Search results for: compression tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5131

Search results for: compression tests

3811 Robust Data Image Watermarking for Data Security

Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan

Abstract:

In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.

Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms

Procedia PDF Downloads 507
3810 Tribological Performance of Polymer Syntactic Foams in Low-Speed Conditions

Authors: R. Narasimha Rao, Ch. Sri Chaitanya

Abstract:

Syntactic foams are closed-cell foams with high specific strength and high compression strength. At Low speeds, the wear rate is sensitive to the sliding speeds and other tribological parameters like applied load and the sliding distance. In the present study, the tribological performance of the polymer-based syntactic foams was reported based on the experiments conducted on a pin-on-disc tribometer. The syntactic foams were manufactured with epoxy as the matrix and the cenospheres obtained from the thermal powerplants as the reinforcement. The experiments were conducted at a sliding speed of the 1 m/s. The applied load was varied from 1 kg to 5 kg up to a sliding distance of 3000 m. The wear rate increased with the sliding distance at lower loads. The trend was reversed at higher loads of 5kg. This may be due to the high plastic deformation at the initial stages when higher loads were applied. This was evident with the higher friction constants for the higher loads. The adhesive wear was found to be predominant for lower loads, while the abrasive wear tracks can be seen in micrographs of samples tested under higher loads.

Keywords: sliding speed, syntactic foams, tribological performance, wear rate

Procedia PDF Downloads 76
3809 Parents-Children Communication in College

Authors: Yin-Chen Liu, Chih-Chun Wu, Mei-He Shih

Abstract:

In this technology society, using ICT(Information and communications technology) to contact each other is very common. Interpersonal ICT communication maintains social support. Therefore, the study investigated the ICT communication between undergraduates and their parents, and gender differences were also detected. The sample size was 1,209 undergraduates, including 624(51.6%) males, 584(48.3%) females, and 1 gender unidentified. In the sample, 91.8% of the sample used phones to contact their fathers and 93.8% of them use phones to contact their mothers. 78.5% and 87.6% of the sample utilized LINE to contact their fathers and mothers respectively. As for Facebook, only 13.4% and 16.5% of the sample would use to contact their fathers and mothers respectively. Aforementioned results implied that the undergraduates nowadays use phone and LINE to contact their parents more common than Facebook. According to results from Pearson correlations, the more undergraduates refused to add their fathers as their Facebook friends, the more they refused to add their mothers as Facebook friends. The possible reasons for it could be that to distinguish different social network such as family and friends. Another possible reason could be avoiding parents’ controlling. It could be why the kids prefer to use phone and LINE to Facebook when contacting their parents. Result from Pearson correlations showed that the more undergraduates actively contact their fathers, the more they actively contact their mothers. On the other hand, the more their fathers actively contact them, the more their mothers actively contact them. Based on the results, this study encourages both parents and undergraduates to contact each other, for any contact between any two family members is associated with contact between other two family members. Obviously, the contact between family members is bidirectional. Future research might want to investigate if this bidirectional contact is associated with the family relation. For gender differences, results from the independent t-tests showed that compared to sons, daughters actively contacted their parents more. Maybe it is because parents keep saying that it is dangerous out there for their daughters, so they build up the habit for their daughters to contact them more. Results from paired sample t-tests showed that the undergraduates agreed that talking to mother on the phone had more satisfaction, felt more intimacy and supported than fathers.

Keywords: family ICT communication, parent-child ICT communication, FACEBOOK and LINE, gender differences

Procedia PDF Downloads 201
3808 Numerical Simulation of the Heat Transfer Process in a Double Pipe Heat Exchanger

Authors: J. I. Corcoles, J. D. Moya-Rico, A. Molina, J. F. Belmonte, J. A. Almendros-Ibanez

Abstract:

One of the most common heat exchangers technology in engineering processes is the use of double-pipe heat exchangers (DPHx), mainly in the food industry. To improve the heat transfer performance, several passive geometrical devices can be used, such as the wall corrugation of tubes, which increases the wet perimeter maintaining a constant cross-section area, increasing consequently the convective surface area. It contributes to enhance heat transfer in forced convection, promoting secondary recirculating flows. One of the most extended tools to analyse heat exchangers' efficiency is the use of computational fluid dynamic techniques (CFD), a complementary activity to the experimental studies as well as a previous step for the design of heat exchangers. In this study, a double pipe heat exchanger behaviour with two different inner tubes, smooth and spirally corrugated tube, have been analysed. Hence, experimental analysis and steady 3-D numerical simulations using the commercial code ANSYS Workbench v. 17.0 are carried out to analyse the influence of geometrical parameters for spirally corrugated tubes at turbulent flow. To validate the numerical results, an experimental setup has been used. To heat up or cool down the cold fluid as it passes through the heat exchanger, the installation includes heating and cooling loops served by an electric boiler with a heating capacity of 72 kW and a chiller, with a cooling capacity of 48 kW. Two tests have been carried out for the smooth tube and for the corrugated one. In all the tests, the hot fluid has a constant flowrate of 50 l/min and inlet temperature of 59.5°C. For the cold fluid, the flowrate range from 25 l/min (Test 1) and 30 l/min (Test 2) with an inlet temperature of 22.1°C. The heat exchanger is made of stainless steel, with an external diameter of 35 mm and wall thickness of 1.5 mm. Both inner tubes have an external diameter of 24 mm and 1 mm thickness of stainless steel with a length of 2.8 m. The corrugated tube has a corrugation height (H) of 1.1 mm and helical pitch (P) of 25 mm. It is characterized using three non-dimensional parameters, the ratio of the corrugation shape and the diameter (H/D), the helical pitch (P/D) and the severity index (SI = H²/P x D). The results showed good agreement between the numerical and the experimental results. Hence, the lowest differences were shown for the fluid temperatures. In all the analysed tests and for both analysed tubes, the temperature obtained numerically was slightly higher than the experimental results, with values ranged between 0.1% and 0.7%. Regarding the pressure drop, the maximum differences between the values obtained numerically, and the experimental values were close to 16%. Based on the experimental and the numerical results, for the corrugated tube, it can be highlighted that the temperature difference between the inlet and the outlet of the cold fluid is 42%, higher than the smooth tube.

Keywords: corrugated tube, heat exchanger, heat transfer, numerical simulation

Procedia PDF Downloads 143
3807 Response of Vibration and Damping System of UV Irradiated Renewable Biopolymer

Authors: Anika Zafiah M. Rus, Nik Normunira Mat Hassan

Abstract:

Biopolymer made from renewable material are one of the most important group of polymer because of their versatility and they can be manufactured in a wide range of densities and stiffness. In this project, biopolymer based on waste vegetable oil were synthesized and crosslink with commercial polymethane polyphenyl isocyanate (known as BF).The BF was compressed by using hot compression moulding technique at 90 oC based on the evaporation of volatile matter and known as compress biopolymer (CB). The density, vibration and damping characteristic of CB were determined after UV irradiation. Treatment with titanium dioxide (TiO2) was found to affect the physical property of compress biopolymer composite (CBC). The density of CBC samples was steadily increased with an increase of UV irradiation time and TiO2 loading. The highest density of CBC samples is at 10 % of TiO2 loading of 1.1088 g/cm3 due to the amount of filler loading. The vibration and damping characteristic of CBC samples was generated at displacements of 1 mm and 1.5 mm and acceleration of 0.1 G and 0.15 G base excitation according to ASTM D3580-9. It was revealed that, the vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness and percentages of TiO2 loading at the frequency range of 15 - 25 Hz. Therefore, this study indicated that the damping property of CBC could be improved upon prolonged exposure to UV irradiation.

Keywords: biopolymer flexible foam, TGA, UV irradiation, vibration and damping

Procedia PDF Downloads 462
3806 The Impact of Motor Predispositions of Pilot-Cadets on Results in Aviation Synthetic Efficiency Test

Authors: Zbigniew Wochynski, Justyna Skrzynska, Robert Jedrys, Zdzislaw Kobos

Abstract:

The aim of the study is to determine the types of motor skills and their impact on achieving results while undergoing Aviation Synthetic Efficiency Test (ASET). The study involved 59 cadets, 21 years-old on average, who are studying on first year for a pilot. The average weight of the respondents is 73.8 kg. The subjects were divided into two groups by weight: up to 73.8 kg -group A (n-30) and above 73,8kg -group B (n-29). All subjects underwent the following tests: running at 40m, 100m, 1000m, 2000m, pull-ups, ASET. In both groups, the cadets were divided into two motor skills types taking into advance 40 m running, pull-ups, 2000 meters running and then subjected to do ASET. There has been shown statistically significant increase in group B in body height, weight and BMI with p <0.0003, p <0.0001, p <0.0001 compared to group A. The results indicate that the dominant motor type in all subjects is the endurance-strength model, which reached the speed V = 1,42m/s in overcoming ASET. This is confirmed by the correlation between 2000m and pull-ups r = 0.37 (p <0.05). In group A, the results indicate that the dominant type of motor is a high-speed-endurance model (26.6%), which reached speed V = 1,42m/s in overcoming ASET. In Group B, there was type of motor speed-strength (20.6%), which reached speed of V = 1.45m/s in overcoming ASET. This confirms the correlation between ASET and pull-ups r = 0.56 (p <0.005). Examined cadets who were having one dominant characteristic achieved worse results is ASET. The best results from all examined cadets in overcoming ASET had the type of motor endurance-strength, in group A endurance-speed model and in group B type of speed-strength

Keywords: ASET, Aviation Synthetic Efficiency Test, motor skills, physical tests, pilot-cadets

Procedia PDF Downloads 282
3805 Mechanical Performance of Sandwich Square Honeycomb Structure from Sugar Palm Fibre

Authors: Z. Ansari, M. R. M. Rejab, D. Bachtiar, J. P. Siregar

Abstract:

This study focus on the compression and tensile properties of new and recycle square honeycombs structure from sugar palm fibre (SPF) and polylactic acid (PLA) composite. The end data will determine the failure strength and energy absorption for both new and recycle composite. The control SPF specimens were fabricated from short fibre co-mingled with PLA by using a bra-blender set at 180°C and 50 rpm consecutively. The mixture of 30% fibre and 70% PLA were later on the hot press at 180°C into sheets with thickness 3mm consecutively before being assembled into a sandwich honeycomb structure. An INSTRON tensile machine and Abaqus 6.13 software were used for mechanical test and finite element simulation. The percentage of error from the simulation and experiment data was 9.20% and 9.17% for both new and recycled product. The small error of percentages was acceptable due to the nature of the simulation model to be assumed as a perfect model with no imperfect geometries. The energy absorption value from new to recycled product decrease from 312.86kJ to 282.10kJ. With this small decrements, it is still possible to implement a recycle SPF/PLA composite into everyday usages such as a car's interior or a small size furniture.

Keywords: failure modes, numerical modelling, polylactic acid, sugar palm fibres

Procedia PDF Downloads 290
3804 Establishment of a Test Bed for Integrated Map of Underground Space and Verification of GPR Exploration Equipment

Authors: Jisong Ryu, Woosik Lee, Yonggu Jang

Abstract:

The paper discusses the process of establishing a reliable test bed for verifying the usability of Ground Penetrating Radar (GPR) exploration equipment based on an integrated underground spatial map in Korea. The aim of this study is to construct a test bed consisting of metal and non-metal pipelines to verify the performance of GPR equipment and improve the accuracy of the underground spatial integrated map. The study involved the design and construction of a test bed for metal and non-metal pipe detecting tests. The test bed was built in the SOC Demonstration Research Center (Yeoncheon) of the Korea Institute of Civil Engineering and Building Technology, burying metal and non-metal pipelines up to a depth of 5m. The test bed was designed in both vehicle-type and cart-type GPR-mounted equipment. The study collected data through the construction of the test bed and conducting metal and non-metal pipe detecting tests. The study analyzed the reliability of GPR detecting results by comparing them with the basic drawings, such as the underground space integrated map. The study contributes to the improvement of GPR equipment performance evaluation and the accuracy of the underground spatial integrated map, which is essential for urban planning and construction. The study addressed the question of how to verify the usability of GPR exploration equipment based on an integrated underground spatial map and improve its performance. The study found that the test bed is reliable for verifying the performance of GPR exploration equipment and accurately detecting metal and non-metal pipelines using an integrated underground spatial map. The study concludes that the establishment of a test bed for verifying the usability of GPR exploration equipment based on an integrated underground spatial map is essential. The proposed Korean-style test bed can be used for the evaluation of GPR equipment performance and support the construction of a national non-metal pipeline exploration equipment performance evaluation center in Korea.

Keywords: Korea-style GPR testbed, GPR, metal pipe detecting, non-metal pipe detecting

Procedia PDF Downloads 97
3803 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors

Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova

Abstract:

Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.

Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors

Procedia PDF Downloads 134
3802 Factors Determining Intention to Pursue Genetic Testing for People in Taiwan

Authors: Ju-Chun Chien

Abstract:

The Ottawa Charter for Health Promotion proposed that the role of health services should shift the focus from cure to prevention. Nowadays, besides having physical examinations, people could also conduct genetic tests to provide important information for diagnosing, treating, and/or preventing illnesses. However, because of the incompletion of the Chinese Genetic Database, people in Taiwan were still unfamiliar with genetic testing. The purposes of the present study were to: (1) Figure out people’s attitudes towards genetic testing. (2) Examine factors that influence people’s intention to pursue genetic testing by means of the Health Belief Model (HBM). A pilot study was conducted on 249 Taiwanese in 2017 to test the feasibility of the self-developed instrument. The reliability and construct validity of scores on the self-developed questionnaire revealed that this HBM-based questionnaire with 40 items was a well-developed instrument. A total of 542 participants were recruited and the valid participants were 535 (99%) between the ages of 20 and 86. Descriptive statistics, one-way ANOVA, two-way contingency table analysis, Pearson’s correlation, and stepwise multiple regression analysis were used in this study. The main results were that only 32 participants (6%) had already undergone genetic testing; moreover, their attitude towards genetic testing was more positive than those who did not have the experience. Compared with people who never underwent genetic tests, those who had gone for genetic testing had higher self-efficacy, greater intention to pursue genetic testing, had academic majors in health-related fields, had chronic and genetic diseases, possessed Catastrophic Illness Cards, and all of them had heard about genetic testing. The variables that best predicted people’s intention to pursue genetic testing were cues to action, self-efficacy, and perceived benefits (the three variables all correlated with one another positively at high magnitudes). To sum up, the HBM could be effective in designing and identifying the needs and priorities of the target population to pursue genetic testing.

Keywords: genetic testing, knowledge of GT, people in Taiwan, the health belief model

Procedia PDF Downloads 306
3801 Larger Diameter 22 MM-PDC Cutter Greatly Improves Drilling Efficiency of PDC Bit

Authors: Fangyuan Shao, Wei Liu, Deli Gao

Abstract:

With the increasing speed of oil and gas exploration, development and production at home and abroad, the demand for drilling speed up technology is becoming more and more critical to reduce the development cost. Highly efficient and personalized PDC bit is important equipment in the bottom hole assembly (BHA). Therefore, improving the rock-breaking efficiency of PDC bits will help reduce drilling time and drilling cost. Advances in PDC bit technology have resulted in a leapfrogging improvement in the rate of penetration (ROP) of PDC bits over roller cone bits in soft to medium-hard formations. Recently, with the development of PDC technology, the diameter of the PDC tooth can be further expanded. The maximum diameter of the PDC cutter used in this paper is 22 mm. According to the theoretical calculation, under the same depth of cut (DOC), the 22mm-PDC cutter increases the exposure of the cutter, and the increase of PDC cutter diameter helps to increase the cutting area of the PDC cutter. In order to evaluate the cutting performance of the 22 mm-PDC cutter and the existing commonly used cutters, the 16 mm, 19 mm and 22 mm PDC cutter was selected put on a vertical turret lathe (VTL) in the laboratory for cutting tests under different DOCs. The DOCs were 0.5mm, 1.0 mm, 1.5 mm and 2.0 mm, 2.5 mm and 3 mm, respectively. The rock sample used in the experiment was limestone. Results of laboratory tests have shown the new 22 mm-PDC cutter technology greatly improved cutting efficiency. On the one hand, as the DOC increases, the mechanical specific energy (MSE) of all cutters decreases, which means that the cutting efficiency increases. On the other hand, under the same DOC condition, the larger the cutter diameter is, the larger the working area of the cutter is, which leads to higher the cutting efficiency. In view of the high performance of the 22 mm-PDC cutters, which was applied to carry out full-scale bit field experiments. The result shows that the bit with 22mm-PDC cutters achieves a breakthrough improvement of ROP than that with conventional 16mm and 19mm cutters in offset well drilling.

Keywords: polycrystalline diamond compact, 22 mm-PDC cutters, cutting efficiency, mechanical specific energy

Procedia PDF Downloads 202
3800 The Co-Simulation Interface SystemC/Matlab Applied in JPEG and SDR Application

Authors: Walid Hassairi, Moncef Bousselmi, Mohamed Abid

Abstract:

Functional verification is a major part of today’s system design task. Several approaches are available for verification on a high abstraction level, where designs are often modeled using MATLAB/Simulink. However, different approaches are a barrier to a unified verification flow. In this paper, we propose a co-simulation interface between SystemC and MATLAB and Simulink to enable functional verification of multi-abstraction levels designs. The resulting verification flow is tested on JPEG compression algorithm. The required synchronization of both simulation environments, as well as data type conversion is solved using the proposed co-simulation flow. We divided into two encoder jpeg parts. First implemented in SystemC which is the DCT is representing the HW part. Second, consisted of quantization and entropy encoding which is implemented in Matlab is the SW part. For communication and synchronization between these two parts we use S-Function and engine in Simulink matlab. With this research premise, this study introduces a new implementation of a Hardware SystemC of DCT. We compare the result of our simulation compared to SW / SW. We observe a reduction in simulation time you have 88.15% in JPEG and the design efficiency of the supply design is 90% in SDR.

Keywords: hardware/software, co-design, co-simulation, systemc, matlab, s-function, communication, synchronization

Procedia PDF Downloads 396
3799 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water

Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang

Abstract:

Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.

Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature

Procedia PDF Downloads 128
3798 Pathogenic Escherichia Coli Strains and Their Antibiotic Susceptibility Profiles in Cases of Child Diarrhea at Addis Ababa University, College of Health Sciences, Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia

Authors: Benyam Zenebe, Tesfaye Sisay, Gurja Belay, Workabeba Abebe

Abstract:

Background: The prevalence and antibiogram of pathogenic E. coli strains, which cause diarrhea vary from region to region, and even within countries in the same geographical area. In Ethiopia, diagnostic approaches to E. coli induced diarrhea in children less than five years of age are not standardized. The aim of this study was to determine the involvement of pathogenic E. coli strains in child diarrhea and determine the antibiograms of the isolates in children less than 5 years of age with diarrhea at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia. Methods: A purposive study that included 98 diarrheic children less than five years of age was conducted at Addis Ababa University College of Health Sciences, TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia to detect pathogenic E. coli biotypes. Stool culture was used to identify presumptive E. coliisolates. Presumptive isolates were confirmed by biochemical tests, and antimicrobial susceptibility tests were performed on confirmed E. coli isolates by the disk diffusion method. DNA was extracted from confirmed isolates by a heating method and subjected to Polymerase Chain Reaction or the presence of virulence genes. Amplified PCR products were analyzed by agarose gel electrophoresis. Data were collected on child demographics and clinical conditions using administered questionnaires. The prevalence of E. coli strains from the total diarrheic children, and the prevalence of pathogenic strains from total E. coli isolates along with their susceptibility profiles; the distribution of pathogenic E.coli biotypes among different age groups and between the sexes were determined by using descriptive statistics. Result: Out of 98 stool specimens collected from diarrheic children less than 5 years of age, 75 presumptive E. coli isolates were identified by culture; further confirmation by biochemical tests showed that only 56 of the isolates were E. coli; 29 of the isolates were found in male children and 27 of them in female children. Out of the 58 isolates of E. coli, 25 pathotypes belonging to different classes of pathogenic strains: STEC, EPEC, EHEC, EAEC were detected by using the PCR technique. Pathogenic E. coli exhibited high rates of antibiotic resistance to many of the antibiotics tested. Moreover, they exhibited multiple drug resistance. Conclusion: This study found that the isolation rate of E. coli and the involvement of antibiotic-resistant pathogenic E. coli in diarrheic children is prominent, and hence focus should be given on the diagnosis and antimicrobial sensitivity testing of pathogenic E. coli at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital. Among antibiotics tested, Cefotitan could be a drug of choice to treat E. coli.

Keywords: antibiotic susceptibility profile, children, diarrhea, E. coli, pathogenic

Procedia PDF Downloads 227
3797 Viscoelastic Properties of Sn-15%Pb Measured in an Oscillation Test

Authors: Gerardo Sanjuan Sanjuan, Ángel Enrique Chavéz Castellanos

Abstract:

The knowledge of the rheological behavior of partially solidified metal alloy is an important issue when modeling and simulation of die filling in semisolid processes. Many experiments for like steady state, the step change in shear rate tests, shear stress ramps have been carried out leading that semi-solid alloys exhibit shear thinning, thixotropic behavior and yield stress. More advanced investigation gives evidence some viscoelastic features can be observed. The viscoelastic properties of materials are determinate by transient or dynamic methods; unfortunately, sparse information exists about oscillation experiments. The aim of this present work is to use small amplitude oscillatory tests for knowledge properties such as G´ and G´´. These properties allow providing information about materials structure. For this purpose, we investigated tin-lead alloy (Sn-15%Pb) which exhibits a similar microstructure to aluminum alloys and is the classic alloy for semisolid thixotropic studies. The experiments were performed with parallel plates rheometer AR-G2. Initially, the liquid alloy is cooled down to the semisolid range, a specific temperature to guarantee a constant fraction solid. Oscillation was performed within the linear viscoelastic regime with a strain sweep. So, the loss modulus G´´, the storage modulus G´ and the loss angle (δ) was monitored. In addition a frequency sweep at a strain below the critical strain for characterized its structure. This provides more information about the interactions among solid particles on a liquid matrix. After testing, the sample was removed then cooled, sectioned and examined metallographically. These experiments demonstrate that the viscoelasticity is sensitive to the solid fraction, and is strongly influenced by the shape and size of particles solid.

Keywords: rheology, semisolid alloys, thixotropic, viscoelasticity

Procedia PDF Downloads 372
3796 Sensitivity and Specificity of Some Serological Tests Used for Diagnosis of Bovine Brucellosis in Egypt on Bacteriological and Molecular Basis

Authors: Hosein I. Hosein, Ragab Azzam, Ahmed M. S. Menshawy, Sherin Rouby, Khaled Hendy, Ayman Mahrous, Hany Hussien

Abstract:

Brucellosis is a highly contagious bacterial zoonotic disease of a worldwide spread and has different names; Infectious or enzootic abortion and Bang's disease in animals; and Mediterranean or Malta fever, Undulant Fever and Rock fever in humans. It is caused by the different species of genus Brucella which is a Gram-negative, aerobic, non-spore forming, facultative intracellular bacterium. Brucella affects a wide range of mammals including bovines, small ruminants, pigs, equines, rodents, marine mammals as well as human resulting in serious economic losses in animal populations. In human, Brucella causes a severe illness representing a great public health problem. The disease was reported in Egypt for the first time in 1939; since then the disease remained endemic at high levels among cattle, buffalo, sheep and goat and is still representing a public health hazard. The annual economic losses due to brucellosis were estimated to be about 60 million Egyptian pounds yearly, but actual estimates are still missing despite almost 30 years of implementation of the Egyptian control programme. Despite being the gold standard, bacterial isolation has been reported to show poor sensitivity for samples with low-level of Brucella and is impractical for regular screening of large populations. Thus, serological tests still remain the corner stone for routine diagnosis of brucellosis, especially in developing countries. In the present study, a total of 1533 cows (256 from Beni-Suef Governorate, 445 from Al-Fayoum Governorate and 832 from Damietta Governorate), were employed for estimation of relative sensitivity, relative specificity, positive predictive value and negative predictive value of buffered acidified plate antigen test (BPAT), rose bengal test (RBT) and complement fixation test (CFT). The overall seroprevalence of brucellosis revealed (19.63%). Relative sensitivity, relative specificity, positive predictive value and negative predictive value of BPAT,RBT and CFT were estimated as, (96.27 %, 96.76 %, 87.65 % and 99.10 %), (93.42 %, 96.27 %, 90.16 % and 98.35%) and (89.30 %, 98.60 %, 94.35 %and 97.24 %) respectively. BPAT showed the highest sensitivity among the three employed serological tests. RBT was less specific than BPAT. CFT showed the least sensitivity 89.30 % among the three employed serological tests but showed the highest specificity. Different tissues specimens of 22 seropositive cows (spleen, retropharyngeal udder, and supra-mammary lymph nodes) were subjected for bacteriological studies for isolation and identification of Brucella organisms. Brucella melitensis biovar 3 could be recovered from 12 (54.55%) cows. Bacteriological examinations failed to classify 10 cases (45.45%) and were culture negative. Bruce-ladder PCR was carried out for molecular identification of the 12 Brucella isolates at the species level. Three fragments of 587 bp, 1071 bp and 1682 bp sizes were amplified indicating Brucella melitensis. The results indicated the importance of using several procedures to overcome the problem of escaping of some infected animals from diagnosis.Bruce-ladder PCR is an important tool for diagnosis and epidemiologic studies, providing relevant information for identification of Brucella spp.

Keywords: brucellosis, relative sensitivity, relative specificity, Bruce-ladder, Egypt

Procedia PDF Downloads 351
3795 Bio-Oil Compounds Sorption Enhanced Steam Reforming

Authors: Esther Acha, Jose Cambra, De Chen

Abstract:

Hydrogen is considered an important energy vector for the 21st century. Nowadays there are some difficulties for hydrogen economy implantation, and one of them is the high purity required for hydrogen. This energy vector is still being mainly produced from fuels, from wich hydrogen is produced as a component of a mixture containing other gases, such as CO, CO2 and H2O. A forthcoming sustainable pathway for hydrogen is steam-reforming of bio-oils derived from biomass, e.g. via fast pyrolysis. Bio-oils are a mixture of acids, alcohols, aldehydes, esters, ketones, sugars phenols, guaiacols, syringols, furans, multi-functional compounds and also up to a 30 wt% of water. The sorption enhanced steam reforming (SESR) process is attracting a great deal of attention due to the fact that it combines both hydrogen production and CO2 separation. In the SESR process, carbon dioxide is captured by an in situ sorbent, which shifts the reversible reforming and water gas shift reactions to the product side, beyond their conventional thermodynamic limits, giving rise to a higher hydrogen production and lower cost. The hydrogen containing mixture has been obtained from the SESR of bio-oil type compounds. Different types of catalysts have been tested. All of them contain Ni at around a 30 wt %. Two samples have been prepared with the wet impregnation technique over conventional (gamma alumina) and non-conventional (olivine) supports. And a third catalysts has been prepared over a hydrotalcite-like material (HT). The employed sorbent is a commercial dolomite. The activity tests were performed in a bench-scale plant (PID Eng&Tech), using a stainless steel fixed bed reactor. The catalysts were reduced in situ in the reactor, before the activity tests. The effluent stream was cooled down, thus condensed liquid was collected and weighed, and the gas phase was analysed online by a microGC. The hydrogen yield, and process behavior was analysed without the sorbent (the traditional SR where a second purification step will be needed but that operates in steady state) and the SESR (where the purification step could be avoided but that operates in batch state). The influence of the support type and preparation method will be observed in the produced hydrogen yield. Additionally, the stability of the catalysts is critical, due to the fact that in SESR process sorption-desorption steps are required. The produced hydrogen yield and hydrogen purity has to be high and also stable, even after several sorption-desorption cycles. The prepared catalysts were characterized employing different techniques to determine the physicochemical properties of the fresh-reduced and used (after the activity tests) materials. The characterization results, together with the activity results show the influence of the catalysts preparation method, calcination temperature, or can even explain the observed yield and conversion.

Keywords: CO2 sorbent, enhanced steam reforming, hydrogen

Procedia PDF Downloads 574
3794 Evaluating the Dosimetric Performance for 3D Treatment Planning System for Wedged and Off-Axis Fields

Authors: Nashaat A. Deiab, Aida Radwan, Mohamed S. Yahiya, Mohamed Elnagdy, Rasha Moustafa

Abstract:

This study is to evaluate the dosimetric performance of our institution's 3D treatment planning system for wedged and off-axis 6MV photon beams, guided by the recommended QA tests documented in the AAPM TG53; NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Ten tests were applied on solid water equivalent phantom along with 2D array dose detection system. The calculated doses using 3D treatment planning system PrecisePLAN were compared with measured doses to make sure that the dose calculations are accurate for simple situations such as square and elongated fields, different SSD, beam modifiers e.g. wedges, blocks, MLC-shaped fields and asymmetric collimator settings. The QA results showed dosimetric accuracy of the TPS within the specified tolerance limits. Except for large elongated wedged field, the central axis and outside central axis have errors of 0.2% and 0.5%, respectively, and off- planned and off-axis elongated fields the region outside the central axis of the beam errors are 0.2% and 1.1%, respectively. The dosimetric investigated results yielded differences within the accepted tolerance level as recommended. Differences between dose values predicted by the TPS and measured values at the same point are the result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.

Keywords: quality assurance, dose calculation, wedged fields, off-axis fields, 3D treatment planning system, photon beam

Procedia PDF Downloads 439
3793 Subsurface Exploration for Soil Geotechnical Properties and its Implications for Infrastructure Design and Construction in Victoria Island, Lagos, Nigeria

Authors: Sunday Oladele, Joseph Oluwagbeja Simeon

Abstract:

Subsurface exploration, integrating methods of geotechnics and geophysics, of a planned construction site in the coastal city of Lagos, Nigeria has been carried out with the aim of characterizing the soil properties and their implication for the proposed infrastructural development. Six Standard Penetration Tests (SPT), fourteen Dutch Cone Penetrometer Tests (DCPT) and 2D Electrical Resistivity Imaging employing Dipole-dipole and Pole-dipole arrays were implemented on the site. The topsoil (0 - 4m) consists of highly compacted sandy lateritic clay(10 to 5595Ωm) to 1.25m in some parts and dense sand in other parts to 5.50m depth. This topsoil was characterized as a material of very high shear strength (≤ 150kg/m2) and allowable bearing pressure value of 54kN/m2 to 85kN/m2 and a safety factor of 2.5. Soft amorphous peat/peaty clay (0.1 to 11.4Ωm), 3-6m thick, underlays the lateritic clay to about 18m depth. Grey, medium dense to very dense sand (0.37 to 2387Ωm) with occasional gravels underlies the peaty clay down to 30m depth. Within this layer, the freshwater bearing zones are characterized by high resistivity response (83 to 2387Ωm), while the clayey sand/saline water intruded sand produced subdued resistivity output (0.37 to 40Ωm). The overall ground-bearing pressure for the proposed structure would be 225kN/m2. Bored/cast-in-place pile at 18.00m depth with any of these diameters and respective safe working loads 600mm/1,140KN, 800mm/2,010KN and 1000mm/3,150KN is recommended for the proposed multi-story structure.

Keywords: subsurface exploration, Geotechnical properties, resistivity imaging, pile

Procedia PDF Downloads 88
3792 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing

Authors: Jonathan Martino, Kristof Harri

Abstract:

In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.

Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration

Procedia PDF Downloads 266
3791 Performance Evaluation of Vermiculite as Adsorbent Material for Solar-Assisted Air-Conditioning in Tropical Climate

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Hasila Jarimi, Kamaruzaman Sopian, Adnan Ibrahim, Ahmad Fazlizan, Afif Safwan

Abstract:

Solar-adsorption air-conditioning system (SADCS) is an alternative to the conventional vapor compression system (VCS). SADCS have advantages over VCS system, such as 1) a green cooling technology which utilizes solar energy to drive the adsorption/desorption cycle, 2) can be operated using green refrigerant HFC free pure water, 3) mechanically simpler, and 4) lower operating noise level since it has no moving parts other than the magnetic valves. Several advancements have been achieved in these fields in the last decade, but further research is still needed to escalate this technology to a practical level. Hence, this paper presents a literature survey and a review that add insights into the current state-of-the-art of SADCS technologies with emphasis on the practical researches that were conducted at the laboratory scale and commercial level. In this paper, the performance evaluation of vermiculite as adsorbent material for SADCS in tropical climate discussed in comparison to other adsorbent material such as silica gel.

Keywords: adsorption cooling, solar-assisted cooling, HVAC, tropical climate, solar thermal

Procedia PDF Downloads 150
3790 Cognitive Behaviour Drama: A Research-Based Intervention Model to Improve Social Thinking in High-Functioning Children with Autism

Authors: Haris Karnezi, Kevin Tierney

Abstract:

Cognitive Behaviour Drama is a research-based intervention model that brought together the science of psychology with the art form of drama to create an unobtrusive and exciting approach that would provide children on the higher end of the autism spectrum the motivation to explore the rules of social interaction and develop competencies associated with communicative success. The method involves engaging the participants in exciting fictional scenarios and encouraging them to seek various solutions on a number of problems that will lead them to an understanding of causal relationships and how a different course of action may lead to a different outcome. The sessions are structured to offer opportunities to the participants to practice target behaviours and understand the functions they serve. The study involved six separate interventions and employed both single case and group designs. Overall 8 children aged between 6 to 13 years, diagnosed with ASD participated in the study. Outcomes were measured using theory of mind tests, executive functioning tests, behavioural observations, pre and post intervention standardised social competence questionnaires for parents and teachers. Collectively, the results indicated positive changes in the self esteem and behaviour of all eight participants. In particular, improvements in the ability to solve theory of mind tasks were noted in the younger group; and qualitative improvements in social communication, in terms of verbal (content) and non verbal expression (body posture, vocal expression, fluency, eye contact, reduction of ritualistic mannerisms) were noted in the older group. The need for reliable impact measures to assess the effectiveness of the model in generating global changes in the participants’ behaviour outside the therapeutic context was identified.

Keywords: autism, drama, intervention, social skills

Procedia PDF Downloads 157
3789 Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength

Authors: Bernardo C. P. Albuquerque, Darym J. F. Campos

Abstract:

Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.

Keywords: statistical slope stability analysis, skew distributions, probability of failure, functions of random variables

Procedia PDF Downloads 331
3788 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method

Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum

Abstract:

Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.

Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method

Procedia PDF Downloads 88
3787 Adjustments of Mechanical and Hydraulic Properties of Wood Formed under Environmental Stresses

Authors: B. Niez, B. Moulia, J. Dlouha, E. Badel

Abstract:

Trees adjust their development to the environmental conditions they experience. Storms events of last decades showed that acclimation of trees to mechanical stresses due to wind is a very important process that allows the trees to sustain for long years. In the future, trees will experience new wind patterns, namely, more often strong winds and fewer daily moderate winds. Moreover, these patterns will go along with drought periods that may interact with the capacity of trees to adjust their growth to mechanical stresses due to wind. It is necessary to understand the mechanisms of wood functional acclimations to environmental conditions in order to predict their behaviour and in order to give foresters and breeders the relevant tools to adapt their forest management. This work aims to study how trees adjust the mechanical and hydraulic functions of their wood to environmental stresses and how this acclimation may be beneficial for the tree to resist to future stresses. In this work, young poplars were grown under controlled climatic conditions that include permanent environmental stress (daily mechanical stress of the stem by bending and/or hydric stress). Then, the properties of wood formed under these stressed conditions were characterized. First, hydraulic conductivity and sensibility to cavitation were measured at the tissue level in order to evaluate the changes in water transport capacity. Secondly, bending tests and Charpy impact tests were carried out at the millimetric scale to locally measure mechanical parameters such as elastic modulus, elastic limit or rupture energy. These experimental data allow evaluating the impacts of mechanical and water stress on the wood material. At the stem level, they will be merged in an integrative model in order to evaluate the beneficial aspect of wood acclimation for trees.

Keywords: acclimation, environmental stresses, hydraulics, mechanics, wood

Procedia PDF Downloads 203
3786 Effect of Temperature on Investigation of Index Properties of Red Clay Soil

Authors: Birhanu Kassa

Abstract:

The knowledge of temperature effect on index properties and, thus, the understanding of its behavior may be essential for a complete understanding of the various cases of Geotechnical Engineering problems and for conducting meaningful practical research, analysis, and design in tropical regions, such as the Ethiopian environment. The scarcity of the proper geotechnical information on the subsoil makes foundation and engineering works risk able, difficult, and sometimes hazardous. Seasonal variations, environmental effects, terrain challenges, and temperature effects all affect the quality of soil. Simada is a city which is found in south Gondar and it is developing rapidly both in horizontal and vertical construction. Rapid urbanization in the city area has led to an increased interest in the basic properties of soils that are present within the city area. There has been no previous research that looks into the effect of temperature on the investigation of clay soil index qualities in Simada. This work focuses mainly on investigating the Index and some other properties of soil in Simada Town with varying temperatures. To explore the influence of temperature change, samples were collected from various regions of the city, and routine laboratory tests were performed on the collected samples at various temperatures. Disturbed samples were taken at intervals where an average depth of 1.5-2m depths below natural ground level. The standard laboratory tests performed on all twenty-four soil samples were the water content, gradation analysis, Atterberg limits, specific gravity, and compaction test. All specimens were tested at different temperatures (25°C, 35 °C, 45 °C, 65 °C,75 and 105 °C). The variation of the plasticity characteristics of the soils has been determined based on the temperature variation. From the test result, we can conclude that temperature has a significant effect on the index properties of clay soil, in our case, red clay soil.

Keywords: airdried, oven dried, soils index properties, compaction test

Procedia PDF Downloads 17
3785 Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit

Authors: Guiheng Zhang, Wei Zhang, Jun Fu, Yudong Wang

Abstract:

A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage.

Keywords: high gain power amplifier, linearization bias circuit, SiGe HBT model, Volterra series

Procedia PDF Downloads 335
3784 Rest API Based System-level Test Automation for Mobile Applications

Authors: Jisoo Song

Abstract:

Today’s mobile applications are communicating with servers more and more in order to access external services or information. Also, server-side code changes are more frequent than client-side code changes in a mobile application. The frequent changes lead to an increase in testing cost increase. To reduce costs, UI based test automation can be one of the solutions. It is a common automation technique in system-level testing. However, it can be unsuitable for mobile applications. When you automate tests based on UI elements for mobile applications, there are some limitations such as the overhead of script maintenance or the difficulty of finding invisible defects that UI elements cannot represent. To overcome these limitations, we present a new automation technique based on Rest API. You can automate system-level tests through test scripts that you write. These scripts call a series of Rest API in a user’s action sequence. This technique does not require testers to know the internal implementation details, only input and expected output of Rest API. You can easily modify test cases by modifying Rest API input values and also find problems that might not be evident from the UI level by validating output values. For example, when an application receives price information from a payment server and user cannot see it at UI level, Rest API based scripts can check whether price information is correct or not. More than 10 mobile applications at our company are being tested automatically based on Rest API scripts whenever application source code, mostly server source code, is built. We are finding defects right away by setting a script as a build job in CI server. The build job starts when application code builds are completed. This presentation will also include field cases from our company.

Keywords: case studies at SK Planet, introduction of rest API based test automation, limitations of UI based test automation

Procedia PDF Downloads 441
3783 Rt-Pcr Negative COVID-19 Infection in a Bodybuilding Competitor Using Anabolic Steroids: A Case Report

Authors: Mariana Branco, Nahida Sobrino, Cristina Neves, Márcia Santos, Afonso Granja, João Rosa Oliveira, Joana Costa, Luísa Castro Leite

Abstract:

This case reports a COVID-19 infection in an unvaccinated adult man with no history of COVID-19 and no relevant clinical history besides anabolic steroid use, undergoing weaning with tamoxifen after a bodybuilding competition. The patient presented a 4cm cervical mass 3 weeks after COVID-19 infection in his cohabitants. He was otherwise asymptomatic and tested negative to multiple RT-PCR tests. Nevertheless, the IgG COVID-19 antibody was positive, suggesting the previous infection. This report raises a potential link between anabolic steroid use and atypical COVID-19 onset. Objectives: The goals of this paper are to raise a potential link between anabolic steroid use and atypical COVID-19 onset but also to report an uncommon case of COVID-19 infection with consecutive negative gold standard tests. Methodology: The authors used CARE guidelines for case report writing. Introduction: This case reports a COVID-19 infection case in an unvaccinated adult man, with multiple serial negative reverse transcription polymerase chain reaction (RT-PCR) test results, presenting with single cervical lymphadenopathy. Although the association between COVID-19 and lymphadenopathy is well established, there are no cases with this presentation, and consistently negative RT-PCR tests have been reported. Methodologies: The authors used CARE guidelines for case report writing. Case presentation: This case reports a 28-year-old Caucasian man with no previous history of COVID-19 infection or vaccination and no relevant clinical history besides anabolic steroid use undergoing weaning with tamoxifendue to participation in a bodybuilding competition. He visits his primary care physician because of a large (4 cm) cervical lump, present for 3 days prior to the consultation. There was a positive family history for COVID-19 infection 3 weeks prior to the visit, during which the patient cohabited with the infected family members. The patient never had any previous clinical manifestation of COVID-19 infection and, despite multiple consecutive RT-PCR testing, never tested positive. The patient was treated with an NSAID and a broad-spectrum antibiotic, with little to no effect. Imagiological testing was performed via a cervical ultrasound, followed by a needle biopsy for histologic analysis. Serologic testing for COVID-19 immunity was conducted, revealing a positive Anti-SARS-CoV-2 IgG (Spike S1) antibody, suggesting the previous infection, given the unvaccinated status of our patient Conclusion: In patients with a positive epidemiologic context and cervical lymphadenopathy, physicians should still consider COVID-19 infection as a differential diagnosis, despite negative PCR testing. This case also raises a potential link between anabolic steroid use and atypical COVID-19 onset, never before reported in scientific literature.

Keywords: COVID-19, cervical lymphadenopathy, anabolic steroids, primary care

Procedia PDF Downloads 113
3782 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul

Abstract:

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.

Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms

Procedia PDF Downloads 325