Search results for: NAND flash based SSD
26994 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images
Authors: Gherbi Nabil
Abstract:
Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM
Procedia PDF Downloads 1926993 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow
Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun
Abstract:
With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.Keywords: cloud storage security, sharing storage, attributes, Hash algorithm
Procedia PDF Downloads 39026992 Performance Assessment of Carbon Nano Tube Based Cutting Fluid in Machining Process
Authors: Alluru Gopala Krishna, Thella Babu Rao
Abstract:
In machining, there is always a problem with heat generation and friction produced during the process as they consequently affect tool wear and surface finish. An instant heat transfer mechanism could protect the cutting tool edge and enhance the tool life by cooling the cutting edge of the tool. In the present work, carbon nanotube (CNT) based nano-cutting fluid is proposed for machining a hard-to-cut material. Tool wear and surface roughness are considered for the evaluation of the nano-cutting fluid in turning process. The performance of nanocoolant is assessed against the conventional coolant and dry machining conditions and it is observed that the proposed nanocoolant has produced better performance than the conventional coolant.Keywords: CNT based nano cutting fluid, tool wear, turning, surface roughness
Procedia PDF Downloads 26326991 Knowledge Based Automated Software Engineering Platform Used for the Development of Bulgarian E-Customs
Authors: Ivan Stanev, Maria Koleva
Abstract:
Described are challenges to the Bulgarian e-Customs (BeC) related to low level of interoperability and standardization, inefficient use of available infrastructure, lack of centralized identification and authorization, extremely low level of software process automation, and insufficient quality of data stored in official registers. The technical requirements for BeC are prepared with a focus on domain independent common platform, specialized customs and excise components, high scalability, flexibility, and reusability. The Knowledge Based Automated Software Engineering (KBASE) Common Platform for Automated Programming (CPAP) is selected as an instrument covering BeC requirements for standardization, programming automation, knowledge interpretation and cloud computing. BeC stage 3 results are presented and analyzed. BeC.S3 development trends are identified.Keywords: service oriented architecture, cloud computing, knowledge based automated software engineering, common platform for automated programming, e-customs
Procedia PDF Downloads 37326990 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis
Authors: Syamala Krishnannair
Abstract:
A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale
Procedia PDF Downloads 20926989 The Role of Social Capital in Community-Based Water Resources Management in Kenya's Polycentric Water Resource Governance System
Authors: Brenda Margaret Behan
Abstract:
Kenya is a water-stressed country with highly varied socio-ecological environments in its devolved county system, and is currently implementing a polycentric water governance system; this paper examines the importance of social capital in community-based natural resource management and its role in supporting good water governance systems in the Kenya context. Through a robust literature review of theory and case studies, specific aspects of social capital are examined to determine their importance in the implementation of local community-based water management arrangements which support and complement the more formal institutions outlined in the 2002 and 2016 Water Acts of Kenya. Water is an increasingly important and scarce resource not only for Kenya, but for many communities across the globe, and lessons learned in the Kenya context can be useful for other countries and communities faced with similar challenges. Changing climates, increasing populations, and increased per capita consumption of water is contributing to a situation in which the management of water resources will be vital to community resilience. Community-based natural resource management is widely recognized as a building block and component of wider water resource management systems, and when properly conducted can provide a way to enable sustainable use of resources and empower communities. Greater attention to the social and cultural norms and traditional institutions associated with a community’s social capital can lead to better results for Kenya’s polycentric governance of water. The key findings and recommendations from this research show that in Kenya, traditional institutions need to be understood and integrated into governance systems; social values and cultural norms have a significant impact on the implementation of community-based water management efforts; and social capital is a dynamic concept which influences and is influenced by policies and practices. The community-based water management approach will continue to be a key cornerstone for Kenya’s polycentric water governance structure, especially in the more remote arid and semi-arid lands; thus, the successful integration of social capital aspects into planning and implementation will contribute to a strengthened, sustainable, and more equitable national water governance system. Specific observations and recommendations from this study will help practitioners and policymakers to better craft community-based interventions.Keywords: community-based natural resource management, social capital, traditional institutions, water governance
Procedia PDF Downloads 16726988 Using Shape Memory Alloys for Structural Engineering Applications
Authors: Donatello Cardone
Abstract:
Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The author of this manuscript has been involved, since 1996, in several experimental and theoretical studies on the application of SMAs in structural engineering, within national and international research projects. This paper provides an overview of the main results achieved, including the conceptual design, implementation, and testing of different SMA-based devices, namely: (i) energy-dissipating braces for RC buildings, (ii) seismic isolation devices for buildings and bridges, (iii) smart tie-rods for arches and vaults and (iv) seismic restrainers for bridges. The main advantages of using SMA-based devices in the seismic protection of structures derive from the double-flag shape of their hysteresis loops, which implies three favourable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness for small displacements. The main advantages of SMA-based units for steel tie-rods are associated with the thermal behaviour of superelastic SMAs, which is antagonistic compared to that of steel. This implies a strong reduction of force changes due to air temperature variations. Finally, SMA-based seismic restrainers proved to be effective in preventing bridge deck unseating and pounding.Keywords: seismic protection of structures, shape memory alloys, structural engineering, steel tie-rods, seismic restrainers for bridges
Procedia PDF Downloads 9726987 Incorporating Information Gain in Regular Expressions Based Classifiers
Authors: Rosa L. Figueroa, Christopher A. Flores, Qing Zeng-Treitler
Abstract:
A regular expression consists of sequence characters which allow describing a text path. Usually, in clinical research, regular expressions are manually created by programmers together with domain experts. Lately, there have been several efforts to investigate how to generate them automatically. This article presents a text classification algorithm based on regexes. The algorithm named REX was designed, and then, implemented as a simplified method to create regexes to classify Spanish text automatically. In order to classify ambiguous cases, such as, when multiple labels are assigned to a testing example, REX includes an information gain method Two sets of data were used to evaluate the algorithm’s effectiveness in clinical text classification tasks. The results indicate that the regular expression based classifier proposed in this work performs statically better regarding accuracy and F-measure than Support Vector Machine and Naïve Bayes for both datasets.Keywords: information gain, regular expressions, smith-waterman algorithm, text classification
Procedia PDF Downloads 32026986 Determination of the Best Fit Probability Distribution for Annual Rainfall in Karkheh River at Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
This study was designed to find the best-fit probability distribution of annual rainfall based on 50 years sample (1966-2015) in the Karkheh river basin at Iran using six probability distributions: Normal, 2-Parameter Log Normal, 3-Parameter Log Normal, Pearson Type 3, Log Pearson Type 3 and Gumbel distribution. The best fit probability distribution was selected using Stormwater Management and Design Aid (SMADA) software and based on the Residual Sum of Squares (R.S.S) between observed and estimated values Based on the R.S.S values of fit tests, the Log Pearson Type 3 and then Pearson Type 3 distributions were found to be the best-fit probability distribution at the Jelogir Majin and Pole Zal rainfall gauging station. The annual values of expected rainfall were calculated using the best fit probability distributions and can be used by hydrologists and design engineers in future research at studied region and other region in the world.Keywords: Log Pearson Type 3, SMADA, rainfall, Karkheh River
Procedia PDF Downloads 19126985 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin
Abstract:
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.Keywords: the Bouc-Wen hysteresis model, particle swarm optimization, Prandtl-Ishlinskii model, automation engineering
Procedia PDF Downloads 51426984 Agroforestry Practices on Soil Microbial Biomass Carbon and Organic Carbon in Southern Ethiopia
Authors: Nebiyou Masebo
Abstract:
The rapid conversion of an old aged agroforestry (AF) based agricultural system to monocropping farming system in southern Ethiopia is increasing. The consequence of this, combined with climate change, has been impaired biodiversity, soil microbial biomass carbon (MBC), and soil organic carbon (SOC). The AF system could curb such problems due it is an ecologically and economically sustainable strategies. This study was aimed to investigate different agroforestry practices (AFPs) on MBC and SOC in southern Ethiopia. Soil samples were collected from homegarden based agroforestry practice (HAFP), crop land based agroforestry practice (ClAFP), woodlot based agroforestry practice (WlAFP), and trees on soil and water conservation based agroforestry practice (TSWAFP) using two depth layer (0-30 & 30-60 cm) by systematic sampling. Moreover, woody species inventorywas also collected. The chloroform fumigation extraction method was employed to determine MBC from different AFP types. In this study, the value of MBC and SOC decreased significantly with soil depth (p< 0.05). Besides, AFP type, soil depth, woody species diversity, and key soil properties also strongly influenced MBC and SOC (p< 0.05). In this study, the MBC was the highest (786 mg kg⁻¹ soil) in HAFP, followed by WlAFP (592 mg kg⁻¹ soil), TSWAFP (421 mg kg⁻¹ soil), and ClAFP (357 mg kg⁻¹ soil). The highest mean value of SOC (43.5Mg C ha⁻¹) was recorded in HAFP, followed by WlAFP (35.1Mg C ha⁻¹), TSWAFP (22.3 Mg C ha⁻¹), while the lowest (21.8 Mg C ha⁻¹) was recorded in ClAFP. The HAFP had high woody species diversity, and the lowest was recorded in ClAFP. The finding indicated that SOC and MBC were significantly affected by land management practices, and HAFP has the potential to improve MBC and SOC through good management practices of AFP.Keywords: agroforestry practices, microbial biomass carbon, soil carbon, rapid conversion
Procedia PDF Downloads 10226983 Instructional Coaches' Perceptions of Professional Development: An Exploration of the School-Based Support Program
Authors: Youmen Chaaban, Abdallah Abu-Tineh
Abstract:
This article examines the development of a professional development (PD) model for educator growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge, and skills of both school leadership and teachers in an attempt to improve students’ learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents the results of a qualitative study examining the perceptions of nineteen instructional coaches about the strengths of the PD program, the challenges they face in their day-to-day implementation of the program, and their suggestions for the betterment of the program’s implementation and outcomes. Data were collected from the instructional coaches through open-ended surveys followed by focus group interviews. The instructional coaches reported several strengths, which were compatible with the literature on effective PD. However, the challenges they faced were deeply rooted within the structure of the program, in addition to external factors operating at the school and Ministry of Education levels. Thus, a general consensus on the way the program should ultimately develop was reached.Keywords: situated professional development, school reform, instructional coach, school based support program
Procedia PDF Downloads 35526982 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.Keywords: authentication, iris recognition, adaboost, local binary pattern
Procedia PDF Downloads 22426981 Construction Quality Perception of Construction Professionals and Their Expectations from a Quality Improvement Technique in Pakistan
Authors: Muhammad Yousaf Sadiq
Abstract:
The complexity arises in defining the construction quality due to its perception, based on inherent market conditions and their requirements, the diversified stakeholders itself and their desired output. An quantitative survey based approach was adopted in this constructive study. A questionnaire-based survey was conducted for the assessment of construction Quality perception and expectations in the context of quality improvement technique. The survey feedback of professionals of the leading construction organizations/companies of Pakistan construction industry were analyzed. The financial capacity, organizational structure, and construction experience of the construction firms formed basis for their selection. The quality perception was found to be project-scope-oriented and considered as an excess cost for a construction project. Any quality improvement technique was expected to maximize the profit for the employer, by improving the productivity in a construction project. The study is beneficial for the construction professionals to assess the prevailing construction quality perception and the expectations from implementation of any quality improvement technique in construction projects.Keywords: construction quality, expectation, improvement, perception
Procedia PDF Downloads 47626980 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 14726979 Approach for Demonstrating Reliability Targets for Rail Transport during Low Mileage Accumulation in the Field: Methodology and Case Study
Authors: Nipun Manirajan, Heeralal Gargama, Sushil Guhe, Manoj Prabhakaran
Abstract:
In railway industry, train sets are designed based on contractual requirements (mission profile), where reliability targets are measured in terms of mean distance between failures (MDBF). However, during the beginning of revenue services, trains do not achieve the designed mission profile distance (mileage) within the timeframe due to infrastructure constraints, scarcity of commuters or other operational challenges thereby not respecting the original design inputs. Since trains do not run sufficiently and do not achieve the designed mileage within the specified time, car builder has a risk of not achieving the contractual MDBF target. This paper proposes a constant failure rate based model to deal with the situations where mileage accumulation is not a part of the design mission profile. The model provides appropriate MDBF target to be demonstrated based on actual accumulated mileage. A case study of rolling stock running in the field is undertaken to analyze the failure data and MDBF target demonstration during low mileage accumulation. The results of case study prove that with the proposed method, reliability targets are achieved under low mileage accumulation.Keywords: mean distance between failures, mileage-based reliability, reliability target appropriations, rolling stock reliability
Procedia PDF Downloads 26626978 Fault-Tolerant Predictive Control for Polytopic LPV Systems Subject to Sensor Faults
Authors: Sofiane Bououden, Ilyes Boulkaibet
Abstract:
In this paper, a robust fault-tolerant predictive control (FTPC) strategy is proposed for systems with linear parameter varying (LPV) models and input constraints subject to sensor faults. Generally, virtual observers are used for improving the observation precision and reduce the impacts of sensor faults and uncertainties in the system. However, this type of observer lacks certain system measurements which substantially reduce its accuracy. To deal with this issue, a real observer is then designed based on the virtual observer, and consequently a real observer-based robust predictive control is designed for polytopic LPV systems. Moreover, the proposed observer can entirely assure that all system states and sensor faults are estimated. As a result, and based on both observers, a robust fault-tolerant predictive control is then established via the Lyapunov method where sufficient conditions are proposed, for stability analysis and control purposes, in linear matrix inequalities (LMIs) form. Finally, simulation results are given to show the effectiveness of the proposed approach.Keywords: linear parameter varying systems, fault-tolerant predictive control, observer-based control, sensor faults, input constraints, linear matrix inequalities
Procedia PDF Downloads 20026977 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering
Authors: Sara Hasani
Abstract:
This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.Keywords: disaster management, natural disaster, pattern recognition, prediction
Procedia PDF Downloads 15326976 Gene Prediction in DNA Sequences Using an Ensemble Algorithm Based on Goertzel Algorithm and Anti-Notch Filter
Authors: Hamidreza Saberkari, Mousa Shamsi, Hossein Ahmadi, Saeed Vaali, , MohammadHossein Sedaaghi
Abstract:
In the recent years, using signal processing tools for accurate identification of the protein coding regions has become a challenge in bioinformatics. Most of the genomic signal processing methods is based on the period-3 characteristics of the nucleoids in DNA strands and consequently, spectral analysis is applied to the numerical sequences of DNA to find the location of periodical components. In this paper, a novel ensemble algorithm for gene selection in DNA sequences has been presented which is based on the combination of Goertzel algorithm and anti-notch filter (ANF). The proposed algorithm has many advantages when compared to other conventional methods. Firstly, it leads to identify the coding protein regions more accurate due to using the Goertzel algorithm which is tuned at the desired frequency. Secondly, faster detection time is achieved. The proposed algorithm is applied on several genes, including genes available in databases BG570 and HMR195 and their results are compared to other methods based on the nucleotide level evaluation criteria. Implementation results show the excellent performance of the proposed algorithm in identifying protein coding regions, specifically in identification of small-scale gene areas.Keywords: protein coding regions, period-3, anti-notch filter, Goertzel algorithm
Procedia PDF Downloads 38726975 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model
Authors: Alam Ali, Ashok Kumar Pathak
Abstract:
Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique
Procedia PDF Downloads 7226974 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 12326973 Cryptography Based Authentication Methods
Authors: Mohammad A. Alia, Abdelfatah Aref Tamimi, Omaima N. A. Al-Allaf
Abstract:
This paper reviews a comparison study on the most common used authentication methods. Some of these methods are actually based on cryptography. In this study, we show the main cryptographic services. Also, this study presents a specific discussion about authentication service, since the authentication service is classified into several categorizes according to their methods. However, this study gives more about the real life example for each of the authentication methods. It talks about the simplest authentication methods as well about the available biometric authentication methods such as voice, iris, fingerprint, and face authentication.Keywords: information security, cryptography, system access control, authentication, network security
Procedia PDF Downloads 47126972 Configuration Design and Optimization of the Movable Leg-Foot Lunar Soft-Landing Device
Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian
Abstract:
Lunar exploration is a necessary foundation for deep-space exploration. For the functional limitations of the fixed landers which are widely used currently and are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability, a movable lunar soft-landing device based on cantilever type buffer mechanism and leg-foot type walking mechanism is presented. Firstly, a 20 DoFs quadruped configuration based on pushrod is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and can make the kinematics of the whole mechanism unchanged before and after buffering. Secondly, the multi-function main/auxiliary buffers based on crumple-energy absorption and screw-nut mechanism, as well as the telescopic device which could be used to protect the plantar force sensors during the buffer process are designed. Finally, the kinematic model of the whole mechanism is established, and the configuration optimization of the whole mechanism is completed based on the performance requirements of slope adaptation and obstacle crossing. This research can provide a technical solution integrating soft-landing, large-scale inspection and material-transfer for future lunar exploration and even mars exploration, and can also serve as the technical basis for developing the reusable landers.Keywords: configuration design, lunar soft-landing device, movable, optimization
Procedia PDF Downloads 15826971 Streamlines: Paths of Fluid Flow through Sandstone Samples Based on Computed Microtomography
Authors: Ł. Kaczmarek, T. Wejrzanowski, M. Maksimczuk
Abstract:
The study presents the use of the numerical calculations based on high-resolution computed microtomography in analysis of fluid flow through Miocene sandstones. Therefore, the permeability studies of rocks were performed. Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. For aforementioned analysis, two series of X-ray irradiation were performed. The first set of samples was selected to obtain the spatial distribution of grains and pores. At this stage of the study length of voxel side amounted 27 microns. The next set of X-ray irradation enabled recognition of microstructural components as well as petrophysical features. The length of voxel side in this stage was up to 2 µm. Based on this study, the samples were broken down into two distinct groups. The first one represents conventional reservoir deposits, in opposite to second one - unconventional type. Appropriate identification of petrophysical parameters such as porosity and permeability of the formation is a key element for optimization of the reservoir development.Keywords: grains, permeability, pores, pressure distribution
Procedia PDF Downloads 25326970 Detection of Nanotoxic Material Using DNA Based QCM
Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na
Abstract:
Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nanotoxic material, qcm, frequency, in situ sensing
Procedia PDF Downloads 42226969 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm
Authors: Mary Anne Roa
Abstract:
Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.Keywords: congestion control, queue management, computer networks, fuzzy logic
Procedia PDF Downloads 39726968 The Estimation of Human Vital Signs Complexity
Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius
Abstract:
Non-stationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables interactions.Keywords: cardiac diseases, complex systems theory, ECG analysis, matrix analysis
Procedia PDF Downloads 34426967 H.263 Based Video Transceiver for Wireless Camera System
Authors: Won-Ho Kim
Abstract:
In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video.Keywords: wireless video transceiver, video surveillance camera, H.263 video encoding digital signal processing
Procedia PDF Downloads 36426966 Frame Camera and Event Camera in Stereo Pair for High-Resolution Sensing
Authors: Khen Cohen, Daniel Yankelevich, David Mendlovic, Dan Raviv
Abstract:
We present a 3D stereo system for high-resolution sensing in both the spatial and the temporal domains by combining a frame-based camera and an event-based camera. We establish a method to merge both devices into one unite system and introduce a calibration process, followed by a correspondence technique and interpolation algorithm for 3D reconstruction. We further provide quantitative analysis about our system in terms of depth resolution and additional parameter analysis. We show experimentally how our system performs temporal super-resolution up to effectively 1ms and can detect fast-moving objects and human micro-movements that can be used for micro-expression analysis. We also demonstrate how our method can extract colored events for an event-based camera without any degradation in the spatial resolution, compared to a colored filter array.Keywords: DVS-CIS stereo vision, micro-movements, temporal super-resolution, 3D reconstruction
Procedia PDF Downloads 29726965 A Modified NSGA-II Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Problem
Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir
Abstract:
NSGA-II is one of the most well-known and most widely used evolutionary algorithms. In addition to its new versions, such as NSGA-III, there are several modified types of this algorithm in the literature. In this paper, a hybrid NSGA-II algorithm has been suggested for solving the multi-objective flexible job shop scheduling problem. For a better search, new neighborhood-based crossover and mutation operators are defined. To create new generations, the neighbors of the selected individuals by the tournament selection are constructed. Also, at the end of each iteration, before sorting, neighbors of a certain number of good solutions are derived, except for solutions protected by elitism. The neighbors are generated using a constraint-based neural network that uses various constructs. The non-dominated sorting and crowding distance operators are same as the classic NSGA-II. A comparison based on some multi-objective benchmarks from the literature shows the efficiency of the algorithm.Keywords: flexible job shop scheduling problem, multi-objective optimization, NSGA-II algorithm, neighborhood structures
Procedia PDF Downloads 229