Search results for: score prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4152

Search results for: score prediction

2862 Enhancement of Density-Based Spatial Clustering Algorithm with Noise for Fire Risk Assessment and Warning in Metro Manila

Authors: Pinky Mae O. De Leon, Franchezka S. P. Flores

Abstract:

This study focuses on applying an enhanced density-based spatial clustering algorithm with noise for fire risk assessments and warnings in Metro Manila. Unlike other clustering algorithms, DBSCAN is known for its ability to identify arbitrary-shaped clusters and its resistance to noise. However, its performance diminishes when handling high dimensional data, wherein it can read the noise points as relevant data points. Also, the algorithm is dependent on the parameters (eps & minPts) set by the user; choosing the wrong parameters can greatly affect its clustering result. To overcome these challenges, the study proposes three key enhancements: first is to utilize multiple MinHash and locality-sensitive hashing to decrease the dimensionality of the data set, second is to implement Jaccard Similarity before applying the parameter Epsilon to ensure that only similar data points are considered neighbors, and third is to use the concept of Jaccard Neighborhood along with the parameter MinPts to improve in classifying core points and identifying noise in the data set. The results show that the modified DBSCAN algorithm outperformed three other clustering methods, achieving fewer outliers, which facilitated a clearer identification of fire-prone areas, high Silhouette score, indicating well-separated clusters that distinctly identify areas with potential fire hazards and exceptionally achieved a low Davies-Bouldin Index and a high Calinski-Harabasz score, highlighting its ability to form compact and well-defined clusters, making it an effective tool for assessing fire hazard zones. This study is intended for assessing areas in Metro Manila that are most prone to fire risk.

Keywords: DBSCAN, clustering, Jaccard similarity, MinHash LSH, fires

Procedia PDF Downloads 11
2861 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation

Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi

Abstract:

Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.

Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 80
2860 A Perspective on Emergency Care of Gunshot Injuries in Northern Taiwan

Authors: Liong-Rung Liu, Yu-Hui Chiu, Wen-Han Chang

Abstract:

Firearm injuries are high-energy injuries. The ballistic pathways could cause severe burns or chemical damages to vessels, musculoskeletal or other major organs. The high mortality rate is accompanied by complications such as sepsis. As laws prohibit gun possession, civilian gunshot wounds (GSW) are relatively rare in Taiwan. Our hospital, Mackay Memorial Hospital, located at the center of Taipei city is surrounded by nightclubs and red-light districts. Due to this unique location, our hospital becomes the first-line trauma center managing gunshot victims in Taiwan. To author’s best knowledge, there are few published research articles regarding this unique situation. We hereby analyze the distinct characteristics and length of stay (LOS) of GSW patients in the emergency room (ER) at Mackay Memorial Hospital. A 6-year retrospective analysis of 27 patients treated for GSW injuries from January 2012 to December 2017 was performed. The patients’ records were reviewed for the following analyses, 1) wound position and the correlated clinical presentations; 2) the LOS in ED of patients receiving emergency surgery for major organ or vascular injuries. We found males (96.3%) were injured by guns more often than females (3.7%) in all age groups. The most common injured site was in the extremities. With regards to the ER LOS, the average time were 72.2 ± 34.5 minutes for patients with triage I and 207.4 ± 143.9 minutes for patients with triage II. The ED LOS of patients whose ISS score were more than 15 was 59.9 ± 25.6 minutes, and 179.4 ± 119.8 minutes for patients whose ISS score were between 9 to 15, respectively. Among these 27 patients, 10 patients had emergency surgery and their average ED stay time was 104.5 ± 33.3 minutes. Even more, the average ED stay time could be shortened to 88.8 ± 32.3 minutes in the 5 patients with trauma team activation. In conclusion, trauma team activation in severe GSW patients indeed shortens the ED LOS and might initially improve the quality of patient care. This is the result of better trauma systems, including advances in care from emergency medical services and acute care surgical management.

Keywords: gunshot, length of stay, trauma, mortality

Procedia PDF Downloads 132
2859 Assesment of Quality of Life among Iranian Male Amateur Athletes via WHOQOL-Brief

Authors: Shirko Ahmadi, Ahmad Fallahi, Marco C. Uchida, Gustavo L. Gutierrez

Abstract:

The aims of the present study are to assess and compare the health habits and quality of life (QoL) of Iranian amateur athletes in different sports. A total of 120 male amateur athletes between 17 and 31 years, engaged in 16 kinds of sports which include team (n=44), individual (n=40) and combat sports (n=36) from sports clubs in the west cities of Iran; and also those not involved in any competition in the past. Additionally, this is a cross-sectional, descriptive observational study, which the subjects completed the WHOQOL-brief questionnaire to evaluate QoL. The questionnaire is composed of 26 questions in four domains (physical health, psychological, social and environmental domains), that was applied in the Persian language. Information on the frequency and duration of training sessions were also collected. The Shapiro-Wilk test was used to verify normal distribution, followed by the chi-squared test for proportions and simple analysis of variance for comparisons between groups of sports. Pearson’s correlation was used to assess the relationships between the variables analyzed. According to the findings, those from individual sports obtained highest points in the all domains of QoL; physical domains (87.1 ± 8.1 point), psychological domains (87.6 ± 9.6 point), social domains (89.7 ± 9.2 point), environmental domains (75.5± 10.7 point) and overall QoL score (84.9 ± 9.4 point). Generally, social domains were the highest QoL index (84.3 ± 7.2 points), and environmental domains were the lowest QoL index (68.1 ± 10.8 points), in all of the sports. No correlations were found between QoL domains and time engaged in the sport (r = 0.01; p = 0.93), number of weekly training sessions (r = 0.09; p = 0.37) and session duration (r = -0.06; p= 0.58). Comparison of QoL results with those of the general population revealed higher levels in the physical and psychological components of amateur athletes. In the present study, engaging in sports was associated with higher QoL levels in amateur athletes, particularly in the physical and psychological domains. Moreover, correlations were found between the overall score and domains of QoL.

Keywords: amateur, domains, Iranian, quality of life

Procedia PDF Downloads 153
2858 First-Year Growth and Development of 445 Preterm Infants: A Clinical Study

Authors: Ying Deng, Fan Yang

Abstract:

Aim: To study the growth pattern of preterm infants during the first year of life and explore the association between head circumference (HC) and neurodevelopment sequences and to get a general knowledge of the incidence of anemia in preterm babies in Chengdu, Southwest China. Method: We conducted a prospective longitudinal study, neonates with gestational age < 37 weeks were enrolled this study from 2012.1.1 to 2014.7.9. Anthropometry (weight, height, HC) was obtained at birth, every month before 6 months-old and every 2 months in the next half year. All the infants’ age were corrected to 40 weeks. Growth data presented as Z-scores which was calculated by WHO Anthro software. Z-score defined as (the actual value minus the average value)/standard deviation. Neurodevelopment was assessed at 12 months-old [9-11 months corrected age (CA)] by using “Denver Development Screen Test (DDST)". The hemoglobin (Hb) was examined at 6 months for CA. Result: 445 preterm infants were followed-up 1 year, including 64 very low birth weight infants (VLBW), 246 low birth weight infants (LBW) and 135 normal birth weight infants(NBW). From full-term to 12 months after birth, catch-up growth was observed in most preterm infants. From VLBW to NBW, HCZ was -1.17 (95 % CI: -1.53,-0.80; P value < 0.0001) lower during the first12 months. WAZ was-1.12(95 % CI: -1.47,-0.76; p < 0.0001) lower. WHZ and HAZ were -1.04 (95%CI:-1.38, -0.69; P<0.0001) and -0.69 (95%CI:-1.06,-0.33; P < 0.0001) lower respectively. The peak of WAZ appeared during 0-3 months CA among preterm infants. For VLBW infants, the peak of HAZ and HCZ emerged at 8-11 months CA. However, the trend of HAZ and HCZ is the same as WAZ in LBW and NBW infants. Growth in the small for gestational age (SGA) infants was poorer than appropriate for gestational age (AGA) infants. The rate of DQ < 70 in VLBW and LBW were 29.6%, 7.7%, respectively (P < 0.0001). HCZ < -1SD at 3 months emerged as an independent predictor of DQ scores below 85 at 12 months after birth. The incidence of anemia in preterm infants was 11% at 6 months for CA. Moreover, 7 children (1.7%) diagnosed with Cerebral palsy (CP). Conclusions: The catch-up growth was observed in most preterm infants. VLBW and SGA showed poor growth. There was imbalance between WAZ and HAZ in VLBW infants. The VLBW babies had higher severe abnormal scores than LBW and NBW, especially in boys. Z score for HC at 3 months < -1SDwas a significant risk factor for abnormal DQ scores at the first year. The iron supplement reduced the morbidity of anemia in preterm infants.

Keywords: preterm infant, growth and development, DDST, Z-scores

Procedia PDF Downloads 227
2857 Effect of Stress Relief of the Footbath Using Bio-Marker in Japan

Authors: Harumi Katayama, Mina Suzuki, Taeko Muramatsu, Yui Shimogawa, Yoshimi Mizushima, Mitsuo Hiramatsu, Kimitsugu Nakamura, Takeshi Suzue

Abstract:

Purpose: There are very often footbaths in the hot-spring area as culture from old days in Japan. This culture moderately supported mental and physical health among people. In Japanese hospitals, nurses provide footbath for severe patients to mental comfortable. However, there are only a few evidences effect of footbath for mental comfortable. In this presentation, we show the effect of stress relief of the footbath using biomarker among 35 college students in volunteer. Methods: The experiment was designed in two groups of the footbath group and the simple relaxation group randomly. As mental load, Kraepelin test was given to the students beforehand. Ultra-weak chemiluminescence (UCL) in saliva and self-administered liner scale measurable emotional state were measured on four times concurrently; there is before and after the mental load, after the stress relief, and 30 minutes after the stress relief. The scale that measured emotional state was consisted of 7 factors; there is excitement, relaxation, vigorous, fatigue, tension, calm, and sleepiness with 22 items. ANOVA was calculated effect of the footbath for stress relief. Results: The level of UCL (photons/100sec) was significantly increased in response on both groups after mental load. After the two types of stress relief, UCL (photons/100sec) of footbath group was significantly decreased compared to simple relaxation group. Score of sleepiness and relaxation were significantly increased after the stress relief in the footbath group than the simple relaxation group. However, score of excitement, vigorous, tension, and calm were exhibit the same degree of decrease after the stress relief on both group. Conclusion: It was suggested that salivary UCL may be a sensitive biomarker for mild stress relief as nursing care. In the future, we will measure using UCL to evaluate as stress relief for inpatients, outpatients, or general public as the subjects.

Keywords: bio-marker, footbath, Japan, stress relief

Procedia PDF Downloads 333
2856 Indicators and Sustainability Dimensions of the Mediterranean Diet

Authors: Joana Margarida Bôto, Belmira Neto, Vera Miguéis, Manuela Meireles, Ada Rocha

Abstract:

The Mediterranean diet has been recognized as a sustainable model of living with benefits for the environment and human health. However, a complete assessment of its sustainability, encompassing all dimensions and aspects, to our best knowledge, has not yet been realized. This systematic literature review aimed to fill this gap by identifying and describing the indicators used to assess the sustainability of the Mediterranean diet, looking at several dimensions, and presenting the results from their application. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines methodology was used, and searches were conducted in PubMed, Scopus, Web of Science, and GreenFile. There were identified thirty-two articles evaluating the sustainability of the Mediterranean diet. The environmental impact was quantified in twenty-five of these studies, the nutritional quality was evaluated in seven studies, and the daily cost of the diet was assessed in twelve studies. A total of thirty-three indicators were identified and separated by four dimensions of sustainability, specifically, the environmental dimension (ten indicators, namely carbon, water, and ecological footprint), the nutritional dimension (eight indicators, namely Health score and Nutrient Rich Food Index), the economic dimension (one indicator, the dietary cost), the sociocultural dimension (six indicators – with no results). Only eight of the studies used combined indicators. The Mediterranean diet was considered in all articles as a sustainable dietary pattern with a lower impact than Western diets. The carbon footprint ranged between 0.9 and 6.88 kg CO₂/d per capita, the water footprint between 600 and 5280 m³/d per capita, and the ecological footprint between 2.8 and 53.42 m²/d per capita. The nutritional quality was high, obtaining 122 points using the Health score and 12.95 to 90.6 points using the Nutrient Rich Food Index. The cost of the Mediterranean diet did not significantly differ from other diets and varied between 3.33 and 14.42€/d per capita. A diverse approach to evaluating the sustainability of the Mediterranean diet was found.

Keywords: Mediterranean diet, sustainability, environmental indicators, nutritional indicators

Procedia PDF Downloads 99
2855 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis

Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic

Abstract:

What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.

Keywords: political tendency, prediction, sentiment analysis, Twitter

Procedia PDF Downloads 239
2854 Evaluation of Requests and Outcomes of Magnetic Resonance Imaging Assessing for Cauda Equina Syndrome at a UK Trauma Centre

Authors: Chris Cadman, Marcel Strauss

Abstract:

Background: In 2020, the University Hospital Wishaw in the United Kingdom became the centre for trauma and orthopaedics within its health board. This resulted in the majority of patients with suspected cauda equina syndrome (CES) being assessed and imaged at this site, putting an increased demand on MR imaging and displacing other previous activity. Following this transition, imaging requests for CES did not always follow national guidelines and would often be missing important clinical and safety information. There also appeared to be a very low positive scan rate compared with previously reported studies. In an attempt to improve patient selection and reduce the burden of CES imaging at this site clinical audit was performed. Methods: A total of 250 consecutive patients imaged to assess for CES were evaluated. Patients had to have presented to either the emergency or orthopaedic department acutely with a presenting complaint of suspected CES. Patients were excluded if they were not admitted acutely or were assessed by other clinical specialities. In total, 233 patients were included. Requests were assessed for appropriate clinical history, accurate and complete clinical assessment and MRI safety information. Clinical assessment was allocated a score of 1-6 based on information relating to history of pain, level of pain, dermatomes/myotomes affected, peri-anal paraesthesia/anaesthesia, anal tone and post-void bladder volume with each element scoring one point. Images were assessed for positive findings of CES, acquired spinal stenosis or nerve root compression. Results: Overall, 73% of requests had a clear clinical history of CES. The urgency of the request for imaging was given in 23% of cases. The mean clinical assessment score was 3.7 out of a total of 6. Overall, 2% of scans were positive for CES, 29% had acquired spinal stenosis and 30% had nerve root compression. For patients with CES, 75% had acute neurological signs compared with 68% of the study population. CES patients had a mean clinical history score of 5.3 compared with 3.7 for the study population. Overall, 95% of requests had appropriate MRI safety information. Discussion: it study included 233 patients who underwent specialist assessment and referral for MR imaging for suspected CES. Despite the serious nature of this condition, a large proportion of imaging requests did not have a clear clinical query of CES and the level of urgency was not given, which could potentially lead to a delay in imaging and treatment. Clinical examination was often also incomplete, which can make triaging of patients presenting with similar symptoms challenging. The positive rate for CES was only 2%, much below other studies which had positive rates of 6–40% with a large meta-analysis finding a mean positive rate of 19%. These findings demonstrate an opportunity to improve the quality of imaging requests for suspected CES. This may help to improve patient selection for imaging and result in a positive rate for CES imaging that is more in line with other centres.

Keywords: cauda equina syndrome, acute back pain, MRI, spine

Procedia PDF Downloads 15
2853 Maternal Mental Health and Patient Reported Outcomes: Identifying At-Risk Pregnant and Postpartum Patients

Authors: Jennifer Reese, Josh Biber, Howard Weeks, Rachel Hess

Abstract:

Aim: The Edinburgh Postnatal Depression Screen (EPDS) is a mental health screening for pregnant women that has been widely used over the last 30 years. This screen is typically given in clinic on paper to patients throughout pregnancy and postpartum. The screen helps identify patients who may be at risk for pregnancy related depression or postpartum depression. In early 2016, University of Utah Health implemented an electronic version of the EPDS as well as the PROMIS Depression v1.0 instrument for all pregnant and postpartum patients. We asked patients both instruments to understand coverage of patients identified as at risk for each instrument. Methods: The EPDS is currently administered as part of our PRO template for pregnant and postpartum women. We also administer the PROMIS Depression as part of a standard PRO assessment to all patients. Patients are asked to complete an assessment no more often than every eight weeks. PRO assessments are either completed at home or in clinic with a tablet computer. Patients with a PROMIS score of ≥ 65 or a EPDS score of ≥ 10 were identified as at risk for depression Results: From April 2016 to April 2017, 1,330 unique patients were screened at University of Utah Health in OBGYN clinics with both the EPDS and PROMIS depression instrument on the same day. There were 28 (2.1%) patients were identified as at risk for depression using the PROMIS depression screen, while 262 (19.7%) patients were identified as at risk for postpartum depression using the EPDS screen. Overall, 27 (2%) patients were identified as at risk on both instruments. Conclusion: The EPDS identified a higher percent (19.7%) of patients at risk for depression when compared to the PROMIS depression (2.1%). Ninety-six percent of patients who screened positive on the PROMIS depression screen also screened positive on the EPDS screen. Mental health is an important component to a patient’s overall wellbeing. We want to ensure all patients, particularly pregnant or post-partum women, receive screening and treatment when necessary. A combination of screenings may be necessary to provide the overall best care for patients and to identify the highest percentage of patients at risk.

Keywords: patient reported outcomes, mental health, maternal, depression

Procedia PDF Downloads 372
2852 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion

Procedia PDF Downloads 219
2851 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: deep learning, data mining, gender predication, MOOCs

Procedia PDF Downloads 149
2850 The Food Security and Nutritional Diversity Impacts of Coupling Rural Infrastructure and Value Chain Development: Evidence from a Generalized Propensity Score Analysis

Authors: Latif Apaassongo Ibrahim, Owusu-Addo Ebenezer, Isaac Bonuedo

Abstract:

Structural barriers - including inadequate infrastructure, poor market linkages, and limited access to financial and extension services - have been the major constraints to improved welfare in the semi-arid regions of Ghana; food insecurity and malnutrition are persistent. The effects of infrastructural improvements as countermeasures are often misdirected by confounding effects of other economic, social, and environmental variables. This study applies Directed Acyclic Graphs (DAGs) to map the causal pathways between infrastructure development and household welfare, identifying key mediators and confounders for one such initiative in Ghana. Then, using Generalized Propensity Score (GPS) and Doubly Robust Estimation (IPWRA), this study evaluates the differential roles of government-supported infrastructure improvements in access and intensity of commercial relative to public infrastructure, on household food security and women’s nutritional diversity given three major value-chain improvements. The main findings suggest that these infrastructure improvements positively impact food security and nutrition, with women’s empowerment and nutritional education acting as key mediators. Market access emerged as a stronger causal mechanism relative to productivity gains in linking infrastructure to improved welfare. Membership in Farmer-Based Organizations (FBOs) and participation in agribusiness linkages further amplified these impacts. However, the effects of infrastructure improvements were less clear when combined with the adoption of climate resilience practices, suggesting potential trade-offs.

Keywords: food security, nutrition, infrastructure, market access, women's empowerment, farmer-based organizations, climate resilience, Ghana

Procedia PDF Downloads 16
2849 The Relationship Between Car Drivers' Background Information and Risky Events In I- Dreams Project

Authors: Dagim Dessalegn Haile

Abstract:

This study investigated the interaction between the drivers' socio-demographic background information (age, gender, and driving experience) and the risky events score in the i-DREAMS platform. Further, the relationship between the participants' background driving behavior and the i-DREAMS platform behavioral output scores of risky events was also investigated. The i-DREAMS acronym stands for Smart Driver and Road Environment Assessment and Monitoring System. It is a European Union Horizon 2020 funded project consisting of 13 partners, researchers, and industry partners from 8 countries. A total of 25 Belgian car drivers (16 male and nine female) were considered for analysis. Drivers' ages were categorized into ages 18-25, 26-45, 46-65, and 65 and older. Drivers' driving experience was also categorized into four groups: 1-15, 16-30, 31-45, and 46-60 years. Drivers are classified into two clusters based on the recorded score for risky events during phase 1 (baseline) using risky events; acceleration, deceleration, speeding, tailgating, overtaking, and lane discipline. Agglomerative hierarchical clustering using SPSS shows Cluster 1 drivers are safer drivers, and Cluster 2 drivers are identified as risky drivers. The analysis result indicated no significant relationship between age groups, gender, and experience groups except for risky events like acceleration, tailgating, and overtaking in a few phases. This is mainly because the fewer participants create less variability of socio-demographic background groups. Repeated measure ANOVA shows that cluster 2 drivers improved more than cluster 1 drivers for tailgating, lane discipline, and speeding events. A positive relationship between background drivers' behavior and i-DREAMS platform behavioral output scores is observed. It implies that car drivers who in the questionnaire data indicate committing more risky driving behavior demonstrate more risky driver behavior in the i-DREAMS observed driving data.

Keywords: i-dreams, car drivers, socio-demographic background, risky events

Procedia PDF Downloads 70
2848 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, pasta, moisture determination, food engineering

Procedia PDF Downloads 258
2847 Osteoarticular Manifestations and Abnormalities of Bone Metabolism in Celiac Disease

Authors: Soumaya Mrabet, Imen Akkari, Amira Atig, Elhem Ben Jazia

Abstract:

Introduction: Celiac disease (CD) is a chronic autoimmune inflammatory enteropathy caused by gluten. The clinical presentation is very variable. Malabsorption in the MC is responsible for an alteration of the bone metabolism. Our purpose is to study the osteoarticular manifestations related to this condition. Material and methods: It is a retrospective study of 41 cases of CD diagnosed on clinical, immunological, endoscopic and histological arguments, in the Internal Medicine and Gastroenterology Department of Farhat Hached Hospital between September 2005 and January 2016. Results: Osteoarticular manifestations were found in 9 patients (22%) among 41 patients presenting CD. These were 7 women and 2 men with an average age of 35.7 years (25 to 67 years). These manifestations were revelatory of CD in 3 cases. Abdominal pain and diarrhea were present in 6 cases. Inflammatory polyarthralgia of wrists and knees has been reported in 7 patients. Mechanical mono arthralgia was noted in 2 patients. Biological tests revealed microcytic anemia by iron deficiency in 7 cases, hypocalcemia in 5 cases, Hypophosphatemia in 3 cases and elevated alkaline phosphatases in 3 cases. Upper gastrointestinal endoscopy with duodenal biopsy found villous atrophy in all cases. In immunology, Anti-transglutaminase antibodies were positive in all patients, Anti-endomysium in 7 cases. Measurement of bone mineral density (BMD) by biphotonic X-ray absorptiometer with evaluation of the T-score and the Z-score was performed in Twenty patients (48.8%). It was normal in 7 cases (33%) and showed osteopenia in 5 patients (25%) and osteoporosis in 2 patients (10%). All patients were treated with a Gluten-free diet associated with vitamin D and calcium substitution in 5 cases. The evolution was favorable in all cases with reduction of bone pain and normalization of the phosphocalcic balance. Conclusion: The bone impact of CD is frequent but often asymptomatic. Patients with CD should be evaluated by the measurement of bone mineral density and monitored for calcium and vitamin D deficiencies.

Keywords: bone mineral density, celiac disease, osteoarticular manifestations, vitamin D and calcium

Procedia PDF Downloads 328
2846 A Strategic Performance Control System for Municipal Organization

Authors: Emin Gundogar, Aysegul Yilmaz

Abstract:

Strategic performance control is a significant procedure in management. There are various methods to improve this procedure. This study introduces an information system that is developed to score performance for municipal management. The application of the system is clarified by exemplifying municipal processes.

Keywords: management information system, municipal management, performance control

Procedia PDF Downloads 477
2845 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach

Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton

Abstract:

Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.

Keywords: competition, growth, model, thinning

Procedia PDF Downloads 128
2844 Survey of Prevalence of Noise Induced Hearing Loss in Hawkers and Shopkeepers in Noisy Areas of Mumbai City

Authors: Hitesh Kshayap, Shantanu Arya, Ajay Basod, Sachin Sakhuja

Abstract:

This study was undertaken to measure the overall noise levels in different locations/zones and to estimate the prevalence of Noise induced hearing loss in Hawkers & Shopkeepers in Mumbai, India. The Hearing Test developed by American Academy Of Otolaryngology, translated from English to Hindi, and validated is used as a screening tool for hearing sensitivity was employed. The tool is having 14 items. Each item is scored on a scale 0, 1, 2 and 3. The score 6 and above indicated some difficulty or definite difficulty in hearing in daily activities and low score indicated lesser difficulty or normal hearing. The subjects who scored 6 or above or having tinnitus were made to undergo hearing evaluation by Pure tone audiometer. Further, the environmental noise levels were measured from Morning to Evening at road side at different Location/Hawking zones in Mumbai city using SLM9 Agronic 8928B & K type Digital Sound Level Meter) in dB (A). The maximum noise level of 100.0 dB (A) was recorded during evening hours from Chattrapati Shivaji Terminal to Colaba with overall noise level of 79.0 dB (A). However, the minimum noise level in this area was 72.6 dB (A) at any given point of time. Further, 54.6 dB (A) was recorded as minimum noise level during 8-9 am at Sion Circle. Further, commencement of flyovers with 2-tier traffic, sky walks, increasing number of vehicular traffic at road, high rise buildings and other commercial & urbanization activities in the Mumbai city most probably have resulted in increasing the overall environmental noise levels. Trees which acted as noise absorbers have been cut owing to rapid construction. The study involved 100 participants in the age range of 18 to 40 years of age, with the mean age of 29 years (S.D. =6.49). 46 participants having tinnitus or have obtained the score of 6 were made to undergo Pure Tone Audiometry and it was found that the prevalence rate of hearing loss in hawkers & shopkeepers is 19% (10% Hawkers and 9 % Shopkeepers). The results found indicates that 29 (42.6%) out of 64 Hawkers and 17 (47.2%) out of 36 Shopkeepers who underwent PTA had no significant difference in percentage of Noise Induced Hearing loss. The study results also reveal that participants who exhibited tinnitus 19 (41.30%) out of 46 were having mild to moderate sensorineural hearing loss between 3000Hz to 6000Hz. The Pure tone Audiogram pattern revealed Hearing loss at 4000 Hz and 6000 Hz while hearing at adjacent frequencies were nearly normal. 7 hawkers and 8 shopkeepers had mild notch while 3 hawkers and 1 shopkeeper had a moderate degree of notch. It is thus inferred that tinnitus is a strong indicator for presence of hearing loss and 4/6 KHz notch is a strong marker for road/traffic/ environmental noise as an occupational hazard for hawkers and shopkeepers. Mass awareness about these occupational hazards, regular hearing check up, early intervention along with sustainable development juxtaposed with social and urban forestry can help in this regard.

Keywords: NIHL, noise, sound level meter, tinnitus

Procedia PDF Downloads 204
2843 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 354
2842 Real-Time Radar Tracking Based on Nonlinear Kalman Filter

Authors: Milca F. Coelho, K. Bousson, Kawser Ahmed

Abstract:

To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance.

Keywords: Kalman filter, nonlinear state estimation, optimal tracking, stochastic environment

Procedia PDF Downloads 148
2841 A Novel Mediterranean Diet Index from the Middle East and North Africa Region: Comparison with Europe

Authors: Farah Naja, Nahla Hwalla, Leila Itani, Shirine Baalbaki, Abla Sibai, Lara Nasreddine

Abstract:

Purpose: To propose an index for assessing adherence to a Middle-Eastern version of the Mediterranean diet as represented by the traditional Lebanese Mediterranean diet (LMD), to evaluate the association between the LMD and selected European Mediterranean diets (EMD); to examine socio-demographic and lifestyle correlates of adherence to Mediterranean diet (MD) among Lebanese adults. Methods: Using nationally representative dietary intake data of Lebanese adults, an index to measure adherence to the LMD was derived. The choice of food groups used for calculating the LMD score was based on results of previous factor analyses conducted on the same dataset. These food groups included fruits, vegetables, legumes, olive oil, burghol, dairy products, starchy vegetables, dried fruits, and eggs. Using Pearson’s correlation and scores tertiles distributions agreement, the derived LMD index was compared to previously published EMD indexes from Greece, Spain, Italy, France, and EPIC. Results: Fruits, vegetables and olive oil were common denominators to all MD scores. Food groups, specific to the LMD, included burghol and dried fruits. The LMD score significantly correlated with the EMD scores, while being closest to the Italian (r=0.57) and farthest from the French (r=0.21). Percent agreement between scores’ tertile distributions and Kappa statistics confirmed these findings. Multivariate linear regression showed that older age, higher educational, female gender, and healthy lifestyle characteristics were associated with increased adherence to all MD studied. Conclusion: A novel LMD index was proposed to characterize Mediterranean diet in Lebanon, complementing international efforts to characterize the MD and its association with disease risk.

Keywords: mediterranean diet, adherence, Middle-East, Lebanon, Europe

Procedia PDF Downloads 410
2840 Implementation of Algorithm K-Means for Grouping District/City in Central Java Based on Macro Economic Indicators

Authors: Nur Aziza Luxfiati

Abstract:

Clustering is partitioning data sets into sub-sets or groups in such a way that elements certain properties have shared property settings with a high level of similarity within one group and a low level of similarity between groups. . The K-Means algorithm is one of thealgorithmsclustering as a grouping tool that is most widely used in scientific and industrial applications because the basic idea of the kalgorithm is-means very simple. In this research, applying the technique of clustering using the k-means algorithm as a method of solving the problem of national development imbalances between regions in Central Java Province based on macroeconomic indicators. The data sample used is secondary data obtained from the Central Java Provincial Statistics Agency regarding macroeconomic indicator data which is part of the publication of the 2019 National Socio-Economic Survey (Susenas) data. score and determine the number of clusters (k) using the elbow method. After the clustering process is carried out, the validation is tested using themethodsBetween-Class Variation (BCV) and Within-Class Variation (WCV). The results showed that detection outlier using z-score normalization showed no outliers. In addition, the results of the clustering test obtained a ratio value that was not high, namely 0.011%. There are two district/city clusters in Central Java Province which have economic similarities based on the variables used, namely the first cluster with a high economic level consisting of 13 districts/cities and theclustersecondwith a low economic level consisting of 22 districts/cities. And in the cluster second, namely, between low economies, the authors grouped districts/cities based on similarities to macroeconomic indicators such as 20 districts of Gross Regional Domestic Product, with a Poverty Depth Index of 19 districts, with 5 districts in Human Development, and as many as Open Unemployment Rate. 10 districts.

Keywords: clustering, K-Means algorithm, macroeconomic indicators, inequality, national development

Procedia PDF Downloads 158
2839 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 87
2838 Benefits of an Oral Association of Glycosaminoglycans and Type II Collagene (Glycosane®) on Mobility in Senior Dogs: A Pet-Owner Survey

Authors: Navarro, Delaup, Lacreusette, Jahier, Destaing, Gard

Abstract:

Background: A complementary feed designed to support joint metabolism and contribute to cartilage integrity in dogs was evaluated through a pet-owner study involving 21 senior dogs experiencing a decrease in mobility. The study aimed to assess the product's benefits, ease of use, and impact on quality of life over a 56-day period. Methods: Privately owned dogs over six years old with reduced mobility and no change in their mobility management within the last three months were recruited. They received a chicken cartilage hydrolysate complementary feed containing a complex of glycosaminoglycans and type II collagen (Glycosane®, MP Labo, France. One capsule per dog up to 40 kg, 2 capsules beyond) once a day for 56 days. Assessments were performed at baseline (D0), and subsequent follow-ups at D7, D28, and D56: revised LOAD (Liverpool Osteoarthritis in Dogs) and CBPI (Canine Brief Pain Inventory) were used to evaluate mobility, pain intensity, and pain interference. Owners also completed a questionnaire on quality of life (QoL), comprising 7 questions on the animal’s well-being (QoL1) and 7 questions on the owner’s well-being (QoL2). Statistical analyses were performed using mixed models for repeated measures. The significance levels were set at p<0.05. Results: (1) Population: 21 dogs were included. The mean age was 10.2 years [6 – 14.5]. (2) Mobility: 71% of owners reported enhanced mobility by D56. Improvements were observed in half of the cases after 21 days of supplementation, with notable changes evident as early as 14 days in 39% of cases. LOAD scores showed significant improvement over time (p=0.0019). (3) Comfort: CBPI severity scores decreased significantly from baseline to D28 and D56 (p=0.0300 and p=0.0271, respectively). CBPI QoL score was also significantly improved at D56 compared to D7 (p=0.0440). (4) Quality of life: The QoL total score improved significantly by D56 compared to baseline (p=0.0089), with a specific improvement of the QoL1 (p=0.0015). (4) Owners' insights: Glycosane® received a high ease-of-use rating (mean score 4.4/5), with excellent compliance (95%). Oral intake was rated at 4.3/5. Willingness to walk (19%), Increased activity, Ability to run and/or jump from short heights and a Happier animal (11%) were among the most cited benefits. Owners noted enhanced comfort (78%) and happiness (79%) in their dogs, with a 60% perception of restored good mobility. Conclusion: The complementary feed demonstrates significant benefits in enhancing mobility and quality of life in senior dogs. Its high ease of administration supports owner compliance and satisfaction. These findings support Glycosane® as a valuable nutritional aid in helping to maintain canine mobility. Further studies with larger cohorts and a controlled group are recommended to validate these results.

Keywords: canine mobility, complementary feed, LOAD, CBPI, quality of life, Glycosane

Procedia PDF Downloads 14
2837 Common Orthodontic Indices and Classification in the United Kingdom

Authors: Ashwini Mohan, Haris Batley

Abstract:

An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom.

Keywords: classification, indices, orthodontics, validity

Procedia PDF Downloads 154
2836 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 190
2835 Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials

Authors: Lucile Soudani, Hervé Illy, Rémi Bouchié

Abstract:

Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising.

Keywords: bio-based materials, mould growth, numerical prediction, reliability approach

Procedia PDF Downloads 48
2834 Fractured Neck of Femur Patients; The Feeding Problems

Authors: F. Christie, M. Staber

Abstract:

Malnutrition is a predictor of poor clinical outcome in the elderly. Up to 60% of hip fracture patients are clinically malnourished on admission. This study assessed the perioperative nutritional state of patients admitted with a proximal femoral fracture and examined if adequate nutritional support was achieved. Methods: Prospective, the observational audit of 30 patients, admitted with a proximal femoral fracture, over a one-month period. We recorded: patient demographics; surgical delay; nutritional state on admission; documentation of Malnutrition Universal Screening Tool (MUST) score; dietician input and daily calorie intake through food charts. The nutritional state was re-assessed weekly and at discharge. The outcome was measured by the length of hospital stay and thirty-day mortality. Results: Mean age 87, M:F 1:2 and all patients were ASA three or four. Five patients (17%) had a prolonged ( >24 hours) fasting period. All patients had a MUST score completed on admission, 27% were underweight and 30% were high risk for malnutrition. Twenty-six patients (87%) were appropriately assessed for dietician referral. Thirteen patients had food charts; on average, hospital meals provided 1500kcal daily. No patient achieved > 75% of the provided calories with 69% of patients achieving 50% or less. Only three patients were started on nutritional supplements. Twenty-three patients (77%) lost weight, averaging 6% weight loss during admission. Mean length of stay (LOS) was 23 days and 30-day mortality 9%. Four patients (13%) gained weight, their mean LOS was 17 days and 30-day mortality 0%. Discussion: Malnutrition in the elderly originates in the community. Following major trauma it’s difficult to reverse nutritional deficits in hospitals. It’s therefore concerning that no high-risk patient achieved their recommended calorie intake. Perioperative optimisation needs to include early nutritional intervention, early anaesthetic review and adjusted anaesthetic techniques to support feeding.

Keywords: trauma, nutrition, neck of femur fracture

Procedia PDF Downloads 327
2833 The Role of Movement Quality after Osgood-Schlatter Disease in an Amateur Football Player: A Case Study

Authors: D. Pogliana, A. Maso, N. Milani, D. Panzin, S. Rivaroli, J. Konin

Abstract:

This case aims to identify the role of movement quality during the final stage of return to sport (RTS) in a male amateur football player 13 years old after passing the acute phase of the bilateral Osgood-Schlatter disease (OSD). The patient, after a year from passing the acute phase of OSD with the abstention of physical activity, reports bilateral anterior knee pain at the beginning of the football sport activity. Interventions: After the orthopedist check, who recommended physiotherapy sessions for the correction of motor patterns and the isometric reinforcement of the muscles of the quadriceps, the rehabilitation intervention was developed in 7 weeks through 14 sessions of neuro-motor training (NMT) with a frequency of two weekly sessions and six sessions of muscle-strengthening with a frequency of one weekly session. The sessions of NMT were carried out through free body exercises (or with overloads) with visual bio-feedback with the help of two cameras (one with anterior vision and one with lateral vision of the subject) and a big touch screen. The aim of these sessions of NMT was to modify the dysfunctional motor patterns evaluated by the 2D motion analysis test. The test was carried out at the beginning and at the end of the rehabilitation course and included five movements: single-leg squat (SLS), drop jump (DJ), single-leg hop (SLH), lateral shuffle (LS), and change of direction (COD). Each of these movements was evaluated through the video analysis of dynamic valgus knee, pelvic tilt, trunk control, shock absorption, and motor strategy. A free image analysis software (Kinovea) was then used to calculate scores. Results: Baseline assessment of the subject showed a total score of 59% on the right limb and 64% on the left limb (considering an optimal score above 85%) with large deficits in shock absorption capabilities, the presence of dynamic valgus knee, and dysfunctional motor strategies defined “quadriceps dominant.” After six weeks of training, the subject achieved a total score of 80% on the right limb and 86% on the left limb, with significant improvements in shock absorption capabilities, the presence of dynamic knee valgus, and the employment of more hip-oriented motor strategies on both lower limbs. The improvements shown in dynamic knee valgus, greater hip-oriented motor strategies, and improved shock absorption identified through six weeks of the NMT program can help a teenager amateur football player to manage the anterior knee pain during sports activity. In conclusion, NMT was a good choice to help a 13 years old male amateur football player to return to performance without pain after OSD and can also be used with all this type of athletes of the other teams' sports.

Keywords: movement analysis, neuro-motor training, knee pain, movement strategies

Procedia PDF Downloads 138