Search results for: decision matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6131

Search results for: decision matrix

4811 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 411
4810 Proposal of a Model Supporting Decision-Making Based on Multi-Objective Optimization Analysis on Information Security Risk Treatment

Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu

Abstract:

Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.

Keywords: information security risk treatment, selection of risk measures, risk acceptance, multi-objective optimization

Procedia PDF Downloads 461
4809 Utilizing Literature Review and Shared Decision-Making to Support a Patient Make the Decision: A Case Study of Virtual Reality for Postoperative Pain

Authors: Pei-Ru Yang, Yu-Chen Lin, Jia-Min Wu

Abstract:

Background: A 58-year-old man with a history of osteoporosis and diabetes presented with chronic pain in his left knee due to severe knee joint degeneration. The knee replacement surgery was recommended by the doctor. But the patient suffered from low pain tolerance and wondered if virtual reality could relieve acute postoperative wound pain. Methods: We used the PICO (patient, intervention, comparison, and outcome) approach to generate indexed keywords and searched systematic review articles from 2017 to 2021 on the Cochran Library, PubMed, and Clinical Key databases. Results: The initial literature results included 38 articles, including 12 Cochrane library articles and 26 PubMed articles. One article was selected for further analysis after removing duplicates and off-topic articles. The eight trials included in this article were published between 2013 and 2019 and recruited a total of 723 participants. The studies, conducted in India, Lebanon, Iran, South Korea, Spain, and China, included adults who underwent hemorrhoidectomy, dental surgery, craniotomy or spine surgery, episiotomy repair, and knee surgery, with a mean age (24.1 ± 4.1 to 73.3 ± 6.5). Virtual reality is an emerging non-drug postoperative analgesia method. The findings showed that pain control was reduced by a mean of 1.48 points (95% CI: -2.02 to -0.95, p-value < 0.0001) in minor surgery and 0.32 points in major surgery (95% CI: -0.53 to -0.11, p-value < 0.03), and the overall postoperative satisfaction has improved. Discussion: Postoperative pain is a common clinical problem in surgical patients. Research has confirmed that virtual reality can create an immersive interactive environment, communicate with patients, and effectively relieve postoperative pain. However, virtual reality requires the purchase of hardware and software and other related computer equipment, and its high cost is a disadvantage. We selected the best literature based on clinical questions to answer the patient's question and used share decision making (SDM) to help the patient make decisions based on the clinical situation after knee replacement surgery to improve the quality of patient-centered care.

Keywords: knee replacement surgery, postoperative pain, share decision making, virtual reality

Procedia PDF Downloads 69
4808 Anti-crisis Public Relations and Aspects of Effective Management in Georgian Companies

Authors: Marine Kobalava

Abstract:

Introduction. The paper substantiates the crucial role of anti-crisis PR in managing the image and reputation of companies. The critical situation caused by the Covid-19 virus in various countries of the world and the actions taken have had a significant negative impact on the image of companies and public groups. The mentioned circumstance has caused some problems for companies’ products in terms of customer demand. Accordingly, the main goal of PR has become to achieve the optimal relationship between companies and society with effective management. It should also be taken into account that the range of action of PR in crisis situations is much wider than that of advertising. In the paper, Public Relations is evaluated as a determining factor of the companies' prestige, its reliability, which has a decisive effect on the goodwill, trust, and general reputation of the public towards the company. The purpose of the study is to reveal the challenges of anti-crisis PR in Georgian companies and to develop recommendations on effective management mechanisms. Methodologies. Analysis, induction, synthesis, and other methods are used in the paper; Matrix and SWOT analysis are constructed. Ways of establishing and implementing an anti-crisis PR system in companies are proposed. The main aspects of anti-crisis management are identified by using the matrix of the choice of diversification strategy of the companies' activities, the possibilities of making adequate decisions using PR are studied according to the characteristics of the companies' activities and priority directions. Conclusion. The paper draws conclusions on modern problems of anti-crisis PR, offers recommendations on ways to solve it through PR strategies.

Keywords: anti-crisis PR, effective management, company, PR strategy

Procedia PDF Downloads 79
4807 GIS Model for Sanitary Landfill Site Selection Based on Geotechnical Parameters

Authors: Hecson Christian, Joel Macwan

Abstract:

Landfill site selection in an urban area is a critical issue in the planning process. With the growth of the urbanization, it has a mammoth impact on the economy, ecology, and environmental health of the region. Outsized amount of wastes are produced and the problem gets soared every day. Hence, selection of ideal site for sanitary landfill is a challenge for urban planners and solid waste managers. Disposal site is a function of many parameters. Among all, Geotechnical parameters are very vital as the same is related to surrounding open land. Moreover, the accessible safe and acceptable land is also scarce. Therefore, in this paper geotechnical parameters are used to develop a GIS model to identify an ideal location for landfill purpose. Metropolitan city of Surat is highly populated and fastest growing urban area in India. The research objectives are to conduct field experiments to collect data and to transfer the facts in GIS platform to evolve a model, to find ideal location. Planners’ preferences were obtained to use analytical hierarchical process (AHP) to find weights of each parameter. Integration of GIS and Multi-Criteria Decision Analysis (MCDA) techniques are applied to improve decision-making. It augments an environment for transformation and combination of geographical data and planners’ preferences. GIS performs deterministic overlay and buffer operations. MCDA methods evaluate alternatives based on the decision makers’ subjective values and priorities. Research results have shown many alternative locations. Economic analysis of selected site from actual operations point of view is not included in this research.

Keywords: GIS, AHP, MCDA, Geo-technical

Procedia PDF Downloads 145
4806 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality

Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye

Abstract:

When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.

Keywords: word embeddings, k-mer embedding, dimensionality reduction

Procedia PDF Downloads 137
4805 Redefining Infrastructure as Code Orchestration Using AI

Authors: Georges Bou Ghantous

Abstract:

This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.

Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making

Procedia PDF Downloads 34
4804 Decision Support System for Fetus Status Evaluation Using Cardiotocograms

Authors: Oyebade K. Oyedotun

Abstract:

The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.

Keywords: decision support, cardiotocogram, classification, neural networks

Procedia PDF Downloads 332
4803 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 358
4802 Unconscious Bias in Judicial Decisions: Legal Genealogy and Disgust in Cases of Private, Adult, Consensual Sexual Acts Leading to Injury

Authors: Susanna Menis

Abstract:

‘Unconscious’ bias is widespread, affecting society on all levels of decision-making and beyond. Placed in the law context, this study will explore the direct effect of the psycho-social and cultural evolution of unconscious bias on how a judicial decision was made. The aim of this study is to contribute to socio-legal scholarship by examining the formation of unconscious bias and its influence on the creation of legal rules that judges believe reflect social solidarity and protect against violence. The study seeks to understand how concepts like criminalization and unlawfulness are constructed by the common law. The study methodology follows two theoretical approaches: historical genealogy and emotions as sociocultural phenomena. Both methods have the ‘tracing back’ of the original formation of a social way of seeing and doing things in common. The significance of this study lies in the importance of reflecting on the ways unconscious bias may be formed; placing judges’ decisions under this spotlight forces us to challenge the status quo, interrogate justice, and seek refinement of the law.

Keywords: legal geneology, emotions, disgust, criminal law

Procedia PDF Downloads 61
4801 Accounting Management Information System for Convenient Shop in Bangkok Thailand

Authors: Anocha Rojanapanich

Abstract:

The purpose of this research is to develop and design an accounting management information system for convenient shop in Bangkok Thailand. The study applied the System Development Life Cycle (SDLC) for development which began with study and analysis of current data, including the existing system. Then, the system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Product diversity, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management and importance of cost information for decision making also as well as.

Keywords: accounting management information system, convenient shop, cost information for decision making system, development life cycle

Procedia PDF Downloads 420
4800 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure

Authors: Y. L. Hor, H. S. Chu, V. P. Bui

Abstract:

Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.

Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization

Procedia PDF Downloads 176
4799 The Digital Transformation of Life Insurance Sales in Iran With the Emergence of Personal Financial Planning Robots; Opportunities and Challenges

Authors: Pedram Saadati, Zahra Nazari

Abstract:

Anticipating and identifying future opportunities and challenges facing industry activists for the emergence and entry of new knowledge and technologies of personal financial planning, and providing practical solutions is one of the goals of this research. For this purpose, a future research tool based on receiving opinions from the main players of the insurance industry has been used. The research method in this study was in 4 stages; including 1- a survey of the specialist salesforce of life insurance in order to identify the variables 2- the ranking of the variables by experts selected by a researcher-made questionnaire 3- holding a panel of experts with the aim of understanding the mutual effects of the variables and 4- statistical analyzes of the mutual effects matrix in Mick Mac software is done. The integrated analysis of influencing variables in the future has been done with the method of Structural Analysis, which is one of the efficient and innovative methods of future research. A list of opportunities and challenges was identified through a survey of best-selling life insurance representatives who were selected by snowball sampling. In order to prioritize and identify the most important issues, all the issues raised were sent to selected experts who were selected theoretically through a researcher-made questionnaire. The respondents determined the importance of 36 variables through scoring, so that the prioritization of opportunity and challenge variables can be determined. 8 of the variables identified in the first stage were removed by selected experts, and finally, the number of variables that could be examined in the third stage became 28 variables, which, in order to facilitate the examination, were divided into 6 categories, respectively, 11 variables of organization and management. Marketing and sales 7 cases, social and cultural 6 cases, technological 2 cases, rebranding 1 case and insurance 1 case were divided. The reliability of the researcher-made questionnaire was confirmed with the Cronbach's alpha test value of 0.96. In the third stage, by forming a panel consisting of 5 insurance industry experts, the consensus of their opinions about the influence of factors on each other and the ranking of variables was entered into the matrix. The matrix included the interrelationships of 28 variables, which were investigated using the structural analysis method. By analyzing the data obtained from the matrix by Mic Mac software, the findings of the research indicate that the categories of "correct training in the use of the software, the weakness of the technology of insurance companies in personalizing products, using the approach of equipping the customer, and honesty in declaring no need Customer to Insurance", the most important challenges of the influencer and the categories of "salesforce equipping approach, product personalization based on customer needs assessment, customer's pleasant experience of being consulted with consulting robots, business improvement of the insurance company due to the use of these tools, increasing the efficiency of the issuance process and optimal customer purchase" were identified as the most important opportunities for influence.

Keywords: personal financial planning, wealth management, advisor robots, life insurance, digital transformation

Procedia PDF Downloads 46
4798 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.

Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify

Procedia PDF Downloads 386
4797 Design and Analysis of Crankshaft Using Al-Al2O3 Composite Material

Authors: Palanisamy Samyraj, Sriram Yogesh, Kishore Kumar, Vaishak Cibi

Abstract:

The project is about design and analysis of crankshaft using Al-Al2O3 composite material. The project is mainly concentrated across two areas one is to design and analyze the composite material, and the other is to work on the practical model. Growing competition and the growing concern for the environment has forced the automobile manufactures to meet conflicting demands such as increased power and performance, lower fuel consumption, lower pollution emission and decrease noise and vibration. Metal matrix composites offer good properties for a number of automotive components. The work reports on studies on Al-Al2O3 as the possible alternative material for a crank shaft. These material have been considered for use in various components in engines due to the high amount of strength to weight ratio. These materials are significantly taken into account for their light weight, high strength, high specific modulus, low co-efficient of thermal expansion, good air resistance properties. In addition high specific stiffness, superior high temperature, mechanical properties and oxidation resistance of Al2O3 have developed some advanced materials that are Al-Al2O3 composites. Crankshafts are used in automobile industries. Crankshaft is connected to the connecting rod for the movement of the piston which is subjected to high stresses which cause the wear of the crankshaft. Hence using composite material in crankshaft gives good fuel efficiency, low manufacturing cost, less weight.

Keywords: metal matrix composites, Al-Al2O3, high specific modulus, strength to weight ratio

Procedia PDF Downloads 275
4796 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty

Procedia PDF Downloads 107
4795 Carbon Coated Silicon Nanoparticles Embedded MWCNT/Graphene Matrix Anode Material for Li-Ion Batteries

Authors: Ubeyd Toçoğlu, Miraç Alaf, Hatem Akbulut

Abstract:

We present a work which was conducted in order to improve the cycle life of silicon based lithium ion battery anodes by utilizing novel composite structure. In this study, carbon coated nano sized (50-100 nm) silicon particles were embedded into Graphene/MWCNT silicon matrix to produce free standing silicon based electrodes. Also, conventional Si powder anodes were produced from Si powder slurry on copper current collectors in order to make comparison of composite and conventional anode structures. Free –standing composite anodes (binder-free) were produced via vacuum filtration from a well dispersion of Graphene, MWCNT and carbon coated silicon powders. Carbon coating process of silicon powders was carried out via microwave reaction system. The certain amount of silicon powder and glucose was mixed under ultrasonication and then coating was conducted at 200 °C for two hours in Teflon lined autoclave reaction chamber. Graphene which was used in this study was synthesized from well-known Hummers method and hydrazine reduction of graphene oxide. X-Ray diffraction analysis and RAMAN spectroscopy techniques were used for phase characterization of anodes. Scanning electron microscopy analyses were conducted for morphological characterization. The electrochemical performance tests were carried out by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy.

Keywords: graphene, Li-Ion, MWCNT, silicon

Procedia PDF Downloads 256
4794 Space Time Adaptive Algorithm in Bi-Static Passive Radar Systems for Clutter Mitigation

Authors: D. Venu, N. V. Koteswara Rao

Abstract:

Space – time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Since airborne passive radar systems utilize broadcast, navigation and excellent communication signals to perform various surveillance tasks and also has attracted significant interest from the distinct past, therefore the need of the hour is to have cost effective systems as compared to conventional active radar systems. Moreover, requirements of small number of secondary samples for effective clutter suppression in bi-static passive radar offer abundant illuminator resources for passive surveillance radar systems. This paper presents a framework for incorporating knowledge sources directly in the space-time beam former of airborne adaptive radars. STAP algorithm for clutter mitigation for passive bi-static radar has better quantitation of the reduction in sample size thereby amalgamating the earlier data bank with existing radar data sets. Also, we proposed a novel method to estimate the clutter matrix and perform STAP for efficient clutter suppression based on small sample size. Furthermore, the effectiveness of the proposed algorithm is verified using MATLAB simulations in order to validate STAP algorithm for passive bi-static radar. In conclusion, this study highlights the importance for various applications which augments traditional active radars using cost-effective measures.

Keywords: bistatic radar, clutter, covariance matrix passive radar, STAP

Procedia PDF Downloads 295
4793 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 120
4792 Using Cyclic Structure to Improve Inference on Network Community Structure

Authors: Behnaz Moradijamei, Michael Higgins

Abstract:

Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.

Keywords: hypothesis testing, RNBRW, network inference, community structure

Procedia PDF Downloads 150
4791 Understanding the Behavioral Mechanisms of Pavlovian Biases: Intriguing Insights from Replication and Reversal Paradigms

Authors: Sanjiti Sharma, Carol Seger

Abstract:

Pavlovian biases are crucial to the decision-making processes, however, if left unchecked can extend to maladaptive behavior such as Substance Use Disorders (SUDs), anxiety, and much more. This study explores the interaction between Pavlovian biases and goal-directed instrumental learning by examining how each adapts to task reversal. it hypothesized that Pavlovian biases would be slow to adjust after reversal due to their reliance on inflexible learning, whereas the more flexible goal-directed instrumental learning system would adapt more quickly. The experiment utilized a modified Go No-Go task with two phases: replication of existing findings and a task reversal paradigm. Results showed instrumental learning's flexibility, with participants adapting after reversal. However, Pavlovian biases led to decreased accuracy post-reversal, with slow adaptation, especially when conflicting with instrumental objectives. These findings emphasize the inflexible nature of Pavlovian biases and their role in decision-making and cognitive rigidity.

Keywords: pavlovian bias, goal-directed learning, cognitive flexibility, learning bias

Procedia PDF Downloads 27
4790 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite

Authors: Muhammad Shahid, Muhammad Mansoor

Abstract:

Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.

Keywords: carbon nanotubes, induction melting, strengthening mechanism, nanocomposite

Procedia PDF Downloads 369
4789 Social Media, Networks and Related Technology: Business and Governance Perspectives

Authors: M. A. T. AlSudairi, T. G. K. Vasista

Abstract:

The concept of social media is becoming the top of the agenda for many business executives and public sector executives today. Decision makers as well as consultants, try to identify ways in which firms and enterprises can make profitable use of social media and network related applications such as Wikipedia, Face book, YouTube, Google+, Twitter. While it is fun and useful to participating in this media and network for achieving the communication effectively and efficiently, semantic and sentiment analysis and interpretation becomes a crucial issue. So, the objective of this paper is to provide literature review on social media, network and related technology related to semantics and sentiment or opinion analysis covering business and governance perspectives. In this regard, a case study on the use and adoption of Social media in Saudi Arabia has been discussed. It is concluded that semantic web technology play a significant role in analyzing the social networks and social media content for extracting the interpretational knowledge towards strategic decision support.

Keywords: CRASP methodology, formative assessment, literature review, semantic web services, social media, social networks

Procedia PDF Downloads 451
4788 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach

Authors: D. Tedesco, G. Feletti, P. Trucco

Abstract:

The present study aims to develop a Decision Support System (DSS) to support the operational decision of the Emergency Medical Service (EMS) regarding the assignment of medical emergency requests to Emergency Departments (ED). In the literature, this problem is also known as “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies are mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a request. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the transport time and release the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs, considering information relating to the subsequent phases of the process, such as the case-mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to evaluate different hospital selection policies. Therefore, the next steps of the research consisted of the development of a general simulation architecture, its implementation in the AnyLogic software and its validation on a realistic dataset. The hospital selection policy that produced the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, which is based on a retrospective estimate of the TTP, and a dynamic approach, which is based on a predictive estimate of the TTP determined with a constantly updated Winters model. Findings reveal that considering the minimization of TTP as a hospital selection policy raises several benefits. It allows to significantly reduce service throughput times in the ED with a minimum increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case-mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms of TTP estimation than a retrospective approach but entails a more difficult application. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.

Keywords: discrete event simulation, emergency medical services, forecast model, hospital selection

Procedia PDF Downloads 90
4787 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity

Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz

Abstract:

The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.

Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance

Procedia PDF Downloads 108
4786 Analysis of Solvent Effect on the Mechanical Properties of Poly(Ether Ether Ketone) Using Nano-Indentation

Authors: Tanveer Iqbal, Saima Yasin, Muhammad Zafar, Ahmad Shakeel, Fahad Nazir, Paul F. Luckham

Abstract:

The contact performance of polymeric composites is dependent on the localized mechanical properties of materials. This is particularly important for fiber oriented polymeric materials where self-lubrication from top layers has been the basic requirement. The nanoindentation response of fiber reinforced poly(etheretherketone), PEEK, composites have been evaluated to determine the near-surface mechanical characteristics. Load-displacement compliance, hardness and elastic modulus data based on contact compliance mode (CSM) indentation of carbon fiber oriented and glass fiber oriented PEEK composites are reported as a function of indentation contact displacement. The composite surfaces were indented to a maximum penetration depth of 5µm using Berkovich tip indenter. A typical multiphase response of the composite surface is depicted from analysis of the indentation data for the composites, showing presence of polymer matrix, fibers, and interphase regions. The observed experimental results show that although the surface mechanical properties of carbon fiber based PEEK composite were comparatively higher, the properties of matrix material were seen to be increased in the presence of glass fibers. The experimental methodology may provide a convenient means to understand morphological description of the multimodal polymeric composites.

Keywords: nanoindentation, PEEK, modulus, hardness, plasticization

Procedia PDF Downloads 192
4785 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)

Authors: Fatih Iscan, Ceren Yagci

Abstract:

Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economical, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economical factors for site selection of landfill areas and using GIS for an decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/TURKEY city, Güzelyurt district practice.

Keywords: GIS, landfill, solid waste, spatial analysis

Procedia PDF Downloads 359
4784 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites

Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate

Abstract:

In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.

Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity

Procedia PDF Downloads 361
4783 Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix

Authors: Chen Chih-Cheng, Chen I-Cheng, Lee Yung-Tan, Kuo Yen-Whea, Yu Chin-Hung

Abstract:

The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model.

Keywords: simple multiple-attribute rating technique, World Grand Prix, best spike player, International Volleyball Federation

Procedia PDF Downloads 474
4782 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market

Authors: Chih-Hsiang Chang, Fang-Jyun Su

Abstract:

This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.

Keywords: stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship

Procedia PDF Downloads 275