Search results for: machine learning models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13761

Search results for: machine learning models

531 A Deep Dive into the Multi-Pronged Nature of Student Engagement

Authors: Rosaline Govender, Shubnam Rambharos

Abstract:

Universities are, to a certain extent, the source of under-preparedness ideologically, structurally, and pedagogically, particularly since organizational cultures often alienate students by failing to enable epistemological access. This is evident in the unsustainably low graduation rates that characterize South African higher education, which indicate that under 30% graduate in minimum time, under two-thirds graduate within 6 years, and one-third have not graduated after 10 years. Although the statistics for the Faculty of Accounting and Informatics at the Durban University of Technology (DUT) in South Africa have improved significantly from 2019 to 2021, the graduation (32%), throughput (50%), and dropout rates (16%) are still a matter for concern as the graduation rates, in particular, are quite similar to the national statistics. For our students to succeed, higher education should take a multi-pronged approach to ensure student success, and student engagement is one of the ways to support our students. Student engagement depends not only on students’ teaching and learning experiences but, more importantly, on their social and academic integration, their sense of belonging, and their emotional connections in the institution. Such experiences need to challenge students academically and engage their intellect, grow their communication skills, build self-discipline, and promote confidence. The aim of this mixed methods study is to explore the multi-pronged nature of student success within the Faculty of Accounting and Informatics at DUT and focuses on the enabling and constraining factors of student success. The sources of data were the Mid-year student experience survey (N=60), the Hambisa Student Survey (N=85), and semi structured focus group interviews with first, second, and third year students of the Faculty of Accounting and Informatics Hambisa program. The Hambisa (“Moving forward”) focus area is part of the Siyaphumelela 2.0 project at DUT and seeks to understand the multiple challenges that are impacting student success which create a large “middle” cohort of students that are stuck in transition within academic programs. Using the lens of the sociocultural influences on student engagement framework, we conducted a thematic analysis of the two surveys and focus group interviews. Preliminary findings indicate that living conditions, choice of program, access to resources, motivation, institutional support, infrastructure, and pedagogical practices impact student engagement and, thus, student success. It is envisaged that the findings from this project will assist the university in being better prepared to enable student success.

Keywords: social and academic integration, socio-cultural influences, student engagement, student success

Procedia PDF Downloads 61
530 Geomorphology and Flood Analysis Using Light Detection and Ranging

Authors: George R. Puno, Eric N. Bruno

Abstract:

The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized.

Keywords: flooding, geomorphology, mapping, watershed

Procedia PDF Downloads 219
529 De-Densifying Congested Cores of Cities and Their Emerging Design Opportunities

Authors: Faith Abdul Rasak Asharaf

Abstract:

Every city has a threshold known as urban carrying capacity based on which it can withstand a particular density of people, above which the city might need to resort to measures like expanding its boundaries or growing vertically. As a result of this circumstance, the number of squatter communities is growing, as is the claustrophobic feeling of being confined inside a "concrete jungle." The expansion of suburbs, commercial areas, and industrial real estate in the areas surrounding medium-sized cities has resulted in changes to their landscapes and urban forms, as well as a systematic shift in their role in the urban hierarchy when functional endowment and connections to other territories are considered. The urban carrying capacity idea provides crucial guidance for city administrators and planners in better managing, designing, planning, constructing, and distributing urban resources to satisfy the huge demands of an evergrowing urban population. An ecological footprint is a criterion of urban carrying capacity, which is the amount of land required to provide humanity with renewable resources and absorb its trash. However, as each piece of land has its unique carrying capacity, including ecological, social, and economic considerations, these metropolitan areas begin to reach a saturation point over time. Various city models have been tried throughout the years to meet the increasing urban population density by moving the zones of work, life, and leisure to achieve maximum sustainable growth. The current scenario is that of a vertical city and compact city concept, in which the maximum density of people is attempted to fit into a definite area using efficient land use and a variety of other strategies, but this has proven to be a very unsustainable method of growth, as evidenced by the COVID-19 period. Due to a shortage of housing and basic infrastructure, densely populated cities gave rise to massive squatter communities, unable to accommodate the overflowing migrants. To achieve optimum carrying capacity, planning measures such as polycentric city and diffuse city concepts can be implemented, which will help to relieve the congested city core by relocating certain sectors of the town to the city periphery, which will help to create newer spaces for design in terms of public space, transportation, and housing, which is a major concern in the current scenario. The study's goal is focused on suggesting design options and solutions in terms of placemaking for better urban quality and urban life for the citizens once city centres have been de-densified based on urban carrying capacity and ecological footprint, taking the case of Kochi as an apt example of a highly densified city core, focusing on Edappally, which is an agglomeration of many urban factors.

Keywords: urban carrying capacity, urbanization, urban sprawl, ecological footprint

Procedia PDF Downloads 69
528 Geospatial Modeling Framework for Enhancing Urban Roadway Intersection Safety

Authors: Neeti Nayak, Khalid Duri

Abstract:

Despite the many advances made in transportation planning, the number of injuries and fatalities in the United States which involve motorized vehicles near intersections remain largely unchanged year over year. Data from the National Highway Traffic Safety Administration for 2018 indicates accidents involving motorized vehicles at traffic intersections accounted for 8,245 deaths and 914,811 injuries. Furthermore, collisions involving pedal cyclists killed 861 people (38% at intersections) and injured 46,295 (68% at intersections), while accidents involving pedestrians claimed 6,247 lives (25% at intersections) and injured 71,887 (56% at intersections)- the highest tallies registered in nearly 20 years. Some of the causes attributed to the rising number of accidents relate to increasing populations and the associated changes in land and traffic usage patterns, insufficient visibility conditions, and inadequate applications of traffic controls. Intersections that were initially designed with a particular land use pattern in mind may be rendered obsolete by subsequent developments. Many accidents involving pedestrians are accounted for by locations which should have been designed for safe crosswalks. Conventional solutions for evaluating intersection safety often require costly deployment of engineering surveys and analysis, which limit the capacity of resource-constrained administrations to satisfy their community’s needs for safe roadways adequately, effectively relegating mitigation efforts for high-risk areas to post-incident responses. This paper demonstrates how geospatial technology can identify high-risk locations and evaluate the viability of specific intersection management techniques. GIS is used to simulate relevant real-world conditions- the presence of traffic controls, zoning records, locations of interest for human activity, design speed of roadways, topographic details and immovable structures. The proposed methodology provides a low-cost mechanism for empowering urban planners to reduce the risks of accidents using 2-dimensional data representing multi-modal street networks, parcels, crosswalks and demographic information alongside 3-dimensional models of buildings, elevation, slope and aspect surfaces to evaluate visibility and lighting conditions and estimate probabilities for jaywalking and risks posed by blind or uncontrolled intersections. The proposed tools were developed using sample areas of Southern California, but the model will scale to other cities which conform to similar transportation standards given the availability of relevant GIS data.

Keywords: crosswalks, cyclist safety, geotechnology, GIS, intersection safety, pedestrian safety, roadway safety, transportation planning, urban design

Procedia PDF Downloads 97
527 Visual Aid and Imagery Ramification on Decision Making: An Exploratory Study Applicable in Emergency Situations

Authors: Priyanka Bharti

Abstract:

Decades ago designs were based on common sense and tradition, but after an enhancement in visualization technology and research, we are now able to comprehend the cognitive ability involved in the decoding of the visual information. However, many fields in visuals need intense research to deliver an efficient explanation for the events. Visuals are an information representation mode through images, symbols and graphics. It plays an impactful role in decision making by facilitating quick recognition, comprehension, and analysis of a situation. They enhance problem-solving capabilities by enabling the processing of more data without overloading the decision maker. As research proves that, visuals offer an improved learning environment by a factor of 400 compared to textual information. Visual information engages learners at a cognitive level and triggers the imagination, which enables the user to process the information faster (visuals are processed 60,000 times faster in the brain than text). Appropriate information, visualization, and its presentation are known to aid and intensify the decision-making process for the users. However, most literature discusses the role of visual aids in comprehension and decision making during normal conditions alone. Unlike emergencies, in a normal situation (e.g. our day to day life) users are neither exposed to stringent time constraints nor face the anxiety of survival and have sufficient time to evaluate various alternatives before making any decision. An emergency is an unexpected probably fatal real-life situation which may inflict serious ramifications on both human life and material possessions unless corrective measures are taken instantly. The situation demands the exposed user to negotiate in a dynamic and unstable scenario in the absence or lack of any preparation, but still, take swift and appropriate decisions to save life/lives or possessions. But the resulting stress and anxiety restricts cue sampling, decreases vigilance, reduces the capacity of working memory, causes premature closure in evaluating alternative options, and results in task shedding. Limited time, uncertainty, high stakes and vague goals negatively affect cognitive abilities to take appropriate decisions. More so, theory of natural decision making by experts has been understood with far more depth than that of an ordinary user. Therefore, in this study, the author aims to understand the role of visual aids in supporting rapid comprehension to take appropriate decisions during an emergency situation.

Keywords: cognition, visual, decision making, graphics, recognition

Procedia PDF Downloads 260
526 Examining the Influence of Firm Internal Level Factors on Performance Variations among Micro and Small Enterprises: Evidence from Tanzanian Agri-Food Processing Firms

Authors: Pulkeria Pascoe, Hawa P. Tundui, Marcia Dutra de Barcellos, Hans de Steur, Xavier Gellynck

Abstract:

A majority of Micro and Small Enterprises (MSEs) experience low or no growth. Understanding their performance remains unfinished and disjointed as there is no consensus on the factors influencing it, especially in developing countries. Using a Resource-Based View (RBV) as the theoretical background, this cross-sectional study employed four regression models to examine the influence of firm-level factors (firm-specific characteristics, firm resources, manager socio-demographic characteristics, and selected management practices) on the overall performance variations among 442 Tanzanian micro and small agri-food processing firms. Study results confirmed the RBV argument that intangible resources make a larger contribution to overall performance variations among firms than that tangible resources. Firms' tangible and intangible resources explained 34.5% of overall performance variations (intangible resources explained the overall performance variability by 19.4% compared to tangible resources, which accounted for 15.1%), ranking first in explaining the overall performance variance. Firm-specific characteristics ranked second by influencing variations in overall performance by 29.0%. Selected management practices ranked third (6.3%), while the manager's socio-demographic factors were last on the list, as they influenced the overall performance variability among firms by only 5.1%. The study also found that firms that focus on proper utilization of tangible resources (financial and physical), set targets, and undertake better working capital management practices performed higher than their counterparts (low and average performers). Furthermore, accumulation and proper utilization of intangible resources (relational, organizational, and reputational), undertaking performance monitoring practices, age of the manager, and the choice of the firm location and activity were the dominant significant factors influencing the variations among average and high performers, relative to low performers. The entrepreneurial background was a significant factor influencing variations in average and low-performing firms, indicating that entrepreneurial skills are crucial to achieving average levels of performance. Firm age, size, legal status, source of start-up capital, gender, education level, and total business experience of the manager were not statistically significant variables influencing the overall performance variations among the agri-food processors under the study. The study has identified both significant and non-significant factors influencing performance variations among low, average, and high-performing micro and small agri-food processing firms in Tanzania. Therefore, results from this study will help managers, policymakers and researchers to identify areas where more attention should be placed in order to improve overall performance of MSEs in agri-food industry.

Keywords: firm-level factors, micro and small enterprises, performance, regression analysis, resource-based-view

Procedia PDF Downloads 73
525 Boredom in the Classroom: Sentiment Analysis on Teaching Practices and Related Outcomes

Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís

Abstract:

Students’ emotional experiences have been a widely discussed theme among researchers, proving a central role on students’ outcomes. Yet, up to now, far too little attention has been paid to teaching practices that negatively relate with students’ negative emotions in the higher education. The present work aims to examine the relationship between teachers’ teaching practices (i.e., students’ evaluations of teaching and autonomy support), the students’ feelings of boredom and agentic engagement and motivation in the higher education context. To do so, the present study incorporates one of the most popular tools in natural processing language to address students’ evaluations of teaching: sentiment analysis. Whereas most research has focused on the creation of SA models and assessing students’ satisfaction regarding teachers and courses to the author’s best knowledge, no research before has included results from SA into an explanatory model. A total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) participated in the study. Students were enrolled in degree and masters’ studies at the faculty of Education of a public university of Spain. Data was collected using an online questionnaire students could access through a QR code they completed during a teaching period where the assessed teacher was not present. To assess students’ sentiments towards their teachers’ teaching, we asked them the following open-ended question: “If you had to explain a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?”. Sentiment analysis was performed with Microsoft's pre-trained model. For this study, we relied on the probability of the students answer belonging to the negative category. To assess the reliability of the measure, inter-rater agreement between this NLP tool and one of the researchers, who independently coded all answers, was examined. The average pairwise percent agreement and the Cohen’s kappa were calculated with ReCal2. The agreement reached was of 90.8% and Cohen’s kappa .68, both considered satisfactory. To test the hypothesis relations a structural equation model (SEM) was estimated. Results showed that the model fit indices displayed a good fit to the data; χ² (134) = 351.129, p < .001, RMSEA = .07, SRMR = .09, TLI = .91, CFI = .92. Specifically, results show that boredom was negatively predicted by autonomy support practices (β = -.47[-.61, -.33]), whereas for the negative sentiment extracted from SET, this relation was positive (β = .23[.16, .30]). In other words, when students’ opinion towards their instructors’ teaching practices was negative, it was more likely for them to feel bored. Regarding the relations among boredom and student outcomes, results showed a negative predictive value of boredom on students’ motivation to study (β = -.46[-.63, -.29]) and agentic engagement (β = -.24[-.33, -.15]). Altogether, results show a promising future for sentiment analysis techniques in the field of education as they proved the usefulness of this tool when evaluating relations among teaching practices and student outcomes.

Keywords: sentiment analysis, boredom, motivation, agentic engagement

Procedia PDF Downloads 84
524 Doctor-Patient Interaction in an L2: Pragmatic Study of a Nigerian Experience

Authors: Ayodele James Akinola

Abstract:

This study investigated the use of English in doctor-patient interaction in a university teaching hospital from a southwestern state in Nigeria with the aim of identifying the role of communication in an L2, patterns of communication, discourse strategies, pragmatic acts, and contexts that shape the interaction. Jacob Mey’s Pragmatic Acts notion complemented with Emanuel and Emanuel’s model of doctor-patient relationship provided the theoretical standpoint. Data comprising 7 audio-recorded doctors-patient interactions were collected from a University Hospital in Oyo state, Nigeria. Interactions involving the use of English language were purposefully selected. These were supplemented with patients’ case notes and interviews conducted with doctors. Transcription was patterned alongside modified Arminen’s notations of conversation analysis. In the study, interaction in English between doctor and patients has the preponderance of direct-translation, code-mixing and switching, Nigerianism and use of cultural worldviews to express medical experience. Irrespective of these, three patterns communication, namely the paternalistic, interpretive, and deliberative were identified. These were exhibited through varying discourse strategies. The paternalistic model reflected slightly casual conversational conventions and registers. These were achieved through the pragmemic activities of situated speech acts, psychological and physical acts, via patients’ quarrel-induced acts, controlled and managed through doctors’ shared situation knowledge. All these produced empathising, pacifying, promising and instructing practs. The patients’ practs were explaining, provoking, associating and greeting in the paternalistic model. The informative model reveals the use of adjacency pairs, formal turn-taking, precise detailing, institutional talks and dialogic strategies. Through the activities of the speech, prosody and physical acts, the practs of declaring, alerting and informing were utilised by doctors, while the patients exploited adapting, requesting and selecting practs. The negotiating conversational strategy of the deliberative model featured in the speech, prosody and physical acts. In this model, practs of suggesting, teaching, persuading and convincing were utilised by the doctors. The patients deployed the practs of questioning, demanding, considering and deciding. The contextual variables revealed that other patterns (such as phatic and informative) are also used and they coalesced in the hospital within the situational and psychological contexts. However, the paternalistic model was predominantly employed by doctors with over six years in practice, while the interpretive, informative and deliberative models were found among registrar and others below six years of medical practice. Doctors’ experience, patients’ peculiarities and shared cultural knowledge influenced doctor-patient communication in the study.

Keywords: pragmatics, communication pattern, doctor-patient interaction, Nigerian hospital situation

Procedia PDF Downloads 169
523 Evaluation of a Driver Training Intervention for People on the Autism Spectrum: A Multi-Site Randomized Control Trial

Authors: P. Vindin, R. Cordier, N. J. Wilson, H. Lee

Abstract:

Engagement in community-based activities such as education, employment, and social relationships can improve the quality of life for individuals with Autism Spectrum Disorder (ASD). Community mobility is vital to attaining independence for individuals with ASD. Learning to drive and gaining a driver’s license is a critical link to community mobility; however, for individuals with ASD acquiring safe driving skills can be a challenging process. Issues related to anxiety, executive function, and social communication may affect driving behaviours. Driving training and education aimed at addressing barriers faced by learner drivers with ASD can help them improve their driving performance. A multi-site randomized controlled trial (RCT) was conducted to evaluate the effectiveness of an autism-specific driving training intervention for improving the on-road driving performance of learner drivers with ASD. The intervention was delivered via a training manual and interactive website consisting of five modules covering varying driving environments starting with a focus on off-road preparations and progressing through basic to complex driving skill mastery. Seventy-two learner drivers with ASD aged 16 to 35 were randomized using a blinded group allocation procedure into either the intervention or control group. The intervention group received 10 driving lessons with the instructors trained in the use of an autism-specific driving training protocol, whereas the control group received 10 driving lessons as usual. Learner drivers completed a pre- and post-observation drive using a standardized driving route to measure driving performance using the Driving Performance Checklist (DPC). They also completed anxiety, executive function, and social responsiveness measures. The findings showed that there were significant improvements in driving performance for both the intervention (d = 1.02) and the control group (d = 1.15). However, the differences were not significant between groups (p = 0.614) or study sites (p = 0.842). None of the potential moderator variables (anxiety, cognition, social responsiveness, and driving instructor experience) influenced driving performance. This study is an important step toward improving community mobility for individuals with ASD showing that an autism-specific driving training intervention can improve the driving performance of leaner drivers with ASD. It also highlighted the complexity of conducting a multi-site design even when sites were matched according to geography and traffic conditions. Driving instructors also need more and clearer information on how to communicate with learner drivers with restricted verbal expression.

Keywords: autism spectrum disorder, community mobility, driving training, transportation

Procedia PDF Downloads 120
522 21st Century Computer Technology for the Training of Early Childhood Teachers: A Study of Second-Year Education Students Challenged with Building a Kindergarten Website

Authors: Yonit Nissim, Eyal Weissblueth

Abstract:

This research is the continuation of a process that began in 2010 with the goal of redesigning the training program for future early childhood teachers at the Ohalo College, to integrate technology and provide 21st-century skills. The article focuses on a study of the processes involved in developing a special educational unit which challenged students with the task of designing, planning and building an internet site for kindergartens. This project was part of their second-year studies in the early childhood track of an interdisciplinary course entitled 'Educating for the Future.' The goal: enabling students to gain experience in developing an internet site specifically for kindergartens, and gain familiarity with Google platforms, the acquisition and use of innovative skills and the integration of technology in pedagogy. Research questions examined how students handled the task of building an internet site. The study explored whether the guided process of building a site helped them develop proficiency in creativity, teamwork, evaluation and learning appropriate to the 21st century. The research tool was a questionnaire constructed by the researchers and distributed online to the students. Answers were collected from 50-course participants. Analysis of the participants’ responses showed that, along with the significant experience and benefits that students gained from building a website for kindergarten, ambivalence was shown toward the use of new, unfamiliar and complex technology. This attitude was characterized by unease and initial emotional distress triggered by the departure from routine training to an island of uncertainty. A gradual change took place toward the adoption of innovation with the help of empathy, training, and guidance from the instructors, leading to the students’ success in carrying out the task. Initial success led to further successes, resulting in a quality product and a feeling of personal competency among the students. A clear and extreme emotional shift was observed on the spectrum from a sense of difficulty and dissatisfaction to feelings of satisfaction, joy, competency and cognitive understanding of the importance of facing a challenge and succeeding. The findings of this study can contribute to increased understanding of the complex training process of future kindergarten teachers, coping with a changing world, and pedagogy that is supported by technology.

Keywords: early childhood teachers, educating for the future, emotions, kindergarten website

Procedia PDF Downloads 142
521 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation

Authors: Calorine Twebaze, Jesca Balinga

Abstract:

Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.

Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches

Procedia PDF Downloads 41
520 Experimental and Numerical Investigations on the Vulnerability of Flying Structures to High-Energy Laser Irradiations

Authors: Vadim Allheily, Rudiger Schmitt, Lionel Merlat, Gildas L'Hostis

Abstract:

Inflight devices are nowadays major actors in both military and civilian landscapes. Among others, missiles, mortars, rockets or even drones this last decade are increasingly sophisticated, and it is today of prior manner to develop always more efficient defensive systems from all these potential threats. In this frame, recent High Energy Laser weapon prototypes (HEL) have demonstrated some extremely good operational abilities to shot down within seconds flying targets several kilometers off. Whereas test outcomes are promising from both experimental and cost-related perspectives, the deterioration process still needs to be explored to be able to closely predict the effects of a high-energy laser irradiation on typical structures, heading finally to an effective design of laser sources and protective countermeasures. Laser matter interaction researches have a long history of more than 40 years at the French-German Research Institute (ISL). Those studies were tied with laser sources development in the mid-60s, mainly for specific metrology of fast phenomena. Nowadays, laser matter interaction can be viewed as the terminal ballistics of conventional weapons, with the unique capability of laser beams to carry energy at light velocity over large ranges. In the last years, a strong focus was made at ISL on the interaction process of laser radiation with metal targets such as artillery shells. Due to the absorbed laser radiation and the resulting heating process, an encased explosive charge can be initiated resulting in deflagration or even detonation of the projectile in flight. Drones and Unmanned Air Vehicles (UAVs) are of outmost interests in modern warfare. Those aerial systems are usually made up of polymer-based composite materials, whose complexity involves new scientific challenges. Aside this main laser-matter interaction activity, a lot of experimental and numerical knowledge has been gathered at ISL within domains like spectrometry, thermodynamics or mechanics. Techniques and devices were developed to study separately each aspect concerned by this topic; optical characterization, thermal investigations, chemical reactions analysis or mechanical examinations are beyond carried out to neatly estimate essential key values. Results from these diverse tasks are then incorporated into analytic or FE numerical models that were elaborated, for example, to predict thermal repercussion on explosive charges or mechanical failures of structures. These simulations highlight the influence of each phenomenon during the laser irradiation and forecast experimental observations with good accuracy.

Keywords: composite materials, countermeasure, experimental work, high-energy laser, laser-matter interaction, modeling

Procedia PDF Downloads 248
519 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 54
518 Toward Understanding the Glucocorticoid Receptor Network in Cancer

Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden

Abstract:

The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.

Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor

Procedia PDF Downloads 218
517 Social Mentoring: Towards Formal and Informal Deployment in the Structures of the Social and Solidarity Economy

Authors: Vanessa Casadella, Mourad Chouki, Agnès Ceccarelli, Sofiane Tahi

Abstract:

Mentoring is positioned in an interpersonal and intergenerational perspective, serving the transmission of interpersonal skills and organizational culture. It echoes orientation, project, self-actualization, guidance, transmission, and filiation. It is available using a formal or informal approach. The formal dimension refers to a privileged relationship between a senior and a junior. Informal mentoring is unplanned and emerges naturally between two people who choose each other. However, it remains more difficult to understand. To study the link between formal and informal mentoring and to define the notion of “social” mentoring, we conducted a qualitative study of an exploratory nature with around ten SSE organizations located in the southeast region of Tunisia. The wealth of this territory has pushed residents to found SSE organizations with a view to creating jobs but also to preserving traditions and preserving nature. These organizations developed spontaneously to solve various local problems, such as the revitalization of deserted rural areas, environmental degradation, and the reskilling and professional reintegration of people marginalized in the labor market. This research, based on semi-structured interviews in order to obtain exhaustive and sensitive data, involves an interview guide with few questions mobilized to let the respondents, leaders of the different structures, express themselves freely. The guide includes questions on activities, methods of sharing knowledge, and difficulties in understanding between stakeholders. The interviews, lasting 30 to 60 minutes, were recorded using a dictaphone and then transcribed in full. The results are as follows: 1. We see two iterative mentoring loops. A first loop can be considered a type of formal mentoring. It highlights the support organized (in the form of training) by social enterprises with the aim of developing the autonomy, know-how, and interpersonal skills of members. A second loop concerns informal mentoring. This is non-formalized support provided by members or with other members of the entourage. This informal mentoring is mainly based on the observation of good practices and learning by doing. 2. We notice an intersection between the two loops. If the first loop is not done, the second will not take place. The knowledge acquired in the first loop is used to feed the second. 3. We note a form of reluctance on the part of some members to share their knowledge for reasons of competition. Ultimately, we retain the notion of “social” mentoring as a hybridization of formal and informal mentoring while dimensioning the “social” perspective by emphasizing the reciprocal character, solidarity, confidence, and trust between the mentor and the mentee.

Keywords: social innovation, social mentoring, social and solidarity economy, informal mentoring

Procedia PDF Downloads 46
516 Biophysical Analysis of the Interaction of Polymeric Nanoparticles with Biomimetic Models of the Lung Surfactant

Authors: Weiam Daear, Patrick Lai, Elmar Prenner

Abstract:

The human body offers many avenues that could be used for drug delivery. The pulmonary route, which is delivered through the lungs, presents many advantages that have sparked interested in the field. These advantages include; 1) direct access to the lungs and the large surface area it provides, and 2) close proximity to the blood circulation. The air-blood barrier of the alveoli is about 500 nm thick. The air-blood barrier consist of a monolayer of lipids and few proteins called the lung surfactant and cells. This monolayer consists of ~90% lipids and ~10% proteins that are produced by the alveolar epithelial cells. The two major lipid classes constitutes of various saturation and chain length of phosphatidylcholine (PC) and phosphatidylglycerol (PG) representing 80% of total lipid component. The major role of the lung surfactant monolayer is to reduce surface tension experienced during breathing cycles in order to prevent lung collapse. In terms of the pulmonary drug delivery route, drugs pass through various parts of the respiratory system before reaching the alveoli. It is at this location that the lung surfactant functions as the air-blood barrier for drugs. As the field of nanomedicine advances, the use of nanoparticles (NPs) as drug delivery vehicles is becoming very important. This is due to the advantages NPs provide with their large surface area and potential specific targeting. Therefore, studying the interaction of NPs with lung surfactant and whether they affect its stability becomes very essential. The aim of this research is to develop a biomimetic model of the human lung surfactant followed by a biophysical analysis of the interaction of polymeric NPs. This biomimetic model will function as a fast initial mode of testing for whether NPs affect the stability of the human lung surfactant. The model developed thus far is an 8-component lipid system that contains major PC and PG lipids. Recently, a custom made 16:0/16:1 PC and PG lipids were added to the model system. In the human lung surfactant, these lipids constitute 16% of the total lipid component. According to the author’s knowledge, there is not much monolayer data on the biophysical analysis of the 16:0/16:1 lipids, therefore more analysis will be discussed here. Biophysical techniques such as the Langmuir Trough is used for stability measurements which monitors changes to a monolayer's surface pressure upon NP interaction. Furthermore, Brewster Angle Microscopy (BAM) employed to visualize changes to the lateral domain organization. Results show preferential interactions of NPs with different lipid groups that is also dependent on the monolayer fluidity. Furthermore, results show that the film stability upon compression is unaffected, but there are significant changes in the lateral domain organization of the lung surfactant upon NP addition. This research is significant in the field of pulmonary drug delivery. It is shown that NPs within a certain size range are safe for the pulmonary route, but little is known about the mode of interaction of those polymeric NPs. Moreover, this work will provide additional information about the nanotoxicology of NPs tested.

Keywords: Brewster angle microscopy, lipids, lung surfactant, nanoparticles

Procedia PDF Downloads 170
515 Improving the Biocontrol of the Argentine Stem Weevil; Using the Parasitic Wasp Microctonus hyperodae

Authors: John G. Skelly, Peter K. Dearden, Thomas W. R. Harrop, Sarah N. Inwood, Joseph Guhlin

Abstract:

The Argentine stem weevil (ASW; L. bonariensis) is an economically important pasture pest in New Zealand, which causes about $200 million of damage per annum. Microctonus hyperodae (Mh), a parasite of the ASW in its natural range in South America, was introduced into New Zealand to curb the pasture damage caused by the ASW. Mh is an endoparasitic wasp that lays its eggs in the ASW halting its reproduction. Mh was initially successful at preventing ASW proliferation and reducing pasture damage. The effectiveness of Mh has since declined due to decreased parasitism rates and has resulted in increased pasture damage. Although the mechanism through which ASW has developed resistance to Mh has not been discovered, it has been proposed to be due to the different reproductive modes used by Mh and the ASW in New Zealand. The ASW reproduces sexually, whereas Mh reproduces asexually, which has been hypothesised to have allowed the ASW to ‘out evolve’ Mh. Other species within the Microctonus genus reproduce both sexually and asexually. Strains of Microctonus aethiopoides (Ma), a species closely related to Mh, reproduce either by sexual or asexual reproduction. Comparing the genomes of sexual and asexual Microctonus may allow for the identification of the mechanism of asexual reproduction and other characteristics that may improve Mh as a biocontrol agent. The genomes of Mh and three strains of Ma, two of which reproduce sexually and one reproduces asexually, have been sequenced and annotated. The French (MaFR) and Moroccan (MaMO) reproduce sexually, whereas the Irish strain (MaIR) reproduces asexually. Like Mh, The Ma strains are also used as biocontrol agents, but for different weevil species. The genomes of Mh and MaIR were subsequently upgraded using Hi-C, resulting in a set of high quality, highly contiguous genomes. A subset of the genes involved in mitosis and meiosis, which have been identified though the use of Hidden Markov Models generated from genes involved in these processes in other Hymenoptera, have been catalogued in Mh and the strains of Ma. Meiosis and mitosis genes were broadly conserved in both sexual and asexual Microctonus species. This implies that either the asexual species have retained a subset of the molecular components required for sexual reproduction or that the molecular mechanisms of mitosis and meiosis are different or differently regulated in Microctonus to other insect species in which these mechanisms are more broadly characterised. Bioinformatic analysis of the chemoreceptor compliment in Microctonus has revealed some variation in the number of olfactory receptors, which may be related to host preference. Phylogenetic analysis of olfactory receptors highlights variation, which may be able to explain different host range preferences in the Microctonus. Hi-C clustering implies that Mh has 12 chromosomes, and MaIR has 8. Hence there may be variation in gene regulation between species. Genome alignment of Mh and MaIR implies that there may be large scale genome structural variation. Greater insight into the genetics of these agriculturally important group of parasitic wasps may be beneficial in restoring or maintaining their biocontrol efficacy.

Keywords: argentine stem weevil, asexual, genomics, Microctonus hyperodae

Procedia PDF Downloads 142
514 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development

Authors: Nigar Kantarci Carsibasi

Abstract:

Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.

Keywords: cancer, drug design, elastic network model, MDM2

Procedia PDF Downloads 118
513 The Effect of Using Emg-based Luna Neurorobotics for Strengthening of Affected Side in Chronic Stroke Patients - Retrospective Study

Authors: Surbhi Kaura, Sachin Kandhari, Shahiduz Zafar

Abstract:

Chronic stroke, characterized by persistent motor deficits, often necessitates comprehensive rehabilitation interventions to improve functional outcomes and mitigate long-term dependency. Luna neurorobotic devices, integrated with EMG feedback systems, provide an innovative platform for facilitating neuroplasticity and functional improvement in stroke survivors. This retrospective study aims to investigate the impact of EMG-based Luna neurorobotic interventions on the strengthening of the affected side in chronic stroke patients. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. Stroke is a debilitating condition that, when not effectively treated, can result in significant deficits and lifelong dependency. Common issues like neglecting the use of limbs can lead to weakness in chronic stroke cases. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. This study aims to assess how electromyographic triggering (EMG-triggered) robotic treatments affect walking, ankle muscle force after an ischemic stroke, and the coactivation of agonist and antagonist muscles, which contributes to neuroplasticity with the assistance of biofeedback using robotics. Methods: The study utilized robotic techniques based on electromyography (EMG) for daily rehabilitation in long-term stroke patients, offering feedback and monitoring progress. Each patient received one session per day for two weeks, with the intervention group undergoing 45 minutes of robot-assisted training and exercise at the hospital, while the control group performed exercises at home. Eight participants with impaired motor function and gait after stroke were involved in the study. EMG-based biofeedback exercises were administered through the LUNA neuro-robotic machine, progressing from trigger and release mode to trigger and hold, and later transitioning to dynamic mode. Assessments were conducted at baseline and after two weeks, including the Timed Up and Go (TUG) test, a 10-meter walk test (10m), Berg Balance Scale (BBG), and gait parameters like cadence, step length, upper limb strength measured by EMG threshold in microvolts, and force in Newton meters. Results: The study utilized a scale to assess motor strength and balance, illustrating the benefits of EMG-biofeedback following LUNA robotic therapy. In the analysis of the left hemiparetic group, an increase in strength post-rehabilitation was observed. The pre-TUG mean value was 72.4, which decreased to 42.4 ± 0.03880133 seconds post-rehabilitation, with a significant difference indicated by a p-value below 0.05, reflecting a reduced task completion time. Similarly, in the force-based task, the pre-knee dynamic force in Newton meters was 18.2NM, which increased to 31.26NM during knee extension post-rehabilitation. The post-student t-test showed a p-value of 0.026, signifying a significant difference. This indicated an increase in the strength of knee extensor muscles after LUNA robotic rehabilitation. Lastly, at baseline, the EMG value for ankle dorsiflexion was 5.11 (µV), which increased to 43.4 ± 0.06 µV post-rehabilitation, signifying an increase in the threshold and the patient's ability to generate more motor units during left ankle dorsiflexion. Conclusion: This study aimed to evaluate the impact of EMG and dynamic force-based rehabilitation devices on walking and strength of the affected side in chronic stroke patients without nominal data comparisons among stroke patients. Additionally, it provides insights into the inclusion of EMG-triggered neurorehabilitation robots in the daily rehabilitation of patients.

Keywords: neurorehabilitation, robotic therapy, stroke, strength, paralysis

Procedia PDF Downloads 48
512 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 163
511 Governance in the Age of Artificial intelligence and E- Government

Authors: Mernoosh Abouzari, Shahrokh Sahraei

Abstract:

Electronic government is a way for governments to use new technology that provides people with the necessary facilities for proper access to government information and services, improving the quality of services and providing broad opportunities to participate in democratic processes and institutions. That leads to providing the possibility of easy use of information technology in order to distribute government services to the customer without holidays, which increases people's satisfaction and participation in political and economic activities. The expansion of e-government services and its movement towards intelligentization has the ability to re-establish the relationship between the government and citizens and the elements and components of the government. Electronic government is the result of the use of information and communication technology (ICT), which by implementing it at the government level, in terms of the efficiency and effectiveness of government systems and the way of providing services, tremendous commercial changes are created, which brings people's satisfaction at the wide level will follow. The main level of electronic government services has become objectified today with the presence of artificial intelligence systems, which recent advances in artificial intelligence represent a revolution in the use of machines to support predictive decision-making and Classification of data. With the use of deep learning tools, artificial intelligence can mean a significant improvement in the delivery of services to citizens and uplift the work of public service professionals while also inspiring a new generation of technocrats to enter government. This smart revolution may put aside some functions of the government, change its components, and concepts such as governance, policymaking or democracy will change in front of artificial intelligence technology, and the top-down position in governance may face serious changes, and If governments delay in using artificial intelligence, the balance of power will change and private companies will monopolize everything with their pioneering in this field, and the world order will also depend on rich multinational companies and in fact, Algorithmic systems will become the ruling systems of the world. It can be said that currently, the revolution in information technology and biotechnology has been started by engineers, large economic companies, and scientists who are rarely aware of the political complexities of their decisions and certainly do not represent anyone. Therefore, it seems that if liberalism, nationalism, or any other religion wants to organize the world of 2050, it should not only rationalize the concept of artificial intelligence and complex data algorithm but also mix them in a new and meaningful narrative. Therefore, the changes caused by artificial intelligence in the political and economic order will lead to a major change in the way all countries deal with the phenomenon of digital globalization. In this paper, while debating the role and performance of e-government, we will discuss the efficiency and application of artificial intelligence in e-government, and we will consider the developments resulting from it in the new world and the concepts of governance.

Keywords: electronic government, artificial intelligence, information and communication technology., system

Procedia PDF Downloads 84
510 Virtual Engineers on Wheels: Transitioning from Mobile to Online Outreach

Authors: Kauser Jahan, Jason Halvorsen, Kara Banks, Kara Natoli, Elizabeth McWeeney, Brittany LeMasney, Nicole Caramanna, Justin Hillman, Christopher Hauske, Meghan Sparks

Abstract:

The Virtual Engineers on Wheels (ViEW) is a revised version of our established mobile K-12 outreach program Engineers on Wheels in order to address the pandemic. The Virtual Engineers on Wheels' (VIEW) goal has stayed the same as in prior years: to provide K-12 students and educators with the necessary resources to peak interest in the expanding fields of engineering. With these trying times, the Virtual Engineers on Wheels outreach has adapted its medium of instruction to be more seamless with the online approach to teaching and outreach. In the midst of COVID-19, providing a safe transfer of information has become a constraint for research. The focus has become how to uphold a level of quality instruction without diminishing the safety of those involved by promoting proper health practices and giving hope to students as well as their families. Furthermore, ViEW has created resources on effective strategies that minimize risk factors of COVID-19 and inform families that there is still a promising future ahead. To obtain these goals while still maintaining true to the hands-on learning that is so crucial to young minds, the approach is online video lectures followed by experiments within different engineering disciplines. ViEW has created a comprehensive website that students can leverage to explore the different fields of study. One of the experiments entails teaching about drone usage and how it might play a factor in the future of unmanned deliveries. Some of the other experiments focus on the differences in mask materials and their effectiveness, as well as their environmental outlook. Having students perform from home enables them a safe environment to learn at their own pace while still providing quality instruction that would normally be achieved in the classroom. Contact information is readily available on the website to provide interested parties with a means to ask their inquiries. As it currently stands, the interest in engineering/STEM-related fields is underrepresented from women and certain minority groups. So alongside the desire to grow interest, helping balance the scales is one of the main priorities of VIEW. In previous years, VIEW surveyed students before and after instruction to see if their perception of engineering has changed. In general, it is the understanding that being exposed to engineering/STEM at a young age increases the chances that it will be pursued later in life.

Keywords: STEM, engineering outreach, teaching pedagogy, pandemic

Procedia PDF Downloads 118
509 The Usefulness and Usability of a Linkedin Group for the Maintenance of a Community of Practice among Hand Surgeons Worldwide

Authors: Vaikunthan Rajaratnam

Abstract:

Maintaining continuous professional development among clinicians has been a challenge. Hand surgery is a unique speciality with the coming together of orthopaedics, plastics and trauma surgeons. The requirements for a team-based approach to care with the inclusion of other experts such as occupational, physiotherapist and orthotic and prosthetist provide the impetus for the creation of communities of practice. This study analysed the community of practice in hand surgery that was created through a social networking website for professionals. The main objectives were to discover the usefulness of this community of practice created in the platform of the group function of LinkedIn. The second objective was to determine the usability of this platform for the purposes of continuing professional development among members of this community of practice. The methodology used was one of mixed methods which included a quantitative analysis on the usefulness of the social network website as a community of practice, using the analytics provided by the LinkedIn platform. Further qualitative analysis was performed on the various postings that were generated by the community of practice within the social network website. This was augmented by a respondent driven survey conducted online to assess the usefulness of the platform for continuous professional development. A total of 31 respondents were involved in this study. This study has shown that it is possible to create an engaging and interactive community of practice among hand surgeons using the group function of this professional social networking website LinkedIn. Over three years the group has grown significantly with members from multiple regions and has produced engaging and interactive conversations online. From the results of the respondents’ survey, it can be concluded that there was satisfaction of the functionality and that it was an excellent platform for discussions and collaboration in the community of practice with a 69 % of satisfaction. Case-based discussions were the most useful functions of the community of practice. This platform usability was graded as excellent using the validated usability tool. This study has shown that the social networking site LinkedIn’s group function can be easily used as a community of practice effectively and provides convenience to professionals and has made an impact on their practice and better care for patients. It has also shown that this platform was easy to use and has a high level of usability for the average healthcare professional. This platform provided the improved connectivity among professionals involved in hand surgery care which allowed for the community to grow and with proper support and contribution of relevant material by members allowed for a safe environment for the exchange of knowledge and sharing of experience that is the foundation of a community practice.

Keywords: community of practice, online community, hand surgery, lifelong learning, LinkedIn, social media, continuing professional development

Procedia PDF Downloads 305
508 Metadiscourse in EFL, ESP and Subject-Teaching Online Courses in Higher Education

Authors: Maria Antonietta Marongiu

Abstract:

Propositional information in discourse is made coherent, intelligible, and persuasive through metadiscourse. The linguistic and rhetorical choices that writers/speakers make to organize and negotiate content matter are intended to help relate a text to its context. Besides, they help the audience to connect to and interpret a text according to the values of a specific discourse community. Based on these assumptions, this work aims to analyse the use of metadiscourse in the spoken performance of teachers in online EFL, ESP, and subject-teacher courses taught in English to non-native learners in higher education. In point of fact, the global spread of Covid 19 has forced universities to transition their in-class courses to online delivery. This has inevitably placed on the instructor a heavier interactional responsibility compared to in-class courses. Accordingly, online delivery needs greater structuring as regards establishing the reader/listener’s resources for text understanding and negotiating. Indeed, in online as well as in in-class courses, lessons are social acts which take place in contexts where interlocutors, as members of a community, affect the ways ideas are presented and understood. Following Hyland’s Interactional Model of Metadiscourse (2005), this study intends to investigate Teacher Talk in online academic courses during the Covid 19 lock-down in Italy. The selected corpus includes the transcripts of online EFL and ESP courses and subject-teachers online courses taught in English. The objective of the investigation is, firstly, to ascertain the presence of metadiscourse in the form of interactive devices (to guide the listener through the text) and interactional features (to involve the listener in the subject). Previous research on metadiscourse in academic discourse, in college students' presentations in EAP (English for Academic Purposes) lessons, as well as in online teaching methodology courses and MOOC (Massive Open Online Courses) has shown that instructors use a vast array of metadiscoursal features intended to express the speakers’ intentions and standing with respect to discourse. Besides, they tend to use directions to orient their listeners and logical connectors referring to the structure of the text. Accordingly, the purpose of the investigation is also to find out whether metadiscourse is used as a rhetorical strategy by instructors to control, evaluate and negotiate the impact of the ongoing talk, and eventually to signal their attitudes towards the content and the audience. Thus, the use of metadiscourse can contribute to the informative and persuasive impact of discourse, and to the effectiveness of online communication, especially in learning contexts.

Keywords: discourse analysis, metadiscourse, online EFL and ESP teaching, rhetoric

Procedia PDF Downloads 118
507 Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX): Scale Development

Authors: Cristina Costescu, Carmen David, Adrian Roșan

Abstract:

Executive functions (EF) and emotion regulation strategies are processes that allow individuals to function in an adaptative way and to be goal-oriented, which is essential for success in daily living activities, at school, or in social contexts. The Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX) represents an empirically based tool (based on the model of EF developed by Diamond) for evaluating significant dimensions of child and adolescent EFs and emotion regulation strategies, mainly in school contexts. The instrument measures the following dimensions: working memory, inhibition, cognitive flexibility, executive attention, planning, emotional control, and emotion regulation strategies. Building the instrument involved not only a top-down process, as we selected the content in accordance with prominent models of FE, but also a bottom-up one, as we were able to identify valid contexts in which FE and ER are put to use. For the construction of the instrument, we implemented three focus groups with teachers and other professionals since the aim was to develop an accurate, objective, and ecological instrument. We used the focus group method in order to address each dimension and to yield a bank of items to be further tested. Each dimension is addressed through a task that the examiner will apply and through several items derived from the main task. For the validation of the instrument, we plan to use item response theory (IRT), also known as the latent response theory, that attempts to explain the relationship between latent traits (unobservable cognitive processes) and their manifestations (i.e., observed outcomes, responses, or performance). REMEX represents an ecological scale that integrates a current scientific understanding of emotion regulation and EF and is directly applicable to school contexts, and it can be very useful for developing intervention protocols. We plan to test his convergent validity with the Childhood Executive Functioning Inventory (CHEXI) and Emotion Dysregulation Inventory (EDI) and divergent validity between a group of typically developing children and children with neurodevelopmental disorders, aged between 6 and 9 years old. In a previous pilot study, we enrolled a sample of 40 children with autism spectrum disorders and attention-deficit/hyperactivity disorder aged 6 to 12 years old, and we applied the above-mentioned scales (CHEXI and EDI). Our results showed that deficits in planning, bebavior regulation, inhibition, and working memory predict high levels of emotional reactivity, leading to emotional and behavioural problems. Considering previous results, we expect our findings to provide support for the validity and reliability of the REMEX version as an ecological instrument for assessing emotion regulation and EF in children and for key features of its uses in intervention protocols.

Keywords: executive functions, emotion regulation, children, item response theory, focus group

Procedia PDF Downloads 90
506 Qualitative Narrative Framework as Tool for Reduction of Stigma and Prejudice

Authors: Anastasia Schnitzer, Oliver Rehren

Abstract:

Mental health has become an increasingly important topic in society in recent years, not least due to the challenges posed by the corona pandemic. Along with this, the public has become more and more aware that a lack of enlightenment and proper coping mechanisms may result in a notable risk to develop mental disorders. Yet, there are still many biases against those affected, which are further connected to issues of stigmatization and societal exclusion. One of the main strategies to combat these forms of prejudice and stigma is to induce intergroup contact. More specifically, the Intergroup Contact Theory states engaging in certain types of contact with members of marginalized groups may be an effective way to improve attitudes towards these groups. However, due to the persistent prejudice and stigmatization, affected individuals often do not dare to speak openly about their mental disorders, so that intergroup contact often goes unnoticed. As a result, many people only experience conscious contact with individuals with a mental disorder through media. As an analogy to the Intergroup Contact Theory, the Parasocial Contact Hypothesis proposes that repeatedly being exposed to positive media representations of outgroup members can lead to a reduction of negative prejudices and attitudes towards this outgroup. While there is a growing body of research on the merit of this mechanism, measurements often only consist of 'positive' or 'negative' parasocial contact conditions (or examine the valence or quality of the previous contact with the outgroup); meanwhile, more specific conditions are often neglected. The current study aims to tackle this shortcoming. By scrutinizing the potential of contemporary series as a narrative framework of high quality, we strive to elucidate more detailed aspects of beneficial parasocial contact -for the sake of reducing prejudice and stigma towards individuals with mental disorders. Thus, a two-factorial between-subject online panel study with three measurement points was conducted (N = 95). Participants were randomly assigned to one of two groups, having to watch episodes of either a series with a narrative framework of high (Quality-TV) or low quality (Continental-TV), with one-week interval in-between the episodes. Suitable series were determined with the help of a pretest. Prejudice and stigma towards people with mental disorders were measured at the beginning of the study, before and after each episode, and in a final follow-up one week after the last two episodes. Additionally, parasocial interaction (PSI), quality of contact (QoC), and transportation were measured several times. Based on these data, multivariate multilevel analyses were performed in R using the lavaan package. Latent growth models showed moderate to high increases in QoC and PSI as well as small to moderate decreases in stigma and prejudice over time. Multilevel path analysis with individual and group levels further revealed that a qualitative narrative framework leads to a higher quality of contact experience, which then leads to lower prejudice and stigma, with effects ranging from moderate to high.

Keywords: prejudice, quality of contact, parasocial contact, narrative framework

Procedia PDF Downloads 71
505 Surgical School Project: Implementation Educational Plan for Adolescents Awaiting Bariatric Surgery

Authors: Brooke Sweeney, David White, Felix Amparano, Nick A. Clark, Amy R. Beck, Mathew Lindquist, Lora Edwards, Julie Vandal, Jennifer Lisondra, Katie Cox, Renee Arensberg, Allen Cummins, Jazmine Cedeno, Jason D. Fraser, Kelsey Dean, Helena H. Laroche, Cristina Fernandez

Abstract:

Background: National organizations call for standardized pre-surgical requirements and education to optimize postoperative outcomes. Since 2017 our surgery program has used defined protocols and educational curricula pre- and post-surgery. In response to patient outcomes, our educational content was refined to include quizzes to assess patient knowledge and surgical preparedness. We aim to optimize adolescent pre-bariatric surgery preparedness by improving overall aggregate pre-surgical assessment performance from 68% to 80% within 12 months. Methods: A multidisciplinary improvement team was developed within the weight management clinic (WMC) of our tertiary care, free-standing children’s hospital. A manual has been utilized since 2017, with limitations in consistent delivery and patient uptake of information. The curriculum has been improved to include quizzes administered during WMC visits prior to bariatric surgery. The initial outcome measure is the pre-surgical quiz score of adolescents preparing for bariatric surgery. Process measure was the number of questions answered correctly to test the questions. Baseline performance was determined by a patient assessment survey of pre-surgical preparedness at patient visits. Plan-Do-Study-Act cycles (PDSA) included: 1) creation and implementation of a refined curriculum, 2) development of 5 new quizzes based upon learning objectives, and 3) improving provider-lead teaching and quiz administration within clinic workflow. Run charts assessed impact over time. Results: A total of 346 quiz questions were administered to 34 adolescents. The outcome measure improved from a baseline mean of 68% to 86% following PDSA 2 cycles, and it was sustained. Conclusion/Implication: Patient/family comprehension of surgical preparedness improved with standardized education via team member-led teaching and assessment using quizzes during pre-surgical clinic visits. The next steps include launching redesigned teaching materials with modules correlated to quizzes and assessment of comprehension and outcomes post-surgically.

Keywords: bariatric surgery, adolescent, clinic, pre-bariatric training

Procedia PDF Downloads 54
504 The Effectiveness of an Occupational Therapy Metacognitive-Functional Intervention for the Improvement of Human Risk Factors of Bus Drivers

Authors: Navah Z. Ratzon, Rachel Shichrur

Abstract:

Background: Many studies have assessed and identified the risk factors of safe driving, but there is relatively little research-based evidence concerning the ability to improve the driving skills of drivers in general and in particular of bus drivers, who are defined as a population at risk. Accidents involving bus drivers can endanger dozens of passengers and cause high direct and indirect damages. Objective: To examine the effectiveness of a metacognitive-functional intervention program for the reduction of risk factors among professional drivers relative to a control group. Methods: The study examined 77 bus drivers working for a large public company in the center of the country, aged 27-69. Twenty-one drivers continued to the intervention stage; four of them dropped out before the end of the intervention. The intervention program we developed was based on previous driving models and the guiding occupational therapy practice framework model in Israel, while adjusting the model to the professional driving in public transportation and its particular risk factors. Treatment focused on raising awareness to safe driving risk factors identified at prescreening (ergonomic, perceptual-cognitive and on-road driving data), with reference to the difficulties that the driver raises and providing coping strategies. The intervention has been customized for each driver and included three sessions of two hours. The effectiveness of the intervention was tested using objective measures: In-Vehicle Data Recorders (IVDR) for monitoring natural driving data, traffic accident data before and after the intervention, and subjective measures (occupational performance questionnaire for bus drivers). Results: Statistical analysis found a significant difference between the degree of change in the rate of IVDR perilous events (t(17)=2.14, p=0.046), before and after the intervention. There was significant difference in the number of accidents per year before and after the intervention in the intervention group (t(17)=2.11, p=0.05), but no significant change in the control group. Subjective ratings of the level of performance and of satisfaction with performance improved in all areas tested following the intervention. The change in the ‘human factors/person’ field, was significant (performance : t=- 2.30, p=0.04; satisfaction with performance : t=-3.18, p=0.009). The change in the ‘driving occupation/tasks’ field, was not significant but showed a tendency toward significance (t=-1.94, p=0.07,). No significant differences were found in driving environment-related variables. Conclusions: The metacognitive-functional intervention significantly improved the objective and subjective measures of safety of bus drivers’ driving. These novel results highlight the potential contribution of occupational therapists, using metacognitive functional treatment, to preventing car accidents among the healthy drivers population and improving the well-being of these drivers. This study also enables familiarity with advanced technologies of IVDR systems and enriches the knowledge of occupational therapists in regards to using a wide variety of driving assessment tools and making the best practice decisions.

Keywords: bus drivers, IVDR, human risk factors, metacognitive-functional intervention

Procedia PDF Downloads 338
503 Creative Mathematics – Action Research of a Professional Development Program in an Icelandic Compulsory School

Authors: Osk Dagsdottir

Abstract:

Background—Gait classifying allows clinicians to differentiate gait patterns into clinically important categories that help in clinical decision making. Reliable comparison of gait data between normal and patients requires knowledge of the gait parameters of normal children's specific age group. However, there is still a lack of the gait database for normal children of different ages. Objectives—This study aims to investigate the kinematics of the lower limb joints during gait for normal children in different age groups. Methods—Fifty-three normal children (34 boys, 19 girls) were recruited in this study. All the children were aged between 5 to 16 years old. Age groups were defined as three types: young child aged (5-7), child (8-11), and adolescent (12-16). When a participant agreed to take part in the project, their parents signed a consent form. Vicon® motion capture system was used to collect gait data. Participants were asked to walk at their comfortable speed along a 10-meter walkway. Each participant walked up to 20 trials. Three good trials were analyzed using the Vicon Plug-in-Gait model to obtain parameters of the gait, e.g., walking speed, cadence, stride length, and joint parameters, e.g., joint angle, force, moments, etc. Moreover, each gait cycle was divided into 8 phases. The range of motion (ROM) angle of pelvis, hip, knee, and ankle joints in three planes of both limbs were calculated using an in-house program. Results—The temporal-spatial variables of three age groups of normal children were compared between each other; it was found that there was a significant difference (p < 0.05) between the groups. The step length and walking speed were gradually increasing from young child to adolescent, while cadence was gradually decreasing from young child to adolescent group. The mean and standard deviation (SD) of the step length of young child, child and adolescent groups were 0.502 ± 0.067 m, 0.566 ± 0.061 m and 0.672 ± 0.053 m, respectively. The mean and SD of the cadence of the young child, child and adolescent groups were 140.11±15.79 step/min, 129±11.84 step/min, and a 115.96±6.47 step/min, respectively. Moreover, it was observed that there were significant differences in kinematic parameters, either whole gait cycle or each phase. For example, RoM of knee angle in the sagittal plane in the whole cycle of young child group is (65.03±0.52 deg) larger than child group (63.47±0.47 deg). Conclusion—Our result showed that there are significant differences between each age group in the gait phases and thus children walking performance changes with ages. Therefore, it is important for the clinician to consider the age group when analyzing the patients with lower limb disorders before any clinical treatment.

Keywords: action research, creative learning, mathematics education, professional development

Procedia PDF Downloads 98
502 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements

Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga

Abstract:

Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.

Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform

Procedia PDF Downloads 376