Search results for: electronic waste process dynamics
19404 Material Vitalism’s Potential Role in Informing EU Construction and Demolition Waste Policy
Authors: Cameron Jones
Abstract:
Emissions, produced by landfill waste from demolished obsolete buildings, have a damaging effect on both the Earth’s climate and human health. The philosophical theory of material vitalism - the potential for materials to react and emit harmful pollutants - therefore defines this construction and demolition waste (CDW) as having vitality. The European Union’s ‘Circular Economic Action Plan’ (CEAP) aims to mitigate the effects of CDW by prioritising the circularity of building materials. This dissertation examines how the philosophical theory of material vitalism can make an environmentally responsible contribution to CDW policy. The CEAP and Silvertown Quays development are used as case studies for the application of vitalism to policy revision. The study concludes that vitalism has a positive role to play in informing CDW policy, although its contribution is stronger in some areas. This is established by first appraising the aspects that relate to the obsolescence of buildings outlined in the EU’s existing CDW policies. Next, these policy directives are compared with the CE principles employed in the Silvertown Quays development. Subsequently, a keyword analysis model is used to categorise the language used in the CEAP, demonstrating how socio-political approaches to the CE and strategies to address resource scarcity could be strengthened to represent the EU’s policy aspirations more effectively. Recommendations are then made on how material vitalism could be utilised to strengthen legislation, arguing that a notable contribution can be made in most policy areas. Finally, theoretical testing of the impact of these revisions to policy on the case study development identified some practicalities for consideration in improving waste management outcomes.Keywords: vitalism, construction waste, obsolescence, political ecology, exceptionalism
Procedia PDF Downloads 4419403 Evaluating Environmental Impact of End-of-Life Cycle Cases for Brick Walls and Aerated Autoclave Concrete Walls
Authors: Ann Mariya Jose, Ashfina T.
Abstract:
Construction and demolition waste is one of the rising concerns globally due to the amount of waste generated annually, the area taken up by landfills, and the adverse environmental impacts that follow. One of the primary causes of the rise in construction and demolition waste is a lack of facilities and knowledge for incorporating recycled materials into new construction. Bricks are a conventional material that has been used for construction for centuries, and Autoclave Aerated Concrete (AAC) blocks are a new emergent material in the market. This study evaluates the impact brick walls, and AAC block walls have on the environment using the tool One Click LCA, considering three End of Life (EoL) scenarios: the materials are landfilled, recycled, and reused in a new building. The final objective of the study is to evaluate the environmental impact caused by these two different walls on the environmental factors such as Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential (EP), Ozone Depletion Potential (ODP), and Photochemical Ozone Creation Potential (POCP). The findings revealed that the GWP caused by landfilling is 16 times higher in bricks and 22 times higher in AAC blocks when compared to the reuse of materials. The study recommends the effective use of AAC blocks in construction and reuse of the same to reduce the overall emissions to the environment.Keywords: construction and demolition waste, environmental impact, life cycle impact assessment, material recycling
Procedia PDF Downloads 10519402 A Neural Network Approach to Understanding Turbulent Jet Formations
Authors: Nurul Bin Ibrahim
Abstract:
Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence
Procedia PDF Downloads 7019401 Surface Sensing of Atomic Behavior of Polymer Nanofilms via Molecular Dynamics Simulation
Authors: Ling Dai
Abstract:
Surface-sensing devices such as atomic force microscope have been widely used to characterize the surface structure and properties of nanoscale polymer films. However, using molecular dynamics simulations, we show that there is intrinsic and unavoidable inelastic deformation at polymer surfaces induced by the sensing tip. For linear chain polymers like perfluoropolyether, such tip-induced deformation derives from the differences in the atomic interactions which are atomic specie-based Van der Waals interactions, and resulting in atomic shuffling and causing inelastic alternation in both molecular structures and mechanical properties at the regions of the polymer surface. For those aromatic chain polymers like epoxy, the intrinsic deformation is depicted as the intra-chain rotation of aromatic rings and kinking of linear atomic connections. The present work highlights the need to reinterpret the data obtained from surface-sensing tests by considering this intrinsic inelastic deformation occurring at polymer surfaces.Keywords: polymer, surface, nano, molecular dynamics
Procedia PDF Downloads 35619400 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3
Authors: Mouna Mesbahi, M. Loutfi Benkhedir
Abstract:
In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K
Procedia PDF Downloads 56019399 Application of Lean Manufacturing Tools in Hot Asphalt Production
Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz
Abstract:
The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.Keywords: asphalt, lean manufacturing, productivity, process
Procedia PDF Downloads 11719398 Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas
Authors: Kemal Comakli, Meryem Terhan
Abstract:
In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler’s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units.Keywords: heat recovery from flue gas, energy analysis of flue gas, economical analysis, payback period
Procedia PDF Downloads 28819397 Polyampholytic Resins: Advances in Ion Exchanging Properties
Authors: N. P. G. N. Chandrasekara, R. M. Pashley
Abstract:
Ion exchange (IEX) resins are commonly available as cationic or anionic resins but not as polyampholytic resins. This is probably because sequential acid and base washing cannot produce complete regeneration of polyampholytic resins with chemically attached anionic and cationic groups in close proximity. The ‘Sirotherm’ process, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Melbourne, Australia was originally based on the use of a physical mixture of weakly basic (WB) and weakly acidic (WA) ion-exchange resin beads. These resins were regenerated thermally and they were capable of removing salts from an aqueous solution at higher temperatures compared to the salt sorbed at ambient temperatures with a significant reduction of the sorption capacity with increasing temperature. A new process for the efficient regeneration of mixed bead resins using ammonium bicarbonate with heat was studied recently and this chemical/thermal regeneration technique has the capability for completely regenerating polyampholytic resins. Even so, the low IEX capacities of polyampholytic resins restrict their commercial applications. Recently, we have established another novel process for increasing the IEX capacity of a typical polyampholytic resin. In this paper we will discuss the chemical/thermal regeneration of a polyampholytic (WA/WB) resin and a novel process for enhancing its ion exchange capacity, by increasing its internal pore area. We also show how effective this method is for completely recycled regeneration, with the potential of substantially reducing chemical waste.Keywords: capacity, ion exchange, polyampholytic resin, regeneration
Procedia PDF Downloads 37619396 First Principle study of Electronic Structure of Silicene Doped with Galium
Authors: Mauludi Ariesto Pamungkas, Wafa Maftuhin
Abstract:
Gallium with three outer electrons commonly are used as dopants of silicon to make it P type and N type semiconductor respectively. Silicene, one-atom-thick silicon layer is one of emerging two dimension materials after the success of graphene. The effects of Gallium doping on electronic structure of silicine are investigated by using first principle calculation based on Density Functional Theory (DFT) calculation and norm conserving pseudopotential method implemented in ABINIT code. Bandstructure of Pristine silicene is similar to that of graphene. Effect of Ga doping on bandstructure of silicene depend on the position of Ga adatom on siliceneKeywords: silicene, effects of Gallium doping, Density Functional Theory (DFT), graphene
Procedia PDF Downloads 43319395 Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets
Authors: Sanghoon Bae, Hanju Cha
Abstract:
Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location.Keywords: computational flow dynamics (CFD), failed fuel detector (FFD), fresh fuel assembly (FFA), spent fuel assembly (SFA)
Procedia PDF Downloads 24019394 One Step Further: Pull-Process-Push Data Processing
Authors: Romeo Botes, Imelda Smit
Abstract:
In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list
Procedia PDF Downloads 24419393 Eco-Efficient Self-Compacting Concrete for Sustainable Building
Authors: Valeria Corinaldesi
Abstract:
In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building
Procedia PDF Downloads 8519392 First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO
Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez
Abstract:
We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the NaCl (rock-salt) and WZ (wurtzite) phases. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT). Our calculations predict that for Bi concentrations greater than ~70%, the WZ structure is more favorable than the NaCl one and that for x = 0 (pure MgO), x = 0.25 and x = 0.50 of Bi concentration the NaCl structure is more favorable than the WZ one. For x = 0.75 of Bi, a transition from wurtzite towards NaCl is possible, when the pressure is about 22 GPa. Also It has been observed the crystal lattice constant closely follows Vegard’s law, that the bulk modulus and the cohesion energy decrease with the concentration x of Bi.Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt, wurtzite
Procedia PDF Downloads 52519391 Innovative Method for Treating Oil-Produced Water with Low Operating Cost
Authors: Maha Salman, Gada Al-Nuwaibit, Ahmed Al-Haji, Saleh Al-Haddad, Abbas Al-Mesri, Mansour Al-Rugeeb
Abstract:
The high salinity of oil-produced water and its complicated chemical composition, makes designing a suitable treatment system for oil-produced water is extremely difficult and costly. On the current study, a new innovative method was proposed to treat the complicated oil-produced water through a simple mixing with brine stream produced from waste water treatment plant. The proposal will investigate the scaling potential of oil-produce water, seawater and the selected brine water (BW) produced from Sulaibiya waste water treatment and reclamation plant (SWWTRP) before and after the mixing with oil-produced water, and will calculate the scaling potential of all expected precipitated salts using different conversion and different % of mixing to optimize the % of mixing between the oil-produced water and the selected stream. The result shows a great, feasible and economic solution to treat oil produced with a very low capital cost.Keywords: brine water, oil-produced water, scaling potential, Sulaibiyah waste water and reclaminatin plant
Procedia PDF Downloads 44619390 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)
Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi
Abstract:
The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco
Procedia PDF Downloads 13519389 Theoretical Investigation of Electronic, Structural and Thermoelectric Properties of Mg₂SiSn (110) Surface
Authors: M. Ramesh, Manish K. Niranjan
Abstract:
The electronic, structural and thermoelectric properties of Mg₂SiSn (110) surface are investigated within the framework of first principle density functional theory and semi classical Boltzmann approach. In particular, directional dependent thermoelectric properties such as electrical conductivity, thermal conductivity, Seebeck coefficient and figure of merit are explored. The (110)-oriented Mg₂SiSn surface exhibits narrow indirect band gap of ~0.17 eV. The thermoelectric properties are found to be significant along the y-axis at 300 K and along x-axis at 500 K. The figure of merit (ZT) for hole carrier concentration is found to be significantly large having magnitude 0.83 (along x-axis) at 500 K and 0.26 (y-axis) at 300 K. Our results suggest that Mg₂SiSn (110) surface is promising for various thermoelectric applications due to its overall good thermoelectric properties.Keywords: thermoelectric, surface science, semiconducting silicide, first principles calculations
Procedia PDF Downloads 22619388 Feasibility of Agro Waste-Derived Adsorbent for Colour Removal
Authors: U. P. L. Wijayarathne, P. W. Vidanage, H. K. D. Jayampath, K. W. P. M. Kothalawala
Abstract:
Feasibility of utilizing Empty Bunch (EB) fibre, a solid waste of palm oil extraction process, as an adsorbent is analysed in this study. Empty bunch fibre is generated after the extraction of retained oil in the sterilized and threshed empty fruit bunches. Besides the numerous characteristics of EB fibre, which enable its utilization as a fuel, a bio-composite material, or mulch, EB fibre also shows exceptional characteristics of a good adsorbent. Fixed bed adsorption method is used to study the adsorptivity of EB fibre using a continuous adsorption column with Methyl-blue (1.13ppm) as the feed. Adsorptivity is assumed to be solely dependent on the bed porosity keeping other parameters (feed flow rate, bed height, bed diameter, and operating temperature) constant. Bed porosity is changed by means of compact ratio and the variation of the feed concentration is analysed using a photometric method. Break through curves are plotted at different porosity levels and optimum bed porosity is identified for a given feed stream. Feasibility of using the EB fibre as an inexpensive and an abundant adsorbent in wastewater treatment facilities, where the effluent colour reduction is adamant, is also discussed.Keywords: adsorption, fixed bed, break through time, methylene blue, oil palm fibre
Procedia PDF Downloads 28919387 Assessment of the Root Causes of Marine Debris Problem in Lagos State
Authors: Chibuzo Okoye Daniels, Gillian Glegg, Lynda Rodwell
Abstract:
The continuously growing quantity of very slow degrading litter deliberately discarded into the coastal waters around Lagos as marine debris is obvious. What is not known is how to tackle this problem to reduce its prevalence and impact on the environment, economy and community. To identify ways of tackling the marine debris problem two case study areas (Ikoyi and Victoria Islands of Lagos State) were used to assess the root causes, the threat posed by marine debris in the coastal waters around Lagos and the efficacy of current instruments, programmes and initiatives that address marine debris in the study areas. The following methods were used: (1) Self-completed questionnaires for households and businesses within the study areas; (2) Semi-structured interviews with key stakeholders; (3) Observational studies of waste management from collection to disposal and waste management facilities for waste originating from land and maritime sources; (4) Beach surveys and marine debris surveys on shorelines and ports; and (5) Fishing for marine debris. Results of this study identified the following root causes: (1) Indiscriminate human activities and behaviors, and lack of awareness on the part of the main stakeholders and the public of the potential consequences of their actions; (2) Poor solid waste management practices; (3) Lack of strict legal frameworks addressing waste and marine debris problem; and (4) Disposal of non-degradable wastes into domestic sewer system and open streets drains. To effectively tackle marine debris problem in the study areas, adequate, appropriate and cost effective solutions to the above mentioned root causes needs to be identified and effectively transferred for implementation in the study areas.Keywords: marine debris problem, Lagos state, litter, coastal waters
Procedia PDF Downloads 38119386 Post-Islamism, Turkish Referendum and the Anatolian Middle Class
Authors: Firmanda Taufiq
Abstract:
Turkey as a country with great political power and political dynamics that occurred in Turkey shows symptoms that make this country interesting enough to be studied. In addition, there is also Post-Islamism phenomenon that causes fluctuations and changes in Turkish politics. In this regard, Turkey carved out history by holding a referendum that changed the state system from a parliamentary system with a presidential system. This change has major implications in the life of Turkish society and politics. The condition is not only influenced by the government of Recep Tayyib Erdogan alone, but actually there is also anxiety middle class Turkish (Middle Class Anatolia). So there was a Turkish referendum held on 16 April 2017. This research using descriptive-analysis method to analyzing problems of research, that's how the post-Islamism situation in Turkey and Anatolian Middle Class impact to Turkish referendum. Actually, the political process that took place in Turkey is inseparable from Post-Islamism which became an important part in the change and transition of government system. The AKP Party as the basis of the Erdogan government movement became an important actor in the political and policy dynamics produced by the Erdogan government. It is then why the Turkish referendum took place.Keywords: post-Islamism, Turkish politic, AKP, middle class Anatolia
Procedia PDF Downloads 48019385 Understanding What People with Epilepsy and Their Care-Partners Value about an Electronic Patient Portal
Authors: K. Power, M. White, B. Dunleavey, E. Comerford, C. Doherty, N. Delanty, R. Corbridge, M. Fitzsimons
Abstract:
Introduction: Providing people with access to their own healthcare information and engaging them as co-authors of their health record can promote better transparency, trust, and inclusivity in the healthcare system. With the advent of electronic health records, there is a move towards involving patients as partners in their healthcare by providing them with access to their own health data via electronic patient portals (ePortal). For example, a recently developed ePortal to the Irish National Epilepsy Electronic Patient Record (EPR) provides access to summary medical records, tools for Patient Reported Outcomes (PROM), health goal-setting and preparation for clinical appointments. Aim: To determine what people with epilepsy (their families/carers) value about the Irish epilepsy ePortal. Methods: A socio-technical process was employed recruiting 30 families of people with epilepsy who also have an intellectual disability (ID). Family members who are a care partner of the person with epilepsy (PWE) were invited to co-design, develop and implement the ePortal. Family members engaged in usability and utility testing which involved a face to face meeting to learn about the ePortal, register for a user account and evaluate its structure and content. Family members were instructed to login to the portal on at least two separate occasions following the meeting and to complete a self-report evaluation tool during this time. The evaluation tool, based on a Usability Questionnaire (Lewis, 1993), consists of a short assessment of comfort using technology, instructions for using the ePortal and some tasks to complete. Tasks included validating summary record details, assessing ePortal ease of use, evaluation of information presented. Participants were asked for suggestions on how to improve the portal and make it more applicable to PWE who also have an ID. Results: Family members responded positively to the ePortal and valued the ability to share information between clinicians and care partners; use the ePortal as a passport between different healthcare settings (e.g., primary care to hospital). In the context of elderly parents of PWE, the ePortal is valued as a tool for supporting shared care between family members. Participants welcomed the facility to log lists of questions and goals to discuss with the clinician at the next clinical appointment as a means of improving quality of care. Participants also suggested further enhancements to the ePortal such as access to clinic letters which can provide an aide memoir in terms of the careplan agreed with the clinical team. For example, through the ePortal, people could see what investigations or therapies are scheduled. Conclusion: The Epilepsy Patient Portal is accessible via a range of devices such as smartphones and tablets. ePortals have the potential to help personalise care, improve patient involvement in clinical decision making, engage them as quality and safety partners, and help clinicians be more responsive to patient needs. Acknowledgement: The epilepsy ePortal project is part of PISCES, a Lighthouse Project funded by eHealth Ireland and HSE to help build an understanding of the benefits of eHealth technologies in the Irish Healthcare System.Keywords: electronic patient portal, electronic patient record, epilepsy, intellectual disability, usability testing
Procedia PDF Downloads 34019384 Industrial Waste Multi-Metal Ion Exchange
Authors: Thomas S. Abia II
Abstract:
Intel Chandler Site has internally developed its first-of-kind (FOK) facility-scale wastewater treatment system to achieve multi-metal ion exchange. The process was carried out using a serial process train of carbon filtration, pH / ORP adjustment, and cationic exchange purification to treat dilute metal wastewater (DMW) discharged from a substrate packaging factory. Spanning a trial period of 10 months, a total of 3,271 samples were collected and statistically analyzed (average baseline + standard deviation) to evaluate the performance of a 95-gpm, multi-reactor continuous copper ion exchange treatment system that was consequently retrofitted for manganese ion exchange to meet environmental regulations. The system is also equipped with an inline acid and hot caustic regeneration system to rejuvenate exhausted IX resins and occasionally remove surface crud. Data generated from lab-scale studies was transferred to system operating modifications following multiple trial-and-error experiments. Despite the DMW treatment system failing to meet internal performance specifications for manganese output, it was observed to remove the cation notwithstanding the prevalence of copper in the waste stream. Accordingly, the average manganese output declined from 6.5 + 5.6 mg¹L⁻¹ at pre-pilot to 1.1 + 1.2 mg¹L⁻¹ post-pilot (83% baseline reduction). This milestone was achieved regardless of the average influent manganese to DMW increasing from 1.0 + 13.7 mg¹L⁻¹ at pre-pilot to 2.1 + 0.2 mg¹L⁻¹ post-pilot (110% baseline uptick). Likewise, the pre-trial and post-trial average influent copper values to DMW were 22.4 + 10.2 mg¹L⁻¹ and 32.1 + 39.1 mg¹L⁻¹, respectively (43% baseline increase). As a result, the pre-trial and post-trial average copper output values were 0.1 + 0.5 mg¹L⁻¹ and 0.4 + 1.2 mg¹L⁻¹, respectively (300% baseline uptick). Conclusively, the operating pH range upstream of treatment (between 3.5 and 5) was shown to be the largest single point of influence for optimizing manganese uptake during multi-metal ion exchange. However, the high variability of the influent copper-to-manganese ratio was observed to adversely impact the system functionality. The journal herein intends to discuss the operating parameters such as pH and oxidation-reduction potential (ORP) that were shown to influence the functional versatility of the ion exchange system significantly. The literature also proposes to discuss limitations of the treatment system such as influent copper-to-manganese ratio variations, operational configuration, waste by-product management, and system recovery requirements to provide a balanced assessment of the multi-metal ion exchange process. The take-away from this literature is intended to analyze the overall feasibility of ion exchange for metals manufacturing facilities that lack the capability to expand hardware due to real estate restrictions, aggressive schedules, or budgetary constraints.Keywords: copper, industrial wastewater treatment, multi-metal ion exchange, manganese
Procedia PDF Downloads 14319383 Evaluation of Fluidized Bed Bioreactor Process for Mmabatho Waste Water Treatment Plant
Authors: Shohreh Azizi, Wag Nel
Abstract:
The rapid population growth in South Africa has increased the requirement of waste water treatment facilities. The aim of this study is to assess the potential use of Fluidized bed Bio Reactor for Mmabatho sewage treatment plant. The samples were collected from the Inlet and Outlet of reactor daily to analysis the pH, Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS) as per standard method APHA 2005. The studies were undertaken on a continue laboratory scale, and analytical data was collected before and after treatment. The reduction of 87.22 % COD, 89.80 BOD % was achieved. Fluidized Bed Bio Reactor remove Bod/COD removal as well as nutrient removal. The efforts also made to study the impact of the biological system if the domestic wastewater gets contaminated with any industrial contamination and the result shows that the biological system can tolerate high Total dissolved solids up to 6000 mg/L as well as high heavy metal concentration up to 4 mg/L. The data obtained through the experimental research are demonstrated that the FBBR may be used (<3 h total Hydraulic Retention Time) for secondary treatment in Mmabatho wastewater treatment plant.Keywords: fluidized bed bioreactor, wastewater treatment plant, biological system, high TDS, heavy metal
Procedia PDF Downloads 16719382 Study of Treatment Plant of The City Chlef Study of Environmental Impact
Authors: Houmame Benbouali, Aboubakr Gribi
Abstract:
The risks, in general, exist in any project, one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation and are often subjected at the multiple risks being able to influence with their good performance and can have a negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studied the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (- cleansing of water-worn- general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations).Keywords: treatment plant, waste water, waste water treatment, Chlef
Procedia PDF Downloads 33419381 Effect of Electronic Banking on the Performance of Deposit Money Banks in Nigeria: Using ATM and Mobile Phone as a Case Study
Authors: Charity Ifunanya Osakwe, Victoria Ogochuchukwu Obi-Nwosu, Chima Kenneth Anachedo
Abstract:
The study investigates how automated teller machines (ATM) and mobile banking affect deposit money banks in the Nigerian economy. The study made use of time series data which were obtained from the Central Bank of Nigeria Statistical Bulletin from 2009 to 2021. The Central Bank of Nigeria (CBN) data on automated teller machine and mobile phones were used to proxy electronic banking while total deposit in banks proxied the performance of deposit money banks. The analysis for the study was done using ordinary least square econometric technique with the aid of economic view statistical package. The results show that the automated teller machine has a positive and significant effect on the total deposits of deposit money banks in Nigeria and that making use of deposits of deposit money banks in Nigeria. It was concluded in the study that e-banking has equally increased banking access to customers and also created room for banks to expand their operations to more customers. The study recommends that banks in Nigeria should prioritize the expansion and maintenance of ATM networks as well as continue to invest in and develop more mobile banking services.Keywords: electronic, banking, automated teller machines, mobile, deposit
Procedia PDF Downloads 5419380 Mechanical Activation of a Waste Material Used as Cement Replacement in Soft Soil Stabilisation
Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffil
Abstract:
Waste materials or sometimes called by-product materials have been increasingly used as construction material to reduce the usage of cement in different construction projects. In the field of soil stabilisation, waste materials such as pulverised fuel ash (PFA), biomass fly ash (BFA), sewage sludge ash (SSA), etc., have been used since 1960s in last century. In this study, a particular type of a waste material (WM) was used in soft soil stabilisation as a cement replacement, as well as, the effect of mechanical activation, using grinding, on the performance of this WM was also investigated. The WM used in this study is a by-product resulted from the incineration processes between 1000 and 1200oc in domestic power generation plant using a fluidized bed combustion system. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were conducted first to find the optimum content of WM by carrying out Atterberg limits and unconfined compressive strength (UCS) tests on soil samples contained (0, 3, 6, 9, 12, and 15%) of WM by the dry weight of soil. The UCS test was carried out on specimens provided to different curing periods (zero, 7, 14, and 28 days). Moreover, the optimum percentage of the WM was subject to different periods of grinding (10, 20, 30, 40mins) using mortar and pestle grinder to find the effect of grinding and its optimum time by conducting UCS test. The results indicated that the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.10 with 15% of WM. Meanwhile, the results of UCS test indicated that 12% of WM was the optimum and this percentage developed the UCS value from 202kPa to 700kPa for 28 days cured samples. Along with the time of grinding, the results revealed that 10 minutes of grinding was the best for mechanical activation for the WM used in this study.Keywords: soft soil stabilisation, waste materials, grinding, and unconfined compressive strength
Procedia PDF Downloads 28019379 Study on Parallel Shear Stress of Cement-Wood Composites Using Pinus sp. and Eucalyptus sp. in natura and Treated with CCA
Authors: Rodrigo D. S. Oliveira, Sarah David-Muzel, Maristela Gava, Victor A. De Araujo, Glaucia A. Prates, Juliana Cortez-Barbosa
Abstract:
Improper disposal of treated wood waste is a problem of the timber sector, since this residue is toxic, due to the harmful characteristics of the preservative substances. An environmentally friendly alternative is the use of this waste for the production of cement-wood composites. The aim of this work was to study the possibility of using wood treated with CCA (Chromated Cooper Arsenate) in cement-wood. Specimens of Pinus sp. and Eucalyptus sp. were produced with wood raw in natura and treated with CCA. A test was performed to determine the parallel shear stress of samples after 14 days of drying, according to the Brazilian Standard NBR-7215/97. Based on the analyzed results it is concluded that the use of wood treated with CCA is not feasible in cement-wood production, because the composite samples of treated wood showed lower mechanical strength in shear stress than those with wood in natura.Keywords: waste recovery, wood composites, cement-wood, wood preservation, chromated copper arsenate
Procedia PDF Downloads 62019378 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application
Authors: S. Nqayi
Abstract:
Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics
Procedia PDF Downloads 5519377 Combat Plastic Entering in Kanpur City, Uttar Pradesh, India Marine Environment
Authors: Arvind Kumar
Abstract:
The city of Kanpur is located in the terrestrial plain area on the bank of the river Ganges and is the second largest city in the state of Uttar Pradesh. The city generates approximately 1400-1600 tons per day of MSW. Kanpur has been known as a major point and non-points-based pollution hotspot for the river Ganges. The city has a major industrial hub, probably the largest in the state, catering to the manufacturing and recycling of plastic and other dry waste streams. There are 4 to 5 major drains flowing across the city, which receive a significant quantity of waste leakage, which subsequently adds to the Ganges flow and is carried to the Bay of Bengal. A river-to-sea flow approach has been established to account for leaked waste into urban drains, leading to the build-up of marine litter. Throughout its journey, the river accumulates plastic – macro, meso, and micro, from various sources and transports it towards the sea. The Ganges network forms the second-largest plastic-polluting catchment in the world, with over 0.12 million tonnes of plastic discharged into marine ecosystems per year and is among 14 continental rivers into which over a quarter of global waste is discarded 3.150 Kilo tons of plastic waste is generated in Kanpur, out of which 10%-13% of plastic is leaked into the local drains and water flow systems. With the Support of Kanpur Municipal Corporation, 1TPD capacity MRF for drain waste management was established at Krishna Nagar, Kanpur & A German startup- Plastic Fisher, was identified for providing a solution to capture the drain waste and achieve its recycling in a sustainable manner with a circular economy approach. The team at Plastic Fisher conducted joint surveys and identified locations on 3 drains at Kanpur using GIS maps developed during the survey. It suggested putting floating 'Boom Barriers' across the drains with a low-cost material, which reduced their cost to only 2000 INR per barrier. The project was built upon the self-sustaining financial model. The project includes activities where a cost-efficient model is developed and adopted for a socially self-inclusive model. The project has recommended the use of low-cost floating boom barriers for capturing waste from drains. This involves a one-time time cost and has no operational cost. Manpower is engaged in fishing and capturing immobilized waste, whose salaries are paid by the Plastic Fisher. The captured material is sun-dried and transported to the designated place, where the shed and power connection, which act as MRF, are provided by the city Municipal corporation. Material aggregation, baling, and transportation costs to end-users are borne by Plastic Fisher as well.Keywords: Kanpur, marine environment, drain waste management, plastic fisher
Procedia PDF Downloads 7119376 Waste Utilization by Combustion in the Composition of Gel Fuels
Authors: Dmitrii Glushkov, Aleksandr G. Nigay, Olga S. Yashutina
Abstract:
In recent years, due to the intensive development of the Arctic and Antarctic areas, the actual task is to develop technology for the effective utilization of solid and liquid combustible wastes in an environment with low temperatures. Firstly, such technology will help to prevent the dumping of waste into the World Ocean and reduce the risks of causing environmental damage to the Far North areas. Secondly, promising actions will help to prepare fuel compositions from the waste in the places of their production. Such kind of fuels can be used as energy resources. It will reduce waste utilization costs when transporting them to the mainland. In the present study, we suggest a solution to the problem of waste utilization by the preparation of gel fuels based on solid and liquid combustible components with the addition of the thickener. Such kind of fuels is characterized by ease of preparation, storage, transportation and use (as energy resources). The main regularities and characteristics of physical and chemical processes are established with varying parameters of gel fuels and heating sources in wide ranges. The obtained results let us conclude about the prospects of gel fuels practical application for combustible wastes utilization. Appropriate technology will be characterized by positive environmental, operational and economic effects. The composition of the gel fuels can vary in a wide range. The fuels preparation based on one type of a combustible liquid or a several liquids mixture with the finely dispersed components addition makes it possible to obtain compositions with predicted rheological, energy or environmental characteristics. Besides, gel fuels have a lower level of the fire hazard compared to common solid and liquid fuels. This makes them convenient for storage and transportation. In such conditions, it is not necessary to transport combustible wastes from the territory of the Arctic and the Antarctic to the mainland for processing, which is now quite an expensive procedure. The research was funded by the Russian Science Foundation (project No. 18-13-00031).Keywords: combustible liquid waste, gel fuel, ignition and combustion, utilization
Procedia PDF Downloads 11919375 Catalytic Production of Hydrogen and Carbon Nanotubes over Metal/SiO2 Core-Shell Catalyst from Plastic Wastes Gasification
Authors: Wei-Jing Li, Ren-Xuan Yang, Kui-Hao Chuang, Ming-Yen Wey
Abstract:
Nowadays, plastic product and utilization are extensive and have greatly improved our life. Yet, plastic wastes are stable and non-biodegradable challenging issues to the environment. Waste-to-energy strategies emerge a promising way for waste management. This work investigated the co-production of hydrogen and carbon nanotubes from the syngas which was from the gasification of polypropylene. A nickel-silica core-shell catalyst was applied for syngas reaction from plastic waste gasification in a fixed-bed reactor. SiO2 were prepared through various synthesis solvents by Stöber process. Ni plays a role as modified SiO2 support, which were synthesized by deposition-precipitation method. Core-shell catalysts have strong interaction between active phase and support, in order to avoid catalyst sintering. Moreover, Fe or Co metal acts as promoter to enhance catalytic activity. The effects of calcined atmosphere, second metal addition, and reaction temperature on hydrogen production and carbon yield were examined. In this study, the catalytic activity and carbon yield results revealed that the Ni/SiO2 catalyst calcined under H2 atmosphere exhibited the best performance. Furthermore, Co promoted Ni/SiO2 catalyst produced 3 times more than Ni/SiO2 on carbon yield at long-term operation. The structure and morphological nature of the calcined and spent catalysts were examined using different characterization techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction. In addition, the quality and thermal stability of the nano-carbon materials were also evaluated by Raman spectroscopy and thermogravimetric analysis.Keywords: plastic wastes, hydrogen, carbon nanotube, core-shell catalysts
Procedia PDF Downloads 319