 53.7 in GMFM and from 53 to and 58 in WeeFIM. Consequently, there has been growing interest in determining the effects of functional training programs as promising approach for these children.Keywords: Cerebral Palsy (CP), gross motor function measure (GMFM66), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability
Procedia PDF Downloads 381779 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 139778 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 76777 Women in Teaching Profession: Impacts and Challenges
Authors: A. M. Sultana, Norhirdawati Binti Mhd Zahir, Norzalan Hadi Yaacob
Abstract:
Recently in Malaysia, women's participation in teaching profession has increased. The increasing trend of women’s participation in the teaching profession poses challenges in families, especially in the developing countries like Malaysia. One of these challenges, concerns in balancing their role between family and job responsibility that faced by many women teachers. The purpose of this study is to discover how women teachers' impact on family happiness and the challenges faced by them in balancing their role between family and job responsibility. The findings presented in this study are based on survey research in a secondary school Dato’ Bijaya Setia in the district of Gugusan Manjoi which is located in Kedah, Malaysia. The study found that employment of women in economic activity has several beneficial impacts of improving the economic condition of the family. The results also revealed that in low income earning families, both husbands and wives’ employment contribute to the family income that less likely to experience of family poverty. The study also showed despite women's teachers’ significant role towards the overall development of the family, the majority of women teachers encountered a number of difficulties in balancing their role between family and job responsibility especially when they need to work more than the normal working time. Therefore, it is common for the majority of women suffering from psychological stress when they are unable to complete the task at a fixed time. The present study also suggests implication of family friendly policy and its appropriate practice to support the women teachers who are significantly contributing to family, community and the country.Keywords: emotional exhaustion, family friendly policy, work family conflict, women teacher
Procedia PDF Downloads 432776 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model
Authors: Nafiseh Ebrahimi, Amir Jafari
Abstract:
The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel
Procedia PDF Downloads 142775 Effect of Project Control Practices on the Performance of Building Construction Companies in Uganda: A Case Study of Kampala City
Authors: Tukundane Hillary
Abstract:
This research paper analytically evaluates the project control practice levels used by the building construction companies within Kampala, Uganda. The research also assesses the outcome of project control practices on the productivity of the companies. The research was performed to ascertain the current control practices among 160 respondents from various construction companies registered with the Uganda Registration Services Bureau. This research used amalgamation from multiple literature to obtain the variables. The research adopts 34 standard control practices from four vital project control duties: planning, monitoring, analyzing, and reporting. These project control tasks were organized using mean response ratings grounded on their relevance to the construction companies. Results showed that evaluating performance with the use of curves (4.32), timely access to information and encouragement (4.55), report representation using quantitative tools 4.75, and cost value comparison application during analysis (4.76) were rated least among the control practices. On the other hand, the top project control practices included formulation of the project schedule (8.88), Project feasibility validation (8.86), Budgeting for each activity (8.84), Key project route definition (8.81), Team awareness of the budget (8.77), Setting realistic targets for projects (8.50) and Consultation from subcontractors (8.74). From the results obtained by the sample respondents specified, it can be concluded that planning is the most vital project control task practiced in the building construction industry in Uganda. In addition, this research ascertained a substantial relationship between project control practices and the performance of building construction companies. Accordingly, this research recommends that project control practices be effectively observed by both contracting and consulting companies to enhance their overall performance and governance.Keywords: cost value, project control, cost control, time control, project performance, control practices
Procedia PDF Downloads 74774 Digitalisation of the Railway Industry: Recent Advances in the Field of Dialogue Systems: Systematic Review
Authors: Andrei Nosov
Abstract:
This paper discusses the development directions of dialogue systems within the digitalisation of the railway industry, where technologies based on conversational AI are already potentially applied or will be applied. Conversational AI is one of the popular natural language processing (NLP) tasks, as it has great prospects for real-world applications today. At the same time, it is a challenging task as it involves many areas of NLP based on complex computations and deep insights from linguistics and psychology. In this review, we focus on dialogue systems and their implementation in the railway domain. We comprehensively review the state-of-the-art research results on dialogue systems and analyse them from three perspectives: type of problem to be solved, type of model, and type of system. In particular, from the perspective of the type of tasks to be solved, we discuss characteristics and applications. This will help to understand how to prioritise tasks. In terms of the type of models, we give an overview that will allow researchers to become familiar with how to apply them in dialogue systems. By analysing the types of dialogue systems, we propose an unconventional approach in contrast to colleagues who traditionally contrast goal-oriented dialogue systems with open-domain systems. Our view focuses on considering retrieval and generative approaches. Furthermore, the work comprehensively presents evaluation methods and datasets for dialogue systems in the railway domain to pave the way for future research. Finally, some possible directions for future research are identified based on recent research results.Keywords: digitalisation, railway, dialogue systems, conversational AI, natural language processing, natural language understanding, natural language generation
Procedia PDF Downloads 63773 Partnership Oriented Innovation Alliance Strategy Based on Market Feedback
Authors: Victor Romanov, Daria Efimenko
Abstract:
The focus on innovation in modern economy is the main factor in surviving business in a competitive environment. The innovations are based on the search and use of knowledge in a global context. Nowadays consumers and market demand are the main innovation drivers. This leads to build a business as a system with feedback, promptly restructuring production and innovation implementation in response to market demands. In modern knowledge economy, because of speed of technical progress, the product's lifecycle became much shorter, what makes more stringent requirements for innovation implementation on the enterprises of and therefore the possibility for enterprise for receiving extra income is decreasing. This circumstance imposes additional requirements for the replacement of obsolete products and the prompt release of innovative products to the market. The development of information technologies has led to the fact that only in the conditions of partnership and knowledge sharing with partners it is possible to update products quickly for innovative products. Many companies pay attention to updating innovations through the search for new partners, but the task of finding new partners presents some difficulties. The search for a suitable one includes several stages such as: determining the moment of innovation-critical, introducing a search, identifying search criteria, justifying and deciding on the choice of a partner. No less important is the question of how to manage an innovative product in response to a changing market. The article considers the problems of information support for the search for the source of innovation and partnership to decrease the time for implementation of novelty products.Keywords: partnership, novelty, market feedback, alliance
Procedia PDF Downloads 194772 Sustainable Transboundary Water Management: Challenges and Good Practices of Cooperation in International River Basin Districts
Authors: Aleksandra Ibragimow, Moritz Albrecht, Eerika Albrecht
Abstract:
Close international cooperation between all countries within a river basin has become one of the key aspects of sustainable cross-border water management. This is due to the fact that water does not stop at administrative or political boundaries. Therefore, the preferred mode to protect and manage transnational water bodies is close cooperation between all countries and stakeholders within the natural hydrological unit of the river basin. However, past practices have demonstrated that combining interests of different countries and stakeholders with differing political systems and management approaches to environmental issues upstream as well as downstream can be challenging. The study focuses on particular problems and challenges of water management in international river basin districts by the example of the International Oder River Basin District. The Oder River is one of the largest cross-border rivers of the Baltic Sea basin passing through Poland, Germany, and the Czech Republic. Attention is directed towards the activities and the actions that were carried out during the Districts' first management cycle of transnational river basin management (2009-2015). The results show that actions of individual countries have been focused on the National Water Management Plans while a common appointment about identified supra-regional water management problems has not been solved, and conducted actions can be considered as preliminary and merely a basis for future management. This present state raises the question whether the achievement of main objectives of Water Framework Directive (2000/60/EC) can be a realistic task.Keywords: International River Basin Districts, water management, water frameworkdirective, water management plans
Procedia PDF Downloads 316771 Engineering of E-Learning Content Creation: Case Study for African Countries
Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola
Abstract:
This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.Keywords: teaching contents engineering, e-learning, blended learning, international cooperation, 3dslicer, open anatomy browser
Procedia PDF Downloads 172770 Design of a Virtual Reality System for Children with Developmental Coordination Disorder
Authors: Ya-Ju Ju, Li-Chen Yang, Yi-Chun Du, Rong-Ju Cherng
Abstract:
Introduction: It is estimated that 5-6% of school-aged children may be diagnosed to have developmental coordination disorder (DCD). Children with DCD are characterized with motor skill difficulty which cannot be explained by any medical or intellectual reasons. Such motor difficulties limit children’s participation to sports activity, further affect their physical fitness, cardiopulmonary function and balance, and may lead to obesity. The purpose of the project was to develop an exergaming system for children with DCD aiming to improve their physical fitness, cardiopulmonary function and balance ability. Methods: This study took five steps to build up the system: system planning, tasks selection, tasks programming, system integration and usability test. The system basically adopted virtual reality technique to integrate self-developed training programs. The training programs were developed to brainstorm among team members and after literature review. The selected tasks for training in the system were a combination of fundamental movement tor skill. Results and Discussion: Based on the theory of motor development, we design the training task from easy ones to hard ones, from single tasks to dual tasks. The tasks included walking, sit to stand, jumping, kicking, weight shifting, side jumping and their combination. Preliminary study showed that the tasks presented an order of development. Further study is needed to examine its effect on motor skill and cardiovascular fitness in children with DCD.Keywords: virtual reality, virtual reality system, developmental coordination disorder, children
Procedia PDF Downloads 113769 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 113768 Conceptual Solution and Thermal Analysis of the Final Cooling Process of Biscuits in One Confectionary Factory in Serbia
Authors: Duško Salemović, Aleksandar Dedić, Matilda Lazić, Dragan Halas
Abstract:
The paper presents the conceptual solution for the final cooling of the chocolate dressing of biscuits in one confectionary factory in Serbia. The proposed concept solution was derived from the desired technological process of final cooling of biscuits and the required process parameters that were to be achieved, and which were an integral part of the project task. The desired process parameters for achieving proper hardening and coating formation are the exchanged amount of heat in the time unit between the two media (air and chocolate dressing), the speed of air inside the tunnel cooler, and the surface of all biscuits in contact with the air. These parameters were calculated in the paper. The final cooling of chocolate dressing on biscuits could be optimized by changing process parameters and dimensions of the tunnel cooler and looking for the appropriate values for them. The accurate temperature predictions and fluid flow analysis could be conducted by using heat balance and flow balance equations, having in mind the theory of similarity. Furthermore, some parameters were adopted from previous technology processes, such as the inlet temperature of biscuits and input air temperature. A thermal calculation was carried out, and it was demonstrated that the percentage error between the contact surface of the air and the chocolate biscuit topping, which is obtained from the heat balance and geometrically through the proposed conceptual solution, does not exceed 0.67%, which is a very good agreement. This enabled the quality of the cooling process of chocolate dressing applied on the biscuit and the hardness of its coating.Keywords: chocolate dressing, air, cooling, heat balance
Procedia PDF Downloads 79767 Impact of Education on Levels of Physical Activity and Depression in Taiwanese Vegetarians and Omnivores
Authors: Ya-Lin Chang, Chia Chen Chang, Yu-Ru Liang, Joyce Chen, You-Kang Chang, Tina Chiu
Abstract:
Physical activity and mental health status are important for health. The purpose of this study was to examine levels of physical activities and depression in Taiwanese vegetarians (VEG) and omnivores (OMNI). Sixty-three vegetarians (20 males) and 56 omnivores (23 males) with an average age of 51 years were recruited for a food frequency validation study at Taipei Tzu Chi Hospital from July to September in 2016. Participants filled out a validated Chinese version international physical activity questionnaire-short-form (IPAQ), Beck Depression Inventory-II-Chinese version (BDI), food frequency questionnaire (FFQ) and a questionnaire on demographics and medical history upon recruitment. Total BDI scores were calculated for depression and the metabolic equivalent of task (MET) was calculated for physical activity levels. Mann-Whitney U tests and Chi-square test were used to compare demographics, physical activity levels and depression scores. VEG and OMNI did not differ significantly on MET (1441.9 ± 3387.3 vs. 1605.8 ± 2486.1. p=0.2652, respectively). VEG scored slightly lower on BDI compared to OMNI without statistical significance (5.6 ± 5.7 vs. 7.4 ± 6.3. p=0.06). In addition, we found that regardless of diet practice, those who held a college degree and above scored better on MET (1788.1 ± 2532.6 vs. 1215.5 ± 3425.5. p=0.0014) and BDI (5.2 ± 5.1 vs. 7.8 ± 6.7. p=0.03). In this cross-sectional study, Taiwanese vegetarians and omnivores scored comparatively on physical activity levels and depression. However, education is a significant determinant of physical activity and depression.Keywords: BDI, diet, education, physical activity
Procedia PDF Downloads 389766 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 116765 An Examination of the Impact of Sand Dunes on Soils, Vegetation and Water Resources as the Major Means of Livelihood in Gada Local Government Area of Sokoto State, Nigeria
Authors: Abubakar Aminu
Abstract:
Sand dunes, as a major product of desertification, is well known to affect soil resources, water resources and vegetation, especially in arid and semi-arid region; this scenario disrupt the livelihood security of people in the affected areas. The research assessed the episode of sand dune accumulation on water resources, soil and vegetation in Gada local government of Sokoto State, Nigeria. In this paper, both qualitative and quantitative methods were used to generate data which was analyzed and discussed. The finding of the paper shows that livelihood was affected by accumulations of sand dunes as water resources and soils were affected negatively thereby reducing crop yields and making livestock domestication a very difficult and expensive task; the finding also shows that 60% of the respondents agreed to planting of trees as the major solution to combat sand dunes accumulation. However, the soil parameters tested indicated low Organic carbon, low Nitrogen, low Potassium, Calcium and Phosphorus but higher values were recorded in Sodium and Cation exchange capacity which served as evidence of the high or strong aridity nature of the soil in the area. In line with the above, the researcher recommended a massive tree planting campaign to curtail desertification as well as using organic manures for higher agricultural yield and as such, improvement in livelihood security.Keywords: soils, vegetatio, water, desertification
Procedia PDF Downloads 70764 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 252763 Application of Griddization Management to Construction Hazard Management
Authors: Lingzhi Li, Jiankun Zhang, Tiantian Gu
Abstract:
Hazard management that can prevent fatal accidents and property losses is a fundamental process during the buildings’ construction stage. However, due to lack of safety supervision resources and operational pressures, the conduction of hazard management is poor and ineffective in China. In order to improve the quality of construction safety management, it is critical to explore the use of information technologies to ensure that the process of hazard management is efficient and effective. After exploring the existing problems of construction hazard management in China, this paper develops the griddization management model for construction hazard management. First, following the knowledge grid infrastructure, the griddization computing infrastructure for construction hazards management is designed which includes five layers: resource entity layer, information management layer, task management layer, knowledge transformation layer and application layer. This infrastructure will be as the technical support for realizing grid management. Second, this study divides the construction hazards into grids through city level, district level and construction site level according to grid principles. Last, a griddization management process including hazard identification, assessment and control is developed. Meanwhile, all stakeholders of construction safety management, such as owners, contractors, supervision organizations and government departments, should take the corresponding responsibilities in this process. Finally, a case study based on actual construction hazard identification, assessment and control is used to validate the effectiveness and efficiency of the proposed griddization management model. The advantage of this designed model is to realize information sharing and cooperative management between various safety management departments.Keywords: construction hazard, griddization computing, grid management, process
Procedia PDF Downloads 275762 Mobile Augmented Reality for Collaboration in Operation
Authors: Chong-Yang Qiao
Abstract:
Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.Keywords: mobile augmented reality, remote collaboration, user experience, cognition model
Procedia PDF Downloads 197761 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 103760 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay
Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira
Abstract:
Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO
Procedia PDF Downloads 264759 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder
Authors: Yu-Chi Chou
Abstract:
The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation
Procedia PDF Downloads 66758 Classifier for Liver Ultrasound Images
Authors: Soumya Sajjan
Abstract:
Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix
Procedia PDF Downloads 411757 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment
Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati
Abstract:
This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.Keywords: real-time system (RTS), time utility function/ utility accrual (TUF/UA) scheduling, backward recovery mechanism, multiprocessor, discrete event simulation (DES)
Procedia PDF Downloads 306756 Study and Solving High Complex Non-Linear Differential Equations Applied in the Engineering Field by Analytical New Approach AGM
Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili
Abstract:
In this paper, three complicated nonlinear differential equations(PDE,ODE) in the field of engineering and non-vibration have been analyzed and solved completely by new method that we have named it Akbari-Ganji's Method (AGM) . As regards the previous published papers, investigating this kind of equations is a very hard task to do and the obtained solution is not accurate and reliable. This issue will be emerged after comparing the achieved solutions by Numerical Method. Based on the comparisons which have been made between the gained solutions by AGM and Numerical Method (Runge-Kutta 4th), it is possible to indicate that AGM can be successfully applied for various differential equations particularly for difficult ones. Furthermore, It is necessary to mention that a summary of the excellence of this method in comparison with the other approaches can be considered as follows: It is noteworthy that these results have been indicated that this approach is very effective and easy therefore it can be applied for other kinds of nonlinear equations, And also the reasons of selecting the mentioned method for solving differential equations in a wide variety of fields not only in vibrations but also in different fields of sciences such as fluid mechanics, solid mechanics, chemical engineering, etc. Therefore, a solution with high precision will be acquired. With regard to the afore-mentioned explanations, the process of solving nonlinear equation(s) will be very easy and convenient in comparison with the other methods. And also one of the important position that is explored in this paper is: Trigonometric and exponential terms in the differential equation (the method AGM) , is no need to use Taylor series Expansion to enhance the precision of the result.Keywords: new method (AGM), complex non-linear partial differential equations, damping ratio, energy lost per cycle
Procedia PDF Downloads 469755 Judicial Review of Indonesia's Position as the First Archipelagic State to implement the Traffic Separation Scheme to Establish Maritime Safety and Security
Authors: Rosmini Yanti, Safira Aviolita, Marsetio
Abstract:
Indonesia has several straits that are very important as a shipping lane, including the Sunda Strait and the Lombok Strait, which are the part of the Indonesian Archipelagic Sea Lane (IASL). An increase in traffic on the Marine Archipelago makes the task of monitoring sea routes increasingly difficult. Indonesia has proposed the establishment of a Traffic Separation Scheme (TSS) in the Sunda Strait and the Lombok Strait and the country now has the right to be able to conceptualize the TSS as well as the obligation to regulate it. Indonesia has the right to maintain national safety and sovereignty. In setting the TSS, Indonesia needs to issue national regulations that are in accordance with international law and the general provisions of the IMO (International Maritime Organization) can then be used as guidelines for maritime safety and security in the Sunda Strait and the Lombok Strait. The research method used is a qualitative method with the concept of linguistic and visual data collection. The source of the data is the analysis of documents and regulations. The results show that the determination of TSS was justified by International Law, in accordance with article 22, article 41, and article 53 of the United Nations Convention on the Law of the Sea (UNCLOS) 1982. The determination of TSS by the Indonesian government would be in accordance with COLREG (International Convention on Preventing Collisions at Sea) 10, which has been designed to follow IASL. Thus, TSS can provide a function as a safety and monitoring medium to minimize ship accidents or collisions, including the warship and aircraft of other countries that cross the IASL.Keywords: archipelago state, maritime law, maritime security, traffic separation scheme
Procedia PDF Downloads 128