Search results for: clustering images
1637 Spatial Analytics of Ramayan to Geolocate Lanka
Authors: Raj Mukta Sundaram
Abstract:
The location of Ayodhya is distinctly described along river Sarayu in the epic Ramayan. On the contrary, even elaborate descriptions of Lanka and its environs are still proving elusive to human ingenuity to find a direct correlation on the ground. His-torically, there were hardly any attempts to locate Lanka, but some speculations have been made very recently, of which Sri Lanka has gained widespread public ac-ceptance for obvious reasons, such as Sri and Lanka. This belief is almost secured by the impression of Ram Setu on the satellite images, which has led the government to initiate a scientific mission to determine its age. In fact, other viewpoints believe Lanka to be somewhere far-flung along the equator, and another has long proclaimed it to be in central regions of India, but both are diminished by contemporary belief. This study emanates from the fact that Sri Lanka has no correlation to epic, and more importantly, satellite images are deceptive. So the objectives are twofold - firstly, to interpret the text from a holistic approach by analyzing the ecosystem, settlements, geological as-pects, and most importantly, the timeline of key events. Secondly, it explains the pit-falls in the rationale behind contemporary belief. At the outset, it categorically rejects the notion of Ram Setu, which, in geological terms, is merely a part of the continental shelf developed millions of years ago. It also refutes the misconception created by the word “Sri,” which is, in fact, an official name adopted by the country in the seventies with no correlation whatsoever with the events of Ramayana. Likewise, the study ar-gues for the establishment of a prosperous kingdom on a remote island with adverse climatic conditions for any civilization at that time. Eventually, the study demonstrates that travel time for the distances covered by Lord Rama does not corroborate with the description in the epic. It all leads to one conclusion that Lanka cannot be in Sri Lanka. Rather, it needs to be somewhere in the central-eastern parts of India. That region jus-tifies the environs and timelines for the journeys undertaken by Lord Rama, besides the fact that the tribes of the region show strong allegiance to Ravana. The study strongly recommends looking into the central-east region of India for the golden abode of a demon king and rejuvenating tourism of a scenic and culturally rich region hitherto marred by disturbances.Keywords: spatial analysis, Ramayan, heritage, tourism
Procedia PDF Downloads 651636 Study on the Morphology and Dynamic Mechanical and Thermal Properties of HIPS/Graphene Nanocomposites
Authors: Amirhosein Rostampour, Mehdi Sharif
Abstract:
In this article, a series of high impact polystyrene/graphene (HIPS/Gr) nanocomposites were prepared by solution mixing method and their morphology and dynamic mechanical properties were investigated as a function of graphene content. SEM images and X-Ray diffraction data confirm that the graphene platelets are well dispersed in HIPS matrix for the nanocomposites with Gr contents up to 5.0 wt%. Mechanical properties analysis demonstrates that yielding strength and initial modulus of HIPS/Gr nanocomposites are highly improved with the increment of Gr content compared to pure HIPS.Keywords: nanocomposite, graphene, dynamic mechanical properties, morphology
Procedia PDF Downloads 5361635 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 2351634 Neural Rendering Applied to Confocal Microscopy Images
Authors: Daniel Li
Abstract:
We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing
Procedia PDF Downloads 6581633 Automatic Checkpoint System Using Face and Card Information
Authors: Kriddikorn Kaewwongsri, Nikom Suvonvorn
Abstract:
In the deep south of Thailand, checkpoints for people verification are necessary for the security management of risk zones, such as official buildings in the conflict area. In this paper, we propose an automatic checkpoint system that verifies persons using information from ID cards and facial features. The methods for a person’s information abstraction and verification are introduced based on useful information such as ID number and name, extracted from official cards, and facial images from videos. The proposed system shows promising results and has a real impact on the local society.Keywords: face comparison, card recognition, OCR, checkpoint system, authentication
Procedia PDF Downloads 3211632 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 1961631 Molecular Detection and Isolation of Benzimidazole Resistant Haemonchus contortus from Pakistan
Authors: K. Ali, M. F. Qamar, M. A. Zaman, M. Younus, I. Khan, S. Ehtisham-ul-Haque, R. Tamkeen, M. I. Rashid, Q. Ali
Abstract:
This study centers on molecular identification of Haemonchus contortus and isolation of Benz-imidazoles (BZ) resistant strains. Different abattoirs’ of two geographic regions of Punjab (Pakistan) were frequently visited for the collection of worms. Out of 1500 (n=1500) samples that were morphologically confirmed as H. contortus, 30 worms were subjected to molecular procedures for isolation of resistant strains. Resistant worms (n=8) were further subjected to DNA gene sequencing. Bio edit sequence alignment editor software was used to detect the possible mutation, deletion, replacement of nucleotides. Genetic diversity was noticed and genetic variation existing in β-tubulin isotype 1 of the H. contortus population of small ruminants of different regions considered in this study. H. contortus showed three different type of genetic sequences. 75%, 37.5%, 25% and 12.5% of the studied samples showed 100% query cover and identity with isolates and clones of China, UK, Australia and other countries, respectively. Interestingly the neighbor countries such as India and Iran haven’t many similarities with the Pakistani isolates. Thus, it suggests that population density of same genetic makeup H. contortus is scattered worldwide rather than clustering in a single region.Keywords: Haemonchus contortus, Benzimidazole resistant, β-tubulin-1 gene, abattoirs
Procedia PDF Downloads 1751630 A System Functions Set-Up through Near Field Communication of a Smartphone
Authors: Jaemyoung Lee
Abstract:
We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.Keywords: system set-up, near field communication, smartphone, android
Procedia PDF Downloads 3361629 Microstructural Study of Mechanically Alloyed Powders and the Thin Films of Cufe Alloys
Authors: Mechri hanane, Azzaz Mohammed
Abstract:
Polycrystalline CuFe thin film was prepared by thermal evaporation process (Physical vapor deposition), using the nanocrystalline CuFe powder obtained by mechanical alloying After 24 h of milling elemental powders. The microscopic study of nanocrystalline powder and the thin film of Cu70Fe30 binary alloy were examined using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The cross-sectional TEM images showed that the obtained CuFe layer was polycrystalline film of about 20 nm thick and composed of grains of different size ranging from 4 nm to 18 nm.Keywords: nanomaterials, thin films, TEM, SEM
Procedia PDF Downloads 4101628 Convolutional Neural Networks Architecture Analysis for Image Captioning
Authors: Jun Seung Woo, Shin Dong Ho
Abstract:
The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3
Procedia PDF Downloads 1331627 Urbanization Effects on the Food-Water-Energy Nexus within Ecosystem Services: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration in China
Authors: Ke Yang, QiHan, Bauke de Veirs
Abstract:
This study addresses the need for coordinated management of natural resources in urban agglomeration. Using ecosystem services theory, The study explore the relationship between land use in the Beijing-Tianjin-Hebei (B-T-H) region and the Food-Water-Energy (F-W-E) nexus from 2000 to 2030. We assess ecosystem services using the InVEST: Habitat Quality (HQ), Water Yield (WY), Carbon Sequestration (CS), Soil Retention (SDR), and Food Production (FP). The study find an annual expansion of construction land alongside a significant decline in cultivated land. Additionally, HQ, CS, and per capita FP decline annually until 2020 and are expected to persist through 2030. In contrast, WY and SDR grow annually but may decline by 2030. Spearman coefficient analysis reveals synergies between HQ and CS, SDR and CS, and SDR and HQ, with trade-offs between CS and WY and HQ and WY. Utilizing the K-means clustering analysis method, we introduce county-based spatial planning for the F-W-E system, offering valuable insights and recommendations for sustainable resource management.Keywords: food-water-energy (F-W-E), ecosystem services, trade-offs and synergies, ecosystem service bundle, county-based
Procedia PDF Downloads 621626 Riesz Mixture Model for Brain Tumor Detection
Authors: Mouna Zitouni, Mariem Tounsi
Abstract:
This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution
Procedia PDF Downloads 181625 An Assessment of the Impacts of Agro-Ecological Practices towards the Improvement of Crop Health and Yield Capacity: A Case of Mopani District, Limpopo, South Africa
Authors: Tshilidzi C. Manyanya, Nthaduleni S. Nethengwe, Edmore Kori
Abstract:
The UNFCCC, FAO, GCF, IPCC and other global structures advocate for agro-ecology do address food security and sovereignty. However, most of the expected outcomes concerning agro-ecological were not empirically tested for universal application. Agro-ecology is theorised to increase crop health over ago-ecological farms and decrease over conventional farms. Increased crop health means increased carbon sequestration and thus less CO2 in the atmosphere. This is in line with the view that global warming is anthropogenically enhanced through GHG emissions. Agro-ecology mainly affects crop health, soil carbon content and yield on the cultivated land. Economic sustainability is directly related to yield capacity, which is theorized to increase by 3-10% in a space of 3 - 10 years as a result of agro-ecological implementation. This study aimed to empirically assess the practicality and validity of these assumptions. The study utilized mainly GIS and RS techniques to assess the effectiveness of agro-ecology in crop health improvement from satellite images. The assessment involved a longitudinal study (2013 – 2015) assessing the changes that occur after a farm retrofits from conventional agriculture to agro-ecology. The assumptions guided the objectives of the study. For each objective, an agro-ecological farm was compared with a conventional farm in the same climatic conditional occupying the same general location. Crop health was assessed using satellite images analysed through ArcGIS and Erdas. This entailed the production of NDVI and Re-classified outputs of the farm area. The NDVI ranges of the entire period of study were thus compared in a stacked histogram for each farm to assess for trends. Yield capacity was calculated based on the production records acquired from the farmers and plotted in a stacked bar graph as percentages of a total for each farm. The results of the study showed decreasing crop health trends over 80% of the conventional farms and an increase over 80% of the organic farms. Yield capacity showed similar patterns to those of crop health. The study thus showed that agro-ecology is an effective strategy for crop-health improvement and yield increase.Keywords: agro-ecosystem, conventional farm, dialectical, sustainability
Procedia PDF Downloads 2161624 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study
Authors: Ana Serafimovic, Karthik Devarajan
Abstract:
Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence
Procedia PDF Downloads 2461623 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency
Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu
Abstract:
In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal
Procedia PDF Downloads 1521622 Genetic Diversity of Sorghum bicolor (L.) Moench Genotypes as Revealed by Microsatellite Markers
Authors: Maletsema Alina Mofokeng, Hussein Shimelis, Mark Laing, Pangirayi Tongoona
Abstract:
Sorghum is one of the most important cereal crops grown for food, feed and bioenergy. Knowledge of genetic diversity is important for conservation of genetic resources and improvement of crop plants through breeding. The objective of this study was to assess the level of genetic diversity among sorghum genotypes using microsatellite markers. A total of 103 accessions of sorghum genotypes obtained from the Department of Agriculture, Forestry and Fisheries, the African Centre for Crop Improvement and Agricultural Research Council-Grain Crops Institute collections in South Africa were estimated using 30 microsatellite markers. For all the loci analysed, 306 polymorphic alleles were detected with a mean value of 6.4 per locus. The polymorphic information content had an average value of 0.50 with heterozygosity mean value of 0.55 suggesting an important genetic diversity within the sorghum genotypes used. The unweighted pair group method with arithmetic mean clustering based on Euclidian coefficients revealed two major distinct groups without allocating genotypes based on the source of collection or origin. The genotypes 4154.1.1.1, 2055.1.1.1, 4441.1.1.1, 4442.1.1.1, 4722.1.1.1, and 4606.1.1.1 were the most diverse. The sorghum genotypes with high genetic diversity could serve as important sources of novel alleles for breeding and strategic genetic conservation.Keywords: Genetic Diversity, Genotypes, Microsatellites, Sorghum
Procedia PDF Downloads 3761621 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 1321620 Study on the Characteristics of Chinese Urban Network Space from the Perspective of Innovative Collaboration
Abstract:
With the development of knowledge economy era, deepening the mechanism of cooperation and adhering to sharing and win-win cooperation has become new direction of urban development nowadays. In recent years, innovative collaborations between cities are becoming more and more frequent, whose influence on urban network space has aroused many scholars' attention. Taking 46 cities in China as the research object, the paper builds the connectivity of innovative network between cities and the linkages of urban external innovation using patent cooperation data among cities, and explores urban network space in China by the application of GIS, which is a beneficial exploration to the study of social network space in China in the era of information network. The result shows that the urban innovative network space and geographical entity space exist differences, and the linkages of external innovation are not entirely related to the city innovative capacity and the level of economy development. However, urban innovative network space and geographical entity space are similar in hierarchical clustering. They have both formed Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta three metropolitan areas and Beijing-Shenzhen-Shanghai-Hangzhou four core cities, which lead the development of innovative network space in China.Keywords: innovative collaboration, urban network space, the connectivity of innovative network, the linkages of external innovation
Procedia PDF Downloads 1781619 3D Stereoscopic Measurements from AR Drone Squadron
Authors: R. Schurig, T. Désesquelles, A. Dumont, E. Lefranc, A. Lux
Abstract:
A cost-efficient alternative is proposed to the use of a single drone carrying multiple cameras in order to take stereoscopic images and videos during its flight. Such drone has to be particularly large enough to take off with its equipment, and stable enough in order to make valid measurements. Corresponding performance for a single aircraft usually comes with a large cost. Proposed solution consists in using multiple smaller and cheaper aircrafts carrying one camera each instead of a single expensive one. To give a proof of concept, AR drones, quad-rotor UAVs from Parrot Inc., are experimentally used.Keywords: drone squadron, flight control, rotorcraft, Unmanned Aerial Vehicle (UAV), AR drone, stereoscopic vision
Procedia PDF Downloads 4731618 Phylogenetic Analysis of the Thunnus Tuna Fish Using Cytochrome C Oxidase Subunit I Gene Sequence
Authors: Yijun Lai, Saber Khederzadeh, Lingshaung Han
Abstract:
Species in Thunnus are organized due to the similarity between them. The closeness between T. maccoyii, T. thynnus, T. Tonggol, T. atlanticus, T. albacares, T. obsesus, T. alalunga, and T. orientails are in different degrees. However, the genetic pattern of differentiation has not been presented based on individuals yet, to the author’s best knowledge. Hence, we aimed to analyze the difference in individuals level of tuna species to identify the factors that contribute to the maternal lineage variety using Cytochrome c oxidase subunit I (COXI) gene sequences. Our analyses provided evidence of sharing lineages in the Thunnus. A phylogenetic analysis revealed that these lineages are basal to the other sequences. We also showed a close connection between the T. tonggol, T. thynnus, and T. albacares populations. Also, the majority of the T. orientalis samples were clustered with the T. alalunga and, then, T. atlanticus populations. Phylogenetic trees and migration modeling revealed high proximity of T. thynnus sequences to a few T. orientalis and suggested possible gene flow with T. tonggol and T. albacares lineages, while all T. obsesus samples indicated unique clustering with each other. Our results support the presence of old maternal lineages in Thunnus, as a legacy of an ancient wave of colonization or migration.Keywords: Thunnus Tuna, phylogeny, maternal lineage, COXI gene
Procedia PDF Downloads 2901617 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images
Authors: Jeena R. S., Sukesh Kumar A.
Abstract:
Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.Keywords: prediction, retinal imaging, risk factors, stroke
Procedia PDF Downloads 3041616 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA
Procedia PDF Downloads 1431615 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome
Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder
Abstract:
Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps
Procedia PDF Downloads 2261614 Screening of Risk Phenotypes among Metabolic Syndrome Subjects in Adult Pakistani Population
Authors: Muhammad Fiaz, Muhammad Saqlain, Abid Mahmood, S. M. Saqlan Naqvi, Rizwan Aziz Qazi, Ghazala Kaukab Raja
Abstract:
Background: Metabolic Syndrome is a clustering of multiple risk factors including central obesity, hypertension, dyslipidemia and hyperglycemia. These risk phenotypes of metabolic syndrome (MetS) prevalent world-wide, Therefore we aimed to identify the frequency of risk phenotypes among metabolic syndrome subjects in local adult Pakistani population. Methods: Screening of subjects visiting out-patient department of medicine, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad was performed to assess the occurrence of risk phenotypes among MetS subjects in Pakistani population. The Metabolic Syndrome was defined based on International Diabetes Federation (IDF) criteria. Anthropometric and biochemical assay results were recorded. Data was analyzed using SPSS software (16.0). Results: Our results showed that dyslipidemia (31.50%) and hyperglycemia (30.50%) was most population specific risk phenotypes of MetS. The results showed the order of association of metabolic risk phenotypes to MetS as follows hyperglycemia>dyslipidemia>obesity >hypertension. Conclusion: The hyperglycemia and dyslipidemia were found be the major risk phenotypes among the MetS subjects and have greater chances of deceloping MetS among Pakistani Population.Keywords: dyslipidemia, hypertention, metabolic syndrome, obesity
Procedia PDF Downloads 2091613 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning
Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin
Abstract:
This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing
Procedia PDF Downloads 271612 A Mixed Integer Programming Model for Optimizing the Layout of an Emergency Department
Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee
Abstract:
During the recent years, demand for healthcare services has dramatically increased. As the demand for healthcare services increases, so does the necessity of constructing new healthcare buildings and redesigning and renovating existing ones. Increasing demands necessitate the use of optimization techniques to improve the overall service efficiency in healthcare settings. However, high complexity of care processes remains the major challenge to accomplish this goal. This study proposes a method based on process mining results to address the high complexity of care processes and to find the optimal layout of the various medical centers in an emergency department. ProM framework is used to discover clinical pathway patterns and relationship between activities. Sequence clustering plug-in is used to remove infrequent events and to derive the process model in the form of Markov chain. The process mining results served as an input for the next phase which consists of the development of the optimization model. Comparison of the current ED design with the one obtained from the proposed method indicated that a carefully designed layout can significantly decrease the distances that patients must travel.Keywords: Mixed Integer programming, Facility layout problem, Process Mining, Healthcare Operation Management
Procedia PDF Downloads 3391611 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops
Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann
Abstract:
The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule
Procedia PDF Downloads 1501610 The Use of Modern Technologies and Computers in the Archaeological Surveys of Sistan in Eastern Iran
Authors: Mahyar MehrAfarin
Abstract:
The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.Keywords: Iran, sistan, archaeological surveys, computer use, modern technologies
Procedia PDF Downloads 791609 Improvements in OpenCV's Viola Jones Algorithm in Face Detection–Skin Detection
Authors: Jyoti Bharti, M. K. Gupta, Astha Jain
Abstract:
This paper proposes a new improved approach for false positives filtering of detected face images on OpenCV’s Viola Jones Algorithm In this approach, for Filtering of False Positives, Skin Detection in two colour spaces i.e. HSV (Hue, Saturation and Value) and YCrCb (Y is luma component and Cr- red difference, Cb- Blue difference) is used. As a result, it is found that false detection has been reduced. Our proposed method reaches the accuracy of about 98.7%. Thus, a better recognition rate is achieved.Keywords: face detection, Viola Jones, false positives, OpenCV
Procedia PDF Downloads 4071608 Analyses of Defects in Flexible Silicon Photovoltaic Modules via Thermal Imaging and Electroluminescence
Authors: S. Maleczek, K. Drabczyk, L. Bogdan, A. Iwan
Abstract:
It is known that for industrial applications using solar panel constructed from silicon solar cells require high-efficiency performance. One of the main problems in solar panels is different mechanical and structural defects, causing the decrease of generated power. To analyse defects in solar cells, various techniques are used. However, the thermal imaging is fast and simple method for locating defects. The main goal of this work was to analyze defects in constructed flexible silicon photovoltaic modules via thermal imaging and electroluminescence method. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. Thermal behavior was observed using thermographic camera (VIGOcam v50, VIGO System S.A, Poland) using a DC conventional source. Electroluminescence was observed by Steinbeis Center Photovoltaics (Stuttgart, Germany) equipped with a camera, in which there is a Si-CCD, 16 Mpix detector Kodak KAF-16803type. The camera has a typical spectral response in the range 350 - 1100 nm with a maximum QE of 60 % at 550 nm. In our work commercial silicon solar cells with the size 156 × 156 mm were cut for nine parts (called single solar cells) and used to create photovoltaic modules with the size of 160 × 70 cm (containing about 80 single solar cells). Flexible silicon photovoltaic modules on polyamides or polyester fabric were constructed and investigated taking into consideration anomalies on the surface of modules. Thermal imaging provided evidence of visible voltage-activated conduction. In electro-luminescence images, two regions are noticeable: darker, where solar cell is inactive and brighter corresponding with correctly working photovoltaic cells. The electroluminescence method is non-destructive and gives greater resolution of images thereby allowing a more precise evaluation of microcracks of solar cell after lamination process. Our study showed good correlations between defects observed by thermal imaging and electroluminescence. Finally, we can conclude that the thermographic examination of large scale photovoltaic modules allows us the fast, simple and inexpensive localization of defects at the single solar cells and modules. Moreover, thermographic camera was also useful to detection electrical interconnection between single solar cells.Keywords: electro-luminescence, flexible devices, silicon solar cells, thermal imaging
Procedia PDF Downloads 316