Search results for: structure identification
9124 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex
Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda
Abstract:
Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis
Procedia PDF Downloads 2019123 Application of Ontologies to Contract for Difference Documents
Authors: Renato Figueira Franco
Abstract:
This paper aims to create a representational information system applied to the securities market, particularly the development of an ontology applied to the analysis of the Key Information Documents of Contracts for Difference. The process of obtaining knowledge and its proper formal representation has raised the attention both from the scientific literature and the capital markets supervisory authorities. The formal knowledge representation is embodied in the construction of ontologies, which are responsible for defining a knowledge base structure of a given scientific domain, facilitating its understanding, and allowing its sharing among the scientific community. The scope of this study is restricted to the analysis of capital markets ontologies in order to capture its structure, semantics and knowledge sharing between people and systems.Keywords: ontology, financial markets, CFD, PRIIPs, key information documents
Procedia PDF Downloads 669122 Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity
Authors: Muhammad Tariq A. Chaudhary
Abstract:
Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study.Keywords: bridge, FEM model, reinforced concrete pier, pile foundation, seismic loading, soil-structure interaction
Procedia PDF Downloads 2329121 Comparative Study of R.C.C. Steel and Concrete Building
Authors: Mahesh Suresh Kumawat
Abstract:
Steel concrete composite construction means the concrete slab is connected to the steel beam with the help of shear connectors so that they act as a single unit. In the present work, steel concrete composite with RCC options are considered for comparative study of G+9 story commercial building which is situated in earthquake zone-III and for earthquake loading, the provisions of IS: 1893(Part1)-2002 is considered. A three dimensional modeling and analysis of the structure are carried out with the help of SAP 2000 software. Equivalent Static Method of Analysis and Response spectrum analysis method are used for the analysis of both Composite & R.C.C. structures. The results are compared and it was found that composite structure is more economical.Keywords: composite beam, column, RCC column, RCC beam, shear connector, SAP 2000 software
Procedia PDF Downloads 4529120 Molecular Modeling of Structurally Diverse Compounds as Potential Therapeutics for Transmissible Spongiform Encephalopathy
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić
Abstract:
Prion is a protein substance whose certain form is considered as infectious agent. It is presumed to be the cause of the transmissible spongiform encephalopathies (TSEs). The protein it is composed of, called PrP, can fold in structurally distinct ways. At least one of those 3D structures is transmissible to other prion proteins. Prions can be found in brain tissue of healthy people and have certain biological role. The structure of prions naturally occurring in healthy organisms is marked as PrPc, and the structure of infectious prion is labeled as PrPSc. PrPc may play a role in synaptic plasticity and neuronal development. Also, it may be required for neuronal myelin sheath maintenance, including a role in iron uptake and iron homeostasis. PrPSc can be considered as an environmental pollutant. The main aim of this study was to carry out the molecular modeling and calculation of molecular descriptors (lipophilicity, physico-chemical and topological descriptors) of structurally diverse compounds which can be considered as anti-prion agents. Molecular modeling was conducted applying ChemBio3D Ultra version 12.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The Austin Model 1 (AM-1) was used for full geometry optimization of all structures. The obtained set of molecular descriptors is applied in analysis of similarities and dissimilarities among the tested compounds. This study is an important step in further development of quantitative structure-activity relationship (QSAR) models, which can be used for prediction of anti-prion activity of newly synthesized compounds.Keywords: chemometrics, molecular modeling, molecular descriptors, prions, QSAR
Procedia PDF Downloads 3229119 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters
Authors: Liu Shengnan, Sun Liping, Zhu Jianxun
Abstract:
Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.Keywords: Pelamis, hinge, floating multibody, wave energy
Procedia PDF Downloads 4659118 Ab Initio Study of Electronic Structure and Transport of Graphyne and Graphdiyne
Authors: Zeljko Crljen, Predrag Lazic
Abstract:
Graphene has attracted a tremendous interest in the field of nanoelectronics and spintronics due to its exceptional electronic properties. However, pristine graphene has no band gap, a feature needed in building some of the electronic elements. Recently, a growing attention has been given to a class of carbon allotropes of graphene with honeycomb structures, in particular to graphyne and graphdiyne. They are characterized with a single and double acetylene bonding chains respectively, connecting the nearest-neighbor hexagonal rings. With an electron density comparable to that of graphene and a prominent gap in electronic band structures they appear as promising materials for nanoelectronic components. We studied the electronic structure and transport of infinite sheets of graphyne and graphdiyne and compared them with graphene. The method based on the non-equilibrium Green functions and density functional theory has been used in order to obtain a full ab initio self-consistent description of the transport current with different electrochemical bias potentials. The current/voltage (I/V) characteristics show a semi-conducting behavior with prominent nonlinearities at higher voltages. The calculated band gaps are 0.52V and 0.59V, respectively, and the effective masses are considerably smaller compared to typical semiconductors. We analyzed the results in terms of transmission eigenchannels and showed that the difference in conductance is directly related to the difference of the internal structure of the allotropes.Keywords: electronic transport, graphene-like structures, nanoelectronics, two-dimensional materials
Procedia PDF Downloads 1899117 PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance
Authors: Shah Sufaid, Hussain Shahid, Tianyan You, Liu Guiwu, Qiao Guanjun
Abstract:
Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application.Keywords: NiO@CuO NFs, metal organic framework, porous structure, H₂, gas sensing
Procedia PDF Downloads 459116 An Improved Cooperative Communication Scheme for IoT System
Authors: Eui-Hak Lee, Jae-Hyun Ro, Hyoung-Kyu Song
Abstract:
In internet of things (IoT) system, the communication scheme with reliability and low power is required to connect a terminal. Cooperative communication can achieve reliability and lower power than multiple-input multiple-output (MIMO) system. Cooperative communication increases the reliability with low power, but decreases a throughput. It has a weak point that the communication throughput is decreased. In this paper, a novel scheme is proposed to increase the communication throughput. The novel scheme is a transmission structure that increases transmission rate. And a decoding scheme according to the novel transmission structure is proposed. Simulation results show that the proposed scheme increases the throughput without bit error rate (BER) performance degradation.Keywords: cooperative communication, IoT, STBC, transmission rate
Procedia PDF Downloads 3969115 Ab Initio Study of Hexahalometallate Single Crystals K₂XBr₆ (X=Se, Pt)
Authors: M. Fatmi, B. Gueridi, Z. Zerrougui
Abstract:
Some physical properties of hexahalometallate K₂XBr₆(X=Se, Pt) were computed in the zinc blend structure using generalized gradient approximation. The cell constant of K₂SeBr₆ and K₂PtBr₆ is consistent with the experiment value quoted in the literature, where the error is 0.95 % and 1 %. K₂SeBr₆ and K₂PtBr₆ present covalent bonding, high anisotropy and are ductile. The elastic constants of K₂SeBr₆ and K₂PtBr₆ are significantly smaller due to their larger reticular distances and lower Colombian forces, and then they are soft and damage tolerant. The interatomic separation is greater in K₂SeBr₆ than in K₂PtBr₆; hence the Colombian interaction in K₂PtBr₆ is greater than that of K2SeBr₆. The internal coordinate of the Br atom in K₂PtBr₆ is lower than that of the same atom in K2SeBr₆, and this can be explained by the fact that it is inversely proportional to the atom radius of Se and Pt. There are two major plasmonic processes, with intensities of 3.7 and 1.35, located around 53.5 nm and 72.8 nm for K₂SeBr₆ and K₂PtBr₆.Keywords: hexahalometallate, band structure, morphology, absorption, band gap, absorber
Procedia PDF Downloads 949114 Performance Improvement of SOI-Tri Gate FinFET Transistor Using High-K Dielectric with Metal Gate
Authors: Fatima Zohra Rahou, A.Guen Bouazza, B. Bouazza
Abstract:
SOI TRI GATE FinFET transistors have emerged as novel devices due to its simple architecture and better performance: better control over short channel effects (SCEs) and reduced power dissipation due to reduced gate leakage currents. As the oxide thickness scales below 2 nm, leakage currents due to tunneling increase drastically, leading to high power consumption and reduced device reliability. Replacing the SiO2 gate oxide with a high-κ material allows increased gate capacitance without the associated leakage effects. In this paper, SOI TRI-GATE FinFET structure with use of high K dielectric materials (HfO2) and SiO2 dielectric are simulated using the 3-D device simulator Devedit and Atlas of TCAD Silvaco. The simulated results exhibits significant improvements in the performances of SOI TRI GATE FinFET with gate oxide HfO2 compared with conventional gate oxide SiO2 for the same structure. SOI TRI-GATE FinFET structure with the use of high K materials (HfO2) in gate oxide results into the increase in saturation current, threshold voltage, on-state current and Ion/Ioff ratio while off-state current, subthreshold slope and DIBL effect are decreased.Keywords: technology SOI, short-channel effects (SCEs), multi-gate SOI MOSFET, SOI-TRI Gate FinFET, high-K dielectric, Silvaco software
Procedia PDF Downloads 3479113 Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded
Authors: Phyo Wai Aung, Sysoev Oleg Evgenevich, Boris Necolavet Maryin
Abstract:
The article deals with theoretical problems of correlation of processes of microstructure changes of structural materials under cyclic loading and acoustic emission. The ways of the evolution of a microstructure under the influence of cyclic loading are shown depending on the structure of the initial crystal structure of the material. The spectra of the frequency characteristics of acoustic emission signals are experimentally obtained when testing titanium samples for cyclic loads. Changes in the fractal dimension of the acoustic emission signals in the selected frequency bands during the evolution of the microstructure of structural materials from the action of cyclic loads, as well as in the destruction of samples, are studied. The experimental samples were made of VT-20 structural material widely used in aircraft and rocket engineering. The article shows the striving of structural materials for synergistic stability and reduction of the fractal dimension of acoustic emission signals, in accordance with the degradation of the microstructure, which occurs as a result of fatigue processes from the action of low cycle loads. As a result of the research, the frequency range of acoustic emission signals of 100-270 kHz is determined, in which the fractal dimension of the signals, it is possible to most reliably predict the durability of structural materials.Keywords: cyclic loadings, material structure changing, acoustic emission, fractal dimension
Procedia PDF Downloads 2629112 Synthesis and Evaluation of Heterogeneous Nano-Catalyst: Cr Loaded in to MCM-41
Authors: A. Salemi Golezania, A. Sharifi Fateha
Abstract:
In this study a nano-composite catalyst was synthesized by incorporation of chromium into the framework of MCM-41 as a base catalyst. Mesoporous silica molecular sieves MCM-41 were synthesized under Hydrothermal Continues pH Adjusting Path Way. Then, MCM-41 was impregnated by chromium nitrate aqueous solution for several times under water aspiration. Raw powder was cured by heat treatment in vacuum furnace at 500°C. Phase formation, morphology and gas absorption properties of resulted materials were characterized by XRD, TEM and BET analysis, respectively. The results showed that high quality hexagonal meso structure as a matrix and Cr as a second phase has been formed with a narrow size pore diameter distribution and high surface area in Cr/MCM-41 nano-composite structure. The specific surface and total volume of porosity of the synthesized nanocomposite are obtained 931m^2/gr and 1.12 cm^3/gr, respectively.Keywords: nano-catalyst, MCM-41, Cr/MCM-41, Marine Science and Engineering
Procedia PDF Downloads 3879111 Probabilistic Approach to the Spatial Identification of the Environmental Sources behind Mortality Rates in Europe
Authors: Alina Svechkina, Boris A. Portnov
Abstract:
In line with a rapid increase in pollution sources and enforcement of stricter air pollution regulation, which lowers pollution levels, it becomes more difficult to identify actual risk sources behind the observed morbidity patterns, and new approaches are required to identify potential risks and take preventive actions. In the present study, we discuss a probabilistic approach to the spatial identification of a priori unidentified environmental health hazards. The underlying assumption behind the tested approach is that the observed adverse health patterns (morbidity, mortality) can become a source of information on the geographic location of environmental risk factors that stand behind them. Using this approach, we analyzed sources of environmental exposure using data on mortality rates available for the year 2015 for NUTS 3 (Nomenclature of Territorial Units for Statistics) subdivisions of the European Union. We identified several areas in the southwestern part of Europe as primary risk sources for the observed mortality patterns. Multivariate regressions, controlled by geographical location, climate conditions, GDP (gross domestic product) per capita, dependency ratios, population density, and the level of road freight revealed that mortality rates decline as a function of distance from the identified hazard location. We recommend the proposed approach an exploratory analysis tool for initial investigation of regional patterns of population morbidity patterns and factors behind it.Keywords: mortality, environmental hazards, air pollution, distance decay gradient, multi regression analysis, Europe, NUTS3
Procedia PDF Downloads 1679110 The Functions of Spatial Structure in Supporting Socialization in Urban Parks
Authors: Navid Nasrolah Mazandarani, Faezeh Mohammadi Tahrodi, Jr., Norshida Ujang, Richard Jan Pech
Abstract:
Human evolution has designed us to be dependent on social and natural settings, but designed of our modern cities often ignore this fact. It is evident that high-rise buildings dominate most metropolitan city centers. As a result urban parks are very limited and in many cases are not socially responsive to our social needs in these urban ‘jungles’. This paper emphasizes the functions of urban morphology in supporting socialization in Lake Garden, one of the main urban parks in Kuala Lumpur, Malaysia. It discusses two relevant theories; first the concept of users’ experience coined by Kevin Lynch (1960) which states that way-finding is related to the process of forming mental maps of environmental surroundings. Second, the concept of social activity coined by Jan Gehl (1987) which holds that urban public spaces can be more attractive when they provide welcoming places in which people can walk around and spend time. Until recently, research on socio-spatial behavior mainly focused on social ties, place attachment and human well-being; with less focus on the spatial dimension of social behavior. This paper examines the socio-spatial behavior within the spatial structure of the urban park by exploring the relationship between way-finding and social activity. The urban structures defined by the paths and nodes were analyzed as the fundamental topological structure of space to understand their effects on the social engagement pattern. The study uses a photo questionnaire survey to inspect the spatial dimension in relation to the social activities within paths and nodes. To understand the legibility of the park, spatial cognition was evaluated using sketch maps produced by 30 participants who visited the park. The results of the sketch mapping indicated that a spatial image has a strong interrelation with socio-spatial behavior. Moreover, an integrated spatial structure of the park generated integrated use and social activity. It was found that people recognized and remembered the spaces where they engaged in social activities. They could experience the park more thoroughly, when they found their way continuously through an integrated park structure. Therefore, the benefits of both perceptual and social dimensions of planning and design happened simultaneously. The findings can assist urban planners and designers to redevelop urban parks by considering the social quality design that contributes to clear mental images of these places.Keywords: spatial structure, social activities, sketch map, urban park, way-finding
Procedia PDF Downloads 3159109 Reflection of Landscape Agrogenization in the Soil Cover Structure and Profile Morphology: Example of Lithuania Agroecosystem
Authors: Jonas Volungevicius, Kristina Amaleviciute, Rimantas Vaisvalavicius, Alvyra Slepetiene, Darijus Veteikis
Abstract:
Lithuanian territory is characterized by landscape with prevailing morain hills and clayey lowlands. The largest part of it has endured agrogenization of various degrees which was the cause of changes both in the structure of landscape and soil cover, transformations of soil profile and degradation of natural background soils. These changes influence negatively geoecological potential of landscape and soil and contribute to the weakening of the sustainability of agroecosystems. Research objective: to reveal the landscape agrogenization induced alterations of catenae and their appendant soil profiles in Lithuanian morain hills and clayey lowlands. Methods: Soil cover analysis and catenae charting was conducted using landscape profiling; soil morphology detected and soil type identified following WRB 2014. Granulometric composition of soil profiles was obtained by laser diffraction method (lazer diffractometer Mastersizer 2000). pH was measured in H2O extraction using potentiometric titration; SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. Results: analysis showed that the decrease of forest vegetation and the other natural landscape components following the agrogenization of the research area influenced differently but significantly the structural alterations in soil cover and vertical soil profile. The research detected that due to landscape agrogenization, the suppression of zone-specific processes and the intensification of inter-zone processes determined by agrogenic factors take place in Lithuanian agroecosystems. In forested hills historically prevailing Retisols and Histosols territorial complex is transforming into the territorial complex of Regosols, Deluvial soils and drained Histosols. Processes taking place are simplification of vertical profile structure, intensive rejuvenation of profile, disappearance of the features of zone-specific soil-forming processes (podzolization, lessivage, gley formation). Erosion and deluvial processes manifest more intensively and weakly accumulating organic material more intensively spread in a vertical soil profile. The territorial soil complex of Gleyic Luvisols and Gleysols dominating in forested clayey lowlands subjected to agrogenization is transformed into the catena of drained Luvisols and pseudo Cambisols. The best expressed are their changes in moisture regime (morphological features of gley and stagnic properties are on decline) together with alterations of pH and distribution and intensity of accumulation of organic matter in profile. A specific horizon, antraquic, uncharacteristic to natural soil formation is appearing. Important to note that due to deep ploughing and other agrotechnical measures, the natural vertical differentiation of clay particles in a soil profile is destroyed which leads not only to alterations of physical qualities of soil, but also encumbers the identification of Luvisols by creating presumptions to misidentify them as Cambisols. The latter have never developed in these ecosystems under the present climatic conditions. Acknowledgements: This work was supported by the National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: agroecosystems, landscape agrogenization, luvisols, retisols, transformation of soil profile
Procedia PDF Downloads 2599108 Inversion of Gravity Data for Density Reconstruction
Authors: Arka Roy, Chandra Prakash Dubey
Abstract:
Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation
Procedia PDF Downloads 2129107 Derivative Usage, Ownership Structure, and Bank Value in European Countries
Authors: Chuang-Chang Chang, Keng-Yu Ho, Yu-Jen Hsiao, Hsin-Ni Yang
Abstract:
Using a sample of detailed ownership data of 1,032 listed commercial bank observations in 30 European countries from 2004 to 2010, we explore what categories of shareholder are more likely to use derivatives and how different types of owners affect the bank value. We find that a shift in equity from bank investors to either non-financial companies or institutional investors have increase incentives to use derivatives. Moreover, we have significant evidence that a shift in equity from bank investors to either family or manager shareholders who attend derivative activities will decrease bank value. However, a shift in equity from bank investors to non-financial companies who use derivative instrument will increase the bank value. Our results are also robustness to address for the potential endogeneity problems.Keywords: derivative usage, ownership structure, bank value
Procedia PDF Downloads 3489106 Free Energy Computation of A G-Quadruplex-Ligand Structure: A Classical Molecular Dynamics and Metadynamics Simulation Study
Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria
Abstract:
The DNA G-quadruplex is a four-stranded DNA structure formed by stacked planes of four base paired guanines (G-quartet). Guanine rich DNA sequences appear in many sites of genomic DNA and can potential form G-quadruplexes, such as those occurring at 3'-terminus of the human telomeric DNA. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to down regulate oncogene expression making G-quadruplex an attractive target for anticancer therapy. Many G-quadruplex ligands have been proposed with a planar core to facilitate the pi–pi stacking and electrostatic interactions with the G-quartets. However, many drug candidates are impossibilitated to discriminate a G-quadruplex from a double helix DNA structure. In this context, it is important to investigate the site topology for the interaction of a G-quadruplex with a ligand. In this work, we determine the free energy surface of a G-quadruplex-ligand to study the binding modes of the G-quadruplex (TG4T) with the daunomycin (DM) drug. The complex TG4T-DM is studied using classical molecular dynamics in combination with metadynamics simulations. The metadynamics simulations permit an enhanced sampling of the conformational space with a modest computational cost and obtain free energy surfaces in terms of the collective variables (CV). The free energy surfaces of TG4T-DM exhibit other local minima, indicating the presence of additional binding modes of daunomycin that are not observed in short MD simulations without the metadynamics approach. The results are compared with similar calculations on a different structure (the mutated mu-G4T-DM where the 5' thymines on TG4T-DM have been deleted). The results should be of help to design new G-quadruplex drugs, and understand the differences in the recognition topology sites of the duplex and quadruplex DNA structures in their interaction with ligands.Keywords: g-quadruplex, cancer, molecular dynamics, metadynamics
Procedia PDF Downloads 4609105 English Language Teaching Graduate Students' Use of Discussion Moves in Research Articles
Authors: Gamzegul Koca, Evrim Eveyik-Aydin
Abstract:
Genre and discipline-specific knowledge of academic discourse in writing has long been acknowledged as being a core skill to achieve formidable tasks that are expected of graduate students in academic settings. Genre analysis approaches can be adopted to unveil the challenges encountered in these tasks to be able to take instructional actions addressing the aspects of graduate writing that need improvement. In an attempt to find genre-specific academic writing needs of Turkish students enrolled in a graduate program in ELT, this study examines the rhetorical structure of discussion sections of research articles written during the course load stage of their graduate studies. The 35.437-word specialized corpus of graduate papers compiled for the purpose of the study includes discussions of 58 unpublished reports of empirical studies, 31 written in MA courses and 27 in Ph.D. courses by a total of 44 graduate students. The study does sentence-based move structure analysis using the framework developed by Eveyik-Aydın, Karabacak and Akyel in a corpus-based study that analyzed the discussion moves of expert writers in published articles in ELT journals indexed by Social Sciences Citation. The coding of 1577 sentences by three graders using this framework revealed that while the graduate papers included the same moves used in published articles, the rhetorical structure of MA and Ph.D. papers showed considerable differences in terms of the frequency of occurrence of main discussion moves, including interpretation of the results and drawing implications. The implications of these findings will be discussed with respect to the needs of graduate writers and the expectations of discourse community.Keywords: discussion moves, genre-specific rhetorical structure, move analysis, research articles, the specialized corpus of graduate papers
Procedia PDF Downloads 1669104 Design and Implementation of Smart Watch Textile Antenna for Wi-Fi Bio-Medical Applications in Millimetric Wave Band
Authors: M. G. Ghanem, A. M. M. A. Allam, Diaa E. Fawzy, Mehmet Faruk Cengiz
Abstract:
This paper is devoted to the design and implementation of a smartwatch textile antenna for Wi-Fi bio-medical applications in millimetric wave bands. The antenna is implemented on a leather textile-based substrate to be embedded in a smartwatch. It enables the watch to pick Wi-Fi signals without the need to be connected to a mobile through Bluetooth. It operates at 60 GHz or WiGig (Wireless Gigabit Alliance) band with a wide band for higher rate applications. It also could be implemented over many stratified layers of the body organisms to be used in the diagnosis of many diseases like diabetes and cancer. The structure is designed and simulated using CST (Studio Suite) program. The wearable patch antenna has an octagon shape, and it is implemented on leather material that acts as a flexible substrate with a size of 5.632 x 6.4 x 2 mm3, a relative permittivity of 2.95, and a loss tangent of 0.006. The feeding is carried out using differential feed (discrete port in CST). The work provides five antenna implementations; antenna without ground, a ground is added at the back of the antenna in order to increase the antenna gain, the substrate dimensions are increased to 15 x 30 mm2 to resemble the real hand watch size, layers of skin and fat are added under the ground of the antenna to study the effect of human body tissues human on the antenna performance. Finally, the whole structure is bent. It is found that the antenna can achieve a simulated peak realized gain in dB of 5.68, 7.28, 6.15, 3.03, and 4.37 for antenna without ground, antenna with the ground, antenna with larger substrate dimensions, antenna with skin and fat, and bent structure, respectively. The antenna with ground exhibits high gain; while adding the human organisms absorption, the gain is degraded because of human absorption. The bent structure contributes to higher gain.Keywords: bio medical engineering, millimetric wave, smart watch, textile antennas, Wi-Fi
Procedia PDF Downloads 1219103 Study of Microbial Diversity Associated with Tarballs and Their Exploitation in Crude Oil Degradation
Authors: Varsha Shinde, Belle Damodara Shenoy
Abstract:
Tarballs are crude oil remnants found in oceans after long term weathering process and are a global concern since several decades as potential marine pollutant. Being complicated in structure microbial remediation of tarballs in natural environment is a slow process. They are rich in high molecular weight alkanes and poly aromatic hydrocarbons which are resistant to microbial attack and other environmental factors, therefore remain in environment for long time. However, it has been found that many bacteria and fungi inhabit on tarballs for nutrients and shelter. Many of them are supposed to be oil degraders, while others are supposed to be getting benefited by byproducts formed during hydrocarbon metabolism. Thus tarballs are forming special interesting ecological niche of microbes. This work aimed to study diversity of bacteria and fungi from tarballs and to see their potential application in crude oil degradation. The samples of tarballs were collected from Betul beach of south Goa (India). Different methods were used to isolate culturable fraction of bacteria and fungi from it. Those were sequenced for 16S rRNA gene and ITS for molecular level identification. The 16S rRNA gene sequence analysis revealed the presence of 13 bacterial genera/clades (Alcanivorax, Brevibacterium, Bacillus, Cellulomonas, Enterobacter, Klebsiella, Marinobacter, Nitratireductor, Pantoea, Pseudomonas, Pseudoxanthomonas, Tistrella and Vibrio), while the ITS sequence analysis placed the fungi in 8 diverse genera/ clades (Aspergillus, Byssochlamys, Monascus, Paecilomyces, Penicillium, Scytalidium/ Xylogone, Talaromyces and Trichoderma). All bacterial isolates were screened for oil degradation capacity. Potential strains were subjected to crude oil degradation experiment for quantification. Results were analyzed by GC-MS-MS.Keywords: bacteria, biodegradation, crude oil, diversity, fungi, tarballs
Procedia PDF Downloads 2229102 Preparation of Silicon-Based Oxide Hollow Nanofibers Using Single-Nozzle Electrospinning
Authors: Juiwen Liang, Choliang Chung
Abstract:
In this study, the silicon-base oxide nanofibers with hollow structure were prepared using single-nozzle electrospinning and heat treatment. Firstly, precursor solution was prepared: the Polyvinylpyrrolidone (PVP) and Tetraethyl orthosilicate (TEOS) dissolved in ethanol and to make sure the concentration of solution in appropriate using single-nozzle electrospinning to produce the nanofibers. Secondly, control morphology of the electrostatic spinning nanofibers was conducted, and design the temperature profile to created hollow nanofibers, exploring the morphology and properties of nanofibers. The characterized of nanofibers, following instruments were used: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), Transmission electron microscopy (TEM), Photoluminescence (PL), X-ray Diffraction (XRD). The AFM was used to scan the nanofibers, and 3D Graphics were applied to explore the surface morphology of fibers. FE-SEM and TEM were used to explore the morphology and diameter of nanofibers and hollow nanofiber. The excitation and emission spectra explored by PL. Finally, XRD was used for identified crystallization of ceramic nanofibers. Using electrospinning technique followed by subsequent heat treatment, we have successfully prepared silicon-base oxide nanofibers with hollow structure. Thus, the microstructure and morphology of electrostatic spinning silicon-base oxide hollow nanofibers were explored. Major characteristics of the nanofiber in terms of crystalline, optical properties and crystal structure were identified.Keywords: electrospinning, single-nozzle, hollow, nanofibers
Procedia PDF Downloads 3509101 Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator
Authors: Jinsiang Shaw, Shih-Chieh Tseng
Abstract:
Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure.Keywords: Fuzzy sliding mode controller, macro-fiber-composite actuator, skyhook controller, vibration suppression
Procedia PDF Downloads 4049100 Design and Modelling of Ge/GaAs Hetero-structure Bipolar Transistor
Authors: Samson Mil'shtein, Dhawal N. Asthana
Abstract:
The presented heterostructure n-p-n bipolar transistor is comprised of Ge/GaAs heterojunctions consisting of 0.15µm thick emitter and 0.65µm collector junctions. High diffusivity of carriers in GaAs base was major motivation of current design. We avoided grading of the base which is common in heterojunction bipolar transistors, in order to keep the electron diffusivity as high as possible. The electrons injected into the 0.25µm thick p-type GaAs base with not very high doping (1017cm-3). The designed HBT enables cut off frequency on the order of 150GHz. The Ge/GaAs heterojunctions presented in our paper have proved to work better than comparable HBTs having GaAs bases and emitter/collector junctions made, for example, of AlGaAs/GaAs or other III-V compound semiconductors. The difference in lattice constants between Ge and GaAs is less than 2%. Therefore, there is no need of transition layers between Ge emitter and GaAs base. Significant difference in energy gap of these two materials presents new scope for improving performance of the emitter. With the complete structure being modelled and simulated using TCAD SILVACO, the collector/ emitter offset voltage of the device has been limited to a reasonable value of 63 millivolts by the dint of low energy band gap value associated with Ge emitter. The efficiency of the emitter in our HBT is 86%. Use of Germanium in the emitter and collector regions presents new opportunities for integration of this vertical device structure into silicon substrate.Keywords: Germanium, Gallium Arsenide, heterojunction bipolar transistor, high cut-off frequency
Procedia PDF Downloads 4209099 Adsorption of Atmospheric Gases Using Atomic Clusters
Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko
Abstract:
First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.Keywords: catalyst, gaussian, nanoparticles, oxidation
Procedia PDF Downloads 959098 Investigate the Effects of Geometrical Structure and Layer Orientation on Strength of 3D-FDM Rapid Prototyped Samples
Authors: Ahmed A.D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti
Abstract:
Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.Keywords: building orientation, compression strength, rapid prototyping, tensile strength
Procedia PDF Downloads 6979097 Evaluation of Beam Structure Using Non-Destructive Vibration-Based Damage Detection Method
Authors: Bashir Ahmad Aasim, Abdul Khaliq Karimi, Jun Tomiyama
Abstract:
Material aging is one of the vital issues among all the civil, mechanical, and aerospace engineering societies. Sustenance and reliability of concrete, which is the widely used material in the world, is the focal point in civil engineering societies. For few decades, researchers have been able to present some form algorithms that could lead to evaluate a structure globally rather than locally without harming its serviceability and traffic interference. The algorithms could help presenting different methods for evaluating structures non-destructively. In this paper, a non-destructive vibration-based damage detection method is adopted to evaluate two concrete beams, one being in a healthy state while the second one contains a crack on its bottom vicinity. The study discusses that damage in a structure affects modal parameters (natural frequency, mode shape, and damping ratio), which are the function of physical properties (mass, stiffness, and damping). The assessment is carried out to acquire the natural frequency of the sound beam. Next, the vibration response is recorded from the cracked beam. Eventually, both results are compared to know the variation in the natural frequencies of both beams. The study concludes that damage can be detected using vibration characteristics of a structural member considering the decline occurred in the natural frequency of the cracked beam.Keywords: concrete beam, natural frequency, non-destructive testing, vibration characteristics
Procedia PDF Downloads 1129096 Body Fluids Identification by Raman Spectroscopy and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
Authors: Huixia Shi, Can Hu, Jun Zhu, Hongling Guo, Haiyan Li, Hongyan Du
Abstract:
The identification of human body fluids during forensic investigations is a critical step to determine key details, and present strong evidence to testify criminal in a case. With the popularity of DNA and improved detection technology, the potential question must be revolved that whether the suspect’s DNA derived from saliva or semen, menstrual or peripheral blood, how to identify the red substance or aged blood traces on the spot is blood; How to determine who contribute the right one in mixed stains. In recent years, molecular approaches have been developing increasingly on mRNA, miRNA, DNA methylation and microbial markers, but appear expensive, time-consuming, and destructive disadvantages. Physicochemical methods are utilized frequently such us scanning electron microscopy/energy spectroscopy and X-ray fluorescence and so on, but results only showing one or two characteristics of body fluid itself and that out of working in unknown or mixed body fluid stains. This paper focuses on using chemistry methods Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to discriminate species of peripheral blood, menstrual blood, semen, saliva, vaginal secretions, urine or sweat. Firstly, non-destructive, confirmatory, convenient and fast Raman spectroscopy method combined with more accurate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method can totally distinguish one from other body fluids. Secondly, 11 spectral signatures and specific metabolic molecules have been obtained by analysis results after 70 samples detected. Thirdly, Raman results showed peripheral and menstrual blood, saliva and vaginal have highly similar spectroscopic features. Advanced statistical analysis of the multiple Raman spectra must be requested to classify one to another. On the other hand, it seems that the lactic acid can differentiate peripheral and menstrual blood detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, but that is not a specific metabolic molecule, more sensitivity ones will be analyzed in a forward study. These results demonstrate the great potential of the developed chemistry methods for forensic applications, although more work is needed for method validation.Keywords: body fluids, identification, Raman spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
Procedia PDF Downloads 1389095 Identification Algorithm of Critical Interface, Modelling Perils on Critical Infrastructure Subjects
Authors: Jiří. J. Urbánek, Hana Malachová, Josef Krahulec, Jitka Johanidisová
Abstract:
The paper deals with crisis situations investigation and modelling within the organizations of critical infrastructure. Every crisis situation has an origin in the emergency event occurrence in the organizations of energetic critical infrastructure especially. Here, the emergency events can be both the expected events, then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping or the unexpected event (Black Swan effect) – without pre-prepared scenario, but it needs operational coping of crisis situations as well. The forms, characteristics, behaviour and utilization of crisis scenarios have various qualities, depending on real critical infrastructure organization prevention and training processes. An aim is always better organizational security and continuity obtainment. This paper objective is to find and investigate critical/ crisis zones and functions in critical situations models of critical infrastructure organization. The DYVELOP (Dynamic Vector Logistics of Processes) method is able to identify problematic critical zones and functions, displaying critical interfaces among actors of crisis situations on the DYVELOP maps named Blazons. Firstly, for realization of this ability is necessary to derive and create identification algorithm of critical interfaces. The locations of critical interfaces are the flags of crisis situation in real organization of critical infrastructure. Conclusive, the model of critical interface will be displayed at real organization of Czech energetic crisis infrastructure subject in Black Out peril environment. The Blazons need live power Point presentation for better comprehension of this paper mission.Keywords: algorithm, crisis, DYVELOP, infrastructure
Procedia PDF Downloads 409