Search results for: student performance prediction
15306 Chilean Social Work Students and Their Options to Access to College Financial Aid: Policy Implications on Equity and Professional Training
Authors: Oscar E. Cariceo
Abstract:
In Chile, social workers´ professional training is developed in the undergraduate level, mainly. Despite the fact that several schools have been launched Master of Social Work programs, the Bachelor in Social Work is the minimum qualification to start a professional career. In the current Chilean higher education system, there exist different financial aid options in order to guarantee equal access to higher education. These policies, which are student loans and scholarships, basically, are applied and distributed by Government agencies. They are linked to academic performance and socio-economic needs, in terms of standardized test scores and social vulnerability criteria. In addition, institutions that enroll students with high scores, also receive direct financial support. In other words, social work students must compete for the resources to pay for college tuitions and fees with other students from different programs and knowledge fields and, as a consequence, they can indirectly enhance schools´ money income. This work aims to describe the reality of social work students to access to financial aid in Chile. The analysis presents the results of the University Selection Test of students, who were accepted in social work undergraduate programs during 2014 related to their qualifications to apply to three main financial aid programs, and their contribution to attracting resources to their schools. In general, data show that social work students participate in a low proportion in the distribution of financial aid, both student loans and scholarships. Few of them reach enough scores to guarantee direct financial resources to their institutions. Therefore, this situation has deep implications on equal access to higher education for vulnerable students and affects equal access to training options for young social workers, due to the highly competitive financial aid system.Keywords: social work, professional training, higher education, financial aid, equity
Procedia PDF Downloads 29415305 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks
Authors: Emad A. Mohammed
Abstract:
The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.Keywords: permeability, hydraulic flow units, artificial intelligence, correlation
Procedia PDF Downloads 13815304 Effect of Leadership Style on Organizational Performance
Authors: Khadija Mushtaq, Mian Saqib Mehmood
Abstract:
This paper attempts to determine the impact of leadership style and learning orientation on organizational performance in Pakistan. A sample of 158 middle managers selected from sports and surgical factories from Sialkot. The empirical estimation is based on a multiple linear regression analysis of the relationship between leadership style, learning orientation and organizational performance. Leadership style is measure through transformational leadership and transactional leadership. The transformational leadership has insignificant impact on organizational performance. The transactional leadership has positive and significant relation with organizational performance. Learning orientation also has positive and significant relation with organizational performance. Linear regression used to estimate the relation between dependent and independent variables. This study suggests top manger should prefer continuous process for improvement for any change in system rather radical change.Keywords: transformational leadership, transactional leadership, learning orientation, organizational performance, Pakistan
Procedia PDF Downloads 40515303 Consumer Experience of 3D Body Scanning Technology and Acceptance of Related E-Commerce Market Applications in Saudi Arabia
Authors: Moudi Almousa
Abstract:
This research paper explores Saudi Arabian female consumers’ experiences using 3D body scanning technology and their level of acceptance of possible market applications of this technology to adopt for apparel online shopping. Data was collected for 82 women after being scanned then viewed a short video explaining three possible scenarios of 3D body scanning applications, which include size prediction, customization, and virtual try-on, before completing the survey questionnaire. Although respondents have strong positive responses towards the scanning experience, the majority were concerned about their privacy during the scanning process. The results indicated that size prediction and virtual try on had greater market application potential and a higher chance of crossing the gap based on consumer interest. The results of the study also indicated a strong positive correlation between respondents’ concern with inability to try on apparel products in online environments and their willingness to use the 3D possible market applications.Keywords: 3D body scanning, market applications, online, apparel fit
Procedia PDF Downloads 14515302 The Role of Strategic Flexibility for Achieving Sustainable Competition Advantage and Its Effect on Business Performance
Authors: Kemalettin Eryesil, Osman Esmen, Aykut Beduk
Abstract:
In this study, it has been studied to determine the relationship between business performance and strategic flexibility, which is defined to be the strategic choice that provides the ability of rapidly responding the changes of the dynamic environment of the companies, for having competitive advantages. In this context a field study has been conducted over 56 companies, which are active in informatics and electronics sectors in TEKNOKENT. As a result of the study it has been determined that; strategic flexibility has an effect on business performance and there is a positive and statistically significant relationship between strategic flexibility and business performance.Keywords: sustainable competition advantage, strategic flexibility, firm performance, TEKNOKENT
Procedia PDF Downloads 38515301 Clinical Prediction Score for Ruptured Appendicitis In ED
Authors: Thidathit Prachanukool, Chaiyaporn Yuksen, Welawat Tienpratarn, Sorravit Savatmongkorngul, Panvilai Tangkulpanich, Chetsadakon Jenpanitpong, Yuranan Phootothum, Malivan Phontabtim, Promphet Nuanprom
Abstract:
Background: Ruptured appendicitis has a high morbidity and mortality and requires immediate surgery. The Alvarado Score is used as a tool to predict the risk of acute appendicitis, but there is no such score for predicting rupture. This study aimed to developed the prediction score to determine the likelihood of ruptured appendicitis in an Asian population. Methods: This study was diagnostic, retrospectively cross-sectional and exploratory model at the Emergency Medicine Department in Ramathibodi Hospital between March 2016 and March 2018. The inclusion criteria were age >15 years and an available pathology report after appendectomy. Clinical factors included gender, age>60 years, right lower quadrant pain, migratory pain, nausea and/or vomiting, diarrhea, anorexia, fever>37.3°C, rebound tenderness, guarding, white blood cell count, polymorphonuclear white blood cells (PMN)>75%, and the pain duration before presentation. The predictive model and prediction score for ruptured appendicitis was developed by multivariable logistic regression analysis. Result: During the study period, 480 patients met the inclusion criteria; of these, 77 (16%) had ruptured appendicitis. Five independent factors were predictive of rupture, age>60 years, fever>37.3°C, guarding, PMN>75%, and duration of pain>24 hours to presentation. A score > 6 increased the likelihood ratio of ruptured appendicitis by 3.88 times. Conclusion: Using the Ramathibodi Welawat Ruptured Appendicitis Score. (RAMA WeRA Score) developed in this study, a score of > 6 was associated with ruptured appendicitis.Keywords: predictive model, risk score, ruptured appendicitis, emergency room
Procedia PDF Downloads 16615300 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite
Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi
Abstract:
Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction
Procedia PDF Downloads 16215299 College Students’ Multitasking and Its Causes
Authors: Huey-Wen Chou, Shuo-Heng Liang
Abstract:
This study focuses on studying college students’ multitasking with cellphones/laptops during lectures. In-class multitasking behavior is defined as the activities students engaged that are irrelevant to learning. This study aims to understand if students' learning engagement affects students' multitasking as well as to investigate the causes or motivations that contribute to the occurrence of multitasking behavior. Survey data were collected and analyzed by PLS method and multiple regression to test the research model and hypothesis. Major results include: 1. Students' multitasking motivation positively predicts students’ in-class multitasking. 2. Factors affecting multitasking in class, including efficiency, entertainment and social needs, significantly impact on multitasking. 3. Polychronic personality traits will positively predict students’ multitasking. 4. Students' classroom learning engagement negatively predicts multitasking. 5. Course attributes negatively predict student learning engagement and positively predict student multitasking.Keywords: engagement, monochronic personality, multitasking, learning, personality traits
Procedia PDF Downloads 13415298 The Relationship between Emotional Intelligence and Leadership Performance
Authors: Omar Al Ali
Abstract:
The current study was aimed to explore the relationships between emotional intelligence, cognitive ability, and leader's performance. Data were collected from 260 senior managers from UAE. The results showed that there are significant relationships between emotional intelligence and leadership performance as measured by the annual internal evaluations of each participant (r = .42, p < .01). Data from regression analysis revealed that both variables namely emotional intelligence (beta = .31, p < .01), and cognitive ability (beta = .29, p < .01), predicted leadership competencies, and together explained 26% of its variance. Data suggests that EI and cognitive ability are significantly correlated with leadership performance. In depth implications of the present findings for human resource development theory and practice are discussed.Keywords: emotional intelligence, cognitive ability, leadership, performance
Procedia PDF Downloads 47715297 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 7915296 The Degree Project-Course in Swedish Teacher Education – Deliberative and Transformative Perspectives on the Formative Assessment Practice
Authors: Per Blomqvist
Abstract:
The overall aim of this study is to highlight how the degree project-course in teacher education has developed over time at Swedish universities, above all regarding changes in the formative assessment practices in relation to student's opportunities to take part in writing processes that can develop both their independent critical thinking, subject knowledge, and academic writing skills. Theoretically, the study is based on deliberative and transformative perspectives of teaching academic writing in higher education. The deliberative perspective is motivated by the fact that it is the universities and their departments' responsibility to give the students opportunities to develop their academic writing skills, while there is little guidance on how this can be implemented. The transformative perspective is motivated by the fact that education needs to be adapted to the student's prior knowledge and developed in relation to the student group. Given the academisation of education and the new student groups, this is a necessity. The empirical data consists of video recordings of teacher groups' conversations at three Swedish universities. The conversations were conducted as so-called collective remembering interviews, a method to stimulate the participants' memory through social interaction, and focused on addressing issues on how the degree project-course in teacher education has changed over time. Topic analysis was used to analyze the conversations in order to identify common descriptions and expressions among the teachers. The result highlights great similarities in how the degree project-course has changed over time, both from a deliberative and a transformative perspective. The course is characterized by a “strong framing,” where the teachers have great control over the work through detailed instructions for the writing process and detailed templates for the text. This is justified by the fact that the education has been adapted based on the student teachers' lack of prior subject knowledge. The strong framing places high demands on continuous discussions between teachers about, for example, which tools the students have with them and which linguistic and textual tools are offered in the education. The teachers describe that such governance often leads to conflicts between teachers from different departments because reading and writing are always part of cultural contexts and are linked to different knowledge, traditions, and values. The problem that is made visible in this study raises questions about how students' opportunities to develop independence and make critical judgments in academic writing are affected if the writing becomes too controlled and if passing students becomes the main goal of education.Keywords: formative assessment, academic writing, degree project, higher education, deliberative perspective, transformative perspective
Procedia PDF Downloads 6515295 Current of Drain for Various Values of Mobility in the Gaas Mesfet
Authors: S. Belhour, A. K. Ferouani, C. Azizi
Abstract:
In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.Keywords: analytical, gallium arsenide, MESFET, mobility, models
Procedia PDF Downloads 7515294 Improving Student Learning in a Math Bridge Course through Computer Algebra Systems
Authors: Alejandro Adorjan
Abstract:
Universities are motivated to understand the factor contributing to low retention of engineering undergraduates. While precollege students for engineering increases, the number of engineering graduates continues to decrease and attrition rates for engineering undergraduates remains high. Calculus 1 (C1) is the entry point of most undergraduate Engineering Science and often a prerequisite for Computing Curricula courses. Mathematics continues to be a major hurdle for engineering students and many students who drop out from engineering cite specifically Calculus as one of the most influential factors in that decision. In this context, creating course activities that increase retention and motivate students to obtain better final results is a challenge. In order to develop several competencies in our students of Software Engineering courses, Calculus 1 at Universidad ORT Uruguay focuses on developing several competencies such as capacity of synthesis, abstraction, and problem solving (based on the ACM/AIS/IEEE). Every semester we try to reflect on our practice and try to answer the following research question: What kind of teaching approach in Calculus 1 can we design to retain students and obtain better results? Since 2010, Universidad ORT Uruguay offers a six-week summer noncompulsory bridge course of preparatory math (to bridge the math gap between high school and university). Last semester was the first time the Department of Mathematics offered the course while students were enrolled in C1. Traditional lectures in this bridge course lead to just transcribe notes from blackboard. Last semester we proposed a Hands On Lab course using Geogebra (interactive geometry and Computer Algebra System (CAS) software) as a Math Driven Development Tool. Students worked in a computer laboratory class and developed most of the tasks and topics in Geogebra. As a result of this approach, several pros and cons were found. It was an excessive amount of weekly hours of mathematics for students and, as the course was non-compulsory; the attendance decreased with time. Nevertheless, this activity succeeds in improving final test results and most students expressed the pleasure of working with this methodology. This teaching technology oriented approach strengthens student math competencies needed for Calculus 1 and improves student performance, engagement, and self-confidence. It is important as a teacher to reflect on our practice, including innovative proposals with the objective of engaging students, increasing retention and obtaining better results. The high degree of motivation and engagement of participants with this methodology exceeded our initial expectations, so we plan to experiment with more groups during the summer so as to validate preliminary results.Keywords: calculus, engineering education, PreCalculus, Summer Program
Procedia PDF Downloads 29115293 StockTwits Sentiment Analysis on Stock Price Prediction
Authors: Min Chen, Rubi Gupta
Abstract:
Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing
Procedia PDF Downloads 15715292 The Effects of Three Leadership Styles on Individual Performance
Authors: Leilei Liang
Abstract:
Leadership is commonly classified as formal leadership and informal leadership, which ignores and neglects the effects of 3rd type leadership. The emergence of 3rd type of leadership is closely related to special relations. To figure out the mechanism and effects of 3rd type leadership as well as the impacts of formal leadership and informal leadership on employee performance, this study collects data from 350 participants through a survey and proposes three hypotheses respectively from the perspective of expectation theory. The analytical results provide strong evidence for two of the three hypotheses, which demonstrate the positive correlation between formal leadership and individual performance and the negative relationship between 3rd type leadership and individual performance. This study contributes to leadership literature by putting forward the concept of the 3rd type of leadership. In addition, the effects of formal leadership, informal leadership, and 3rd type leadership on individual performance are discussed respectively in this study.Keywords: formal leadership, informal leadership, 3rd leadership, individual performance, expectation theory
Procedia PDF Downloads 24315291 Influence of Instrumental Playing on Attachment Type of Musicians and Music Students Using Adult Attachment Scale-R
Authors: Sofia Serra-Dawa
Abstract:
Adult relationships accrue on a variety of past social experiences, intentions, and emotions that might predispose and influence the approach to and construction of subsequent relationships. The Adult Attachment Theory (AAT) proposes four types of adult attachment, where attachment is built over two dimensions of anxiety and avoidance: secure, anxious-preoccupied, dismissive-avoidant, and fearful-avoidant. The AAT has been studied in multiple settings such as personal and therapeutic relationships, educational settings, sexual orientation, health, and religion. In music scholarship, the AAT has been used to frame class learning of student singers and study the relational behavior between voice teachers and students. Building on this study, the present inquiry studies how attachment types might characterize learning relationships of music students (in the Western Conservatory tradition), and whether particular instrumental experiences might correlate to given attachment styles. Given certain behavioral cohesive features of established traditions of instrumental playing and performance modes, it is hypothesized that student musicians will display specific characteristics correlated to instrumental traditions, demonstrating clear tendency of attachment style, which in turn has implications on subsequent professional interactions. This study is informed by the methodological framework of Adult Attachment Scale-R (Collins and Read, 1990), which was particularly chosen given its non-invasive questions and classificatory validation. It is further hypothesized that the analytical comparison of musicians’ profiles has the potential to serve as the baseline for other comparative behavioral observation studies [this component is expected to be verified and completed well before the conference meeting]. This research may have implications for practitioners concerned with matching and improving musical teaching and learning relationships and in (professional and amateur) long-term musical settings.Keywords: adult attachment, music education, musicians attachment profile, musicians relationships
Procedia PDF Downloads 15815290 Improving Effectiveness of Students' Learning during Clinical Rotations at a Teaching Hospital in Rwanda
Authors: Nanyombi Lubimbi, Josette Niyokindi
Abstract:
Background: As in many other developing countries in Africa, Rwanda suffers from a chronic shortage of skilled Health Care professionals including Clinical Instructors. This shortage negatively affects the clinical instruction quality therefore impacting student-learning outcomes. Due to poor clinical supervision, it is often noted that students have no structure or consistent guidance in their learning process. The Clinical Educators and the Rwandan counterparts identified the need to create a favorable environment for learning. Description: During orientation the expectations of the student learning process, collaboration of the clinical instructors with the nurses and Clinical Educators is outlined. The ward managers facilitate structured learning by helping the students identify a maximum of two patients using the school’s objectives to guide the appropriate selection of patients. Throughout the day, Clinical Educators with collaboration of Clinical Instructors when present conduct an ongoing assessment of learning and provide feedback to the students. Post-conference is provided once or twice a week to practice critical thinking skills of patient cases that they have been taking care of during the day. Lessons Learned: The students are found to be more confident with knowledge and skills gained during rotations. Clinical facility evaluations completed by students at the end of their rotations highlight the student’s satisfaction and recommendation for continuation of structured learning. Conclusion: Based on the satisfaction of both students and Clinical Instructors, we have identified need for structured learning during clinical rotations. We acknowledge that more evidence-based practice is necessary to effectively address the needs of nursing and midwifery students throughout the country.Keywords: Rwanda, clinical rotation, structured learning, critical thinking skills, post-conference
Procedia PDF Downloads 23915289 Investigation on Remote Sense Surface Latent Heat Temperature Associated with Pre-Seismic Activities in Indian Region
Authors: Vijay S. Katta, Vinod Kushwah, Rudraksh Tiwari, Mulayam Singh Gaur, Priti Dimri, Ashok Kumar Sharma
Abstract:
The formation process of seismic activities because of abrupt slip on faults, tectonic plate moments due to accumulated stress in the Earth’s crust. The prediction of seismic activity is a very challenging task. We have studied the changes in surface latent heat temperatures which are observed prior to significant earthquakes have been investigated and could be considered for short term earthquake prediction. We analyzed the surface latent heat temperature (SLHT) variation for inland earthquakes occurred in Chamba, Himachal Pradesh (32.5 N, 76.1E, M-4.5, depth-5km) nearby the main boundary fault region, the data of SLHT have been taken from National Center for Environmental Prediction (NCEP). In this analysis, we have calculated daily variations with surface latent heat temperature (0C) in the range area 1⁰x1⁰ (~120/KM²) with the pixel covering epicenter of earthquake at the center for a three months period prior to and after the seismic activities. The mean value during that period has been considered in order to take account of the seasonal effect. The monthly mean has been subtracted from daily value to study anomalous behavior (∆SLHT) of SLHT during the earthquakes. The results found that the SLHTs adjacent the epicenters all are anomalous high value 3-5 days before the seismic activities. The abundant surface water and groundwater in the epicenter and its adjacent region can provide the necessary condition for the change of SLHT. To further confirm the reliability of SLHT anomaly, it is necessary to explore its physical mechanism in depth by more earthquakes cases.Keywords: surface latent heat temperature, satellite data, earthquake, magnetic storm
Procedia PDF Downloads 13515288 Performance Assessment of Islamic Banks in the Light of Maqasid Al-Shariah
Authors: Asma Ammar
Abstract:
Being different in theory and practice from their conventional counterparts, this research aims to assess the performance of Islamic banks beyond the financial performance by emphasizing their ethical and social identity based on the higher purposes of Islamic law, namely Maqasid al-Shariah. Using Imam al-Ghazali’s theory of Maqasid al-Shariah and Sekaran’s (2000) method, we develop a Maqasid-based index including the five objectives of Shariah (preservation of life, religion, intellect, posterity, and wealth). Our sample covers 9 Islamic banks considered among the largest Islamic banks in the world. For the five years of study (2017-2021), our results reveal that the highest score is performed by Bank Muamalat while the least score is given to Dubai Islamic Bank. The overall Maqasid performance of the sample is unimpressive, indicating that there is a lack of achievement in Maqasid al-Shariah performance of Islamic banks. Consequently, serious measures should be taken by Islamic banks to improve their Maqasid performance and thus contribute effectively to the socio-economic development of the countries in which they operate.Keywords: Maqasid al-Shariah, Maqasid al-Shariah index, Islamic banks, performance assessment
Procedia PDF Downloads 7915287 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks
Authors: M. Heydari Vini
Abstract:
There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips
Procedia PDF Downloads 50615286 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field
Authors: Nastaran Moosavi, Mohammad Mokhtari
Abstract:
Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.Keywords: density, p-impedance, s-impedance, post-stack seismic inversion, pre-stack seismic inversion
Procedia PDF Downloads 32415285 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 5615284 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems
Procedia PDF Downloads 8915283 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 49115282 In-Fun-Mation: Putting the Fun in Information Retrieval at the Linnaeus University, Sweden
Authors: Aagesson, Ekstrand, Persson, Sallander
Abstract:
A description of how a team of librarians at Linnaeus University Library in Sweden utilizes a pedagogical approach to deliver engaging digital workshops on information retrieval. The team consists of four librarians supporting three different faculties. The paper discusses the challenges faced in engaging students who may perceive information retrieval as a boring and difficult subject. The paper emphasizes the importance of motivation, inclusivity, constructive feedback, and collaborative learning in enhancing student engagement. By employing a two-librarian teaching model, maintaining a lighthearted approach, and relating information retrieval to everyday experiences, the team aimed to create an enjoyable and meaningful learning experience. The authors describe their approach to increase student engagement and learning outcomes through a three-phase workshop structure: before, during, and after the workshops. The "flipped classroom" method was used, where students were provided with pre-workshop materials, including a short film on information search and encouraged to reflect on the topic using a digital collaboration tool. During the workshops, interactive elements such as quizzes, live demonstrations, and practical training were incorporated, along with opportunities for students to ask questions and provide feedback. The paper concludes by highlighting the benefits of the flipped classroom approach and the extended learning opportunities provided by the before and after workshop phases. The authors believe that their approach offers a sustainable alternative for enhancing information retrieval knowledge among students at Linnaeus University.Keywords: digital workshop, flipped classroom, information retrieval, interactivity, LIS practitioner, student engagement
Procedia PDF Downloads 6715281 Reburning Characteristics of Biomass Syngas in a Pilot Scale Heavy Oil Furnace
Authors: Sang Heon Han, Daejun Chang, Won Yang
Abstract:
NOx reduction characteristics of syngas fuel were numerically investigated for the 2MW pilot scale heavy oil furnace of KITECH (Korea Institute of Industrial Technology). The secondary fuel and syngas was fed into the furnace with two purposes- partial replacement of main fuel and reburning of NOx. Some portion of syngas was fed into the flame zone to partially replace the heavy oil, while the other portion was fed into the furnace downstream to reduce NOx generation. The numerical prediction was verified by comparing it with the experimental results. Syngas of KITECH’s experiment, assumed to be produced from biomass, had very low calorific value and contained 3% hydrocarbon. This study investigated the precise behavior of NOx generation and NOx reduction as well as thermo-fluidic characteristics inside the furnace, which was unavailable with experiment. In addition to 3% hydrocarbon syngas, 5%, and 7% hydrocarbon syngas were numerically tested as reburning fuels to analyze the effect of hydrocarbon proportion to NOx reduction. The prediction showed that the 3% hydrocarbon syngas is as much effective as 7% hydrocarbon syngas in reducing NOx.Keywords: syngas, reburning, heavy oil, furnace
Procedia PDF Downloads 44515280 Predicting Entrepreneurial Intentions among Undergraduates Using Theory of Planned Behaviour
Authors: Mohammed Abubakar Mawoli
Abstract:
Theory of Planned Behavior (TPB) is a useful tool for predicting entrepreneurial intentions among individuals or groups of people. In view of the Nigerian government’s renewed educational policies and programs to prepare Nigerian undergraduates towards self-reliance and employers of labor after graduation, it becomes pertinent to empirically examine and predict the undergraduate’s entrepreneurial intentions at graduation. Thus, this study primarily examines the undergraduates entrepreneurial intentions using TPB, which includes perceived desirability, perceived social norm, and perceived feasibility factors. In so doing, a questionnaire research method was adopted in which 219 copies of a questionnaire distributed to final year undergraduates were belonging to five departments with a total population of 487 students. A combination of relative frequency, mean standard deviation and multiple regression statistical tools were employed for data analysis. The study found that TPB components exert a significant composite effect on undergraduate’s entrepreneurial intentions. Based on individual contribution of the independent variables, Perceived Desirability is the strongest predictor of the undergraduate’s entrepreneurial intentions, while Perceived Social Norm is a strong predictor of the undergraduate’s entrepreneurial intentions. However, Perceived Feasibility is not a strong predictor of student’s entrepreneurial intentions. The study therefore, recommends that the Perceived desirability, which is formed and shaped by ones level of education and skills acquisition, be improved upon to create the expected positive impact on graduates entrepreneurial intentions and possible venture creation.Keywords: entrepreneurship, entrepreneurship education, entrepreneurial intentions, planned behaviour, prediction, Nigeria
Procedia PDF Downloads 30115279 Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors
Authors: Jing Yuan, Hongwei Yang
Abstract:
This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R.Keywords: Bayesian multilevel modeling, mathematics education, PISA, multilevel
Procedia PDF Downloads 33615278 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction
Authors: M. D. Haneef, R. B. Randall, Z. Peng
Abstract:
Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction
Procedia PDF Downloads 31015277 Current Methods for Drug Property Prediction in the Real World
Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh
Abstract:
Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning
Procedia PDF Downloads 83