Search results for: prediction equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3935

Search results for: prediction equations

2645 A Three-Dimensional Investigation of Stabilized Turbulent Diffusion Flames Using Different Type of Fuel

Authors: Moataz Medhat, Essam E. Khalil, Hatem Haridy

Abstract:

In the present study, a numerical simulation study is used to 3-D model the steady-state combustion of a staged natural gas flame in a 300 kW swirl-stabilized burner, using ANSYS solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace and showing the effect of flue gas recirculation, type of fuel and staging. The combustion chamber of the gas turbine is a cylinder of diameter 1006.8 mm, and a height of 1651mm ending with a hood until the exhaust cylinder has been reached, where the exit of combustion products which have a diameter of 300 mm, with a height of 751mm. The model was studied by 15 degree of the circumference due to axisymmetric of the geometry and divided into a mesh of about 1.1 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-epsilon equations to express the turbulence and non-premixed flamelet combustion model taking into consideration radiation effect. The validation of the results was done by comparing it with other experimental data to ensure the agreement of the results. The study showed two zones of recirculation. The primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. It is found that the increase in temperature in the external recirculation zone is a result of increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation especially nitrogen monoxide.

Keywords: burner selection, natural gas, analysis, recirculation

Procedia PDF Downloads 161
2644 Modeling Route Selection Using Real-Time Information and GPS Data

Authors: William Albeiro Alvarez, Gloria Patricia Jaramillo, Ivan Reinaldo Sarmiento

Abstract:

Understanding the behavior of individuals and the different human factors that influence the choice when faced with a complex system such as transportation is one of the most complicated aspects of measuring in the components that constitute the modeling of route choice due to that various behaviors and driving mode directly or indirectly affect the choice. During the last two decades, with the development of information and communications technologies, new data collection techniques have emerged such as GPS, geolocation with mobile phones, apps for choosing the route between origin and destination, individual service transport applications among others, where an interest has been generated to improve discrete choice models when considering the incorporation of these developments as well as psychological factors that affect decision making. This paper implements a discrete choice model that proposes and estimates a hybrid model that integrates route choice models and latent variables based on the observation on the route of a sample of public taxi drivers from the city of Medellín, Colombia in relation to its behavior, personality, socioeconomic characteristics, and driving mode. The set of choice options includes the routes generated by the individual service transport applications versus the driver's choice. The hybrid model consists of measurement equations that relate latent variables with measurement indicators and utilities with choice indicators along with structural equations that link the observable characteristics of drivers with latent variables and explanatory variables with utilities.

Keywords: behavior choice model, human factors, hybrid model, real time data

Procedia PDF Downloads 152
2643 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 322
2642 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 84
2641 Numerical and Sensitivity Analysis of Modeling the Newcastle Disease Dynamics

Authors: Nurudeen Oluwasola Lasisi

Abstract:

Newcastle disease is a highly contagious disease of birds caused by a para-myxo virus. In this paper, we presented Novel quarantine-adjusted incident and linear incident of Newcastle disease model equations. We considered the dynamics of transmission and control of Newcastle disease. The existence and uniqueness of the solutions were obtained. The existence of disease-free points was shown, and the model threshold parameter was examined using the next-generation operator method. The sensitivity analysis was carried out in order to identify the most sensitive parameters of the disease transmission. This revealed that as parameters β,ω, and ᴧ increase while keeping other parameters constant, the effective reproduction number R_ev increases. This implies that the parameters increase the endemicity of the infection of individuals. More so, when the parameters μ,ε,γ,δ_1, and α increase, while keeping other parameters constant, the effective reproduction number R_ev decreases. This implies the parameters decrease the endemicity of the infection as they have negative indices. Analytical results were numerically verified by the Differential Transformation Method (DTM) and quantitative views of the model equations were showcased. We established that as contact rate (β) increases, the effective reproduction number R_ev increases, as the effectiveness of drug usage increases, the R_ev decreases and as the quarantined individual decreases, the R_ev decreases. The results of the simulations showed that the infected individual increases when the susceptible person approaches zero, also the vaccination individual increases when the infected individual decreases and simultaneously increases the recovery individual.

Keywords: disease-free equilibrium, effective reproduction number, endemicity, Newcastle disease model, numerical, Sensitivity analysis

Procedia PDF Downloads 45
2640 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 49
2639 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 103
2638 Numerical Simulation of Two-Phase Flows Using a Pressure-Based Solver

Authors: Lei Zhang, Jean-Michel Ghidaglia, Anela Kumbaro

Abstract:

This work focuses on numerical simulation of two-phase flows based on the bi-fluid six-equation model widely used in many industrial areas, such as nuclear power plant safety analysis. A pressure-based numerical method is adopted in our studies due to the fact that in two-phase flows, it is common to have a large range of Mach numbers because of the mixture of liquid and gas, and density-based solvers experience stiffness problems as well as a loss of accuracy when approaching the low Mach number limit. This work extends the semi-implicit pressure solver in the nuclear component CUPID code, where the governing equations are solved on unstructured grids with co-located variables to accommodate complicated geometries. A conservative version of the solver is developed in order to capture exactly the shock in one-phase flows, and is extended to two-phase situations. An inter-facial pressure term is added to the bi-fluid model to make the system hyperbolic and to establish a well-posed mathematical problem that will allow us to obtain convergent solutions with refined meshes. The ability of the numerical method to treat phase appearance and disappearance as well as the behavior of the scheme at low Mach numbers will be demonstrated through several numerical results. Finally, inter-facial mass and heat transfer models are included to deal with situations when mass and energy transfer between phases is important, and associated industrial numerical benchmarks with tabulated EOS (equations of state) for fluids are performed.

Keywords: two-phase flows, numerical simulation, bi-fluid model, unstructured grids, phase appearance and disappearance

Procedia PDF Downloads 393
2637 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Primary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

Finding algorithms to predict the growth of tumors has piqued the interest of researchers ever since the early days of cancer research. A number of studies were carried out as an attempt to obtain reliable data on the natural history of breast cancer growth. Mathematical modeling can play a very important role in the prognosis of tumor process of breast cancer. However, mathematical models describe primary tumor growth and metastases growth separately. Consequently, we propose a mathematical growth model for primary tumor and primary metastases which may help to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoM-IV and corresponding software. We are interested in: 1) modelling the whole natural history of primary tumor and primary metastases; 2) developing adequate and precise CoM-IV which reflects relations between PT and MTS; 3) analyzing the CoM-IV scope of application; 4) implementing the model as a software tool. The CoM-IV is based on exponential tumor growth model and consists of a system of determinate nonlinear and linear equations; corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and primary metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for primary metastases; 3) ‘visible period’ for primary metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-IV model and predictive software: a) detect different growth periods of primary tumor and primary metastases; b) make forecast of the period of primary metastases appearance; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of BC and facilitate optimization of diagnostic tests. The following are calculated by CoM-IV: the number of doublings for ‘nonvisible’ and ‘visible’ growth period of primary metastases; tumor volume doubling time (days) for ‘nonvisible’ and ‘visible’ growth period of primary metastases. The CoM-IV enables, for the first time, to predict the whole natural history of primary tumor and primary metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-IV describes correctly primary tumor and primary distant metastases growth of IV (T1-4N0-3M1) stage with (N1-3) or without regional metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and manifestation of primary metastases.

Keywords: breast cancer, exponential growth model, mathematical modelling, primary metastases, primary tumor, survival

Procedia PDF Downloads 335
2636 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant

Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula

Abstract:

Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.

Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning

Procedia PDF Downloads 136
2635 Hydrodynamics Study on Planing Hull with and without Step Using Numerical Solution

Authors: Koe Han Beng, Khoo Boo Cheong

Abstract:

The rising interest of stepped hull design has been led by the demand of more efficient high-speed boat. At the same time, the need of accurate prediction method for stepped planing hull is getting more important. By understanding the flow at high Froude number is the key in designing a practical step hull, the study surrounding stepped hull has been done mainly in the towing tank which is time-consuming and costly for initial design phase. Here the feasibility of predicting hydrodynamics of high-speed planing hull both with and without step using computational fluid dynamics (CFD) with the volume of fluid (VOF) methodology is studied in this work. First the flow around the prismatic body is analyzed, the force generated and its center of pressure are compared with available experimental and empirical data from the literature. The wake behind the transom on the keel line as well as the quarter beam buttock line are then compared with the available data, this is important since the afterbody flow of stepped hull is subjected from the wake of the forebody. Finally the calm water performance prediction of a conventional planing hull and its stepped version is then analyzed. Overset mesh methodology is employed in solving the dynamic equilibrium of the hull. The resistance, trim, and heave are then compared with the experimental data. The resistance is found to be predicted well and the dynamic equilibrium solved by the numerical method is deemed to be acceptable. This means that computational fluid dynamics will be very useful in further study on the complex flow around stepped hull and its potential usage in the design phase.

Keywords: planing hulls, stepped hulls, wake shape, numerical simulation, hydrodynamics

Procedia PDF Downloads 282
2634 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast

Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi

Abstract:

Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.

Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature

Procedia PDF Downloads 280
2633 Optical Breather in Phosphorene Monolayer

Authors: Guram Adamashvili

Abstract:

Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.

Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons

Procedia PDF Downloads 149
2632 Prediction of Fluid Induced Deformation using Cavity Expansion Theory

Authors: Jithin S. Kumar, Ramesh Kannan Kandasami

Abstract:

Geomaterials are generally porous in nature due to the presence of discrete particles and interconnected voids. The porosity present in these geomaterials play a critical role in many engineering applications such as CO2 sequestration, well bore strengthening, enhanced oil and hydrocarbon recovery, hydraulic fracturing, and subsurface waste storage. These applications involves solid-fluid interactions, which govern the changes in the porosity which in turn affect the permeability and stiffness of the medium. Injecting fluid into the geomaterials results in permeation which exhibits small or negligible deformation of the soil skeleton followed by cavity expansion/ fingering/ fracturing (different forms of instabilities) due to the large deformation especially when the flow rate is greater than the ability of the medium to permeate the fluid. The complexity of this problem increases as the geomaterial behaves like a solid and fluid under certain conditions. Thus it is important to understand this multiphysics problem where in addition to the permeation, the elastic-plastic deformation of the soil skeleton plays a vital role during fluid injection. The phenomenon of permeation and cavity expansion in porous medium has been studied independently through extensive experimental and analytical/ numerical models. The analytical models generally use Darcy's/ diffusion equations to capture the fluid flow during permeation while elastic-plastic (Mohr-Coulomb and Modified Cam-Clay) models were used to predict the solid deformations. Hitherto, the research generally focused on modelling cavity expansion without considering the effect of injected fluid coming into the medium. Very few studies have considered the effect of injected fluid on the deformation of soil skeleton. However, the porosity changes during the fluid injection and coupled elastic-plastic deformation are not clearly understood. In this study, the phenomenon of permeation and instabilities such as cavity and finger/ fracture formation will be quantified extensively by performing experiments using a novel experimental setup in addition to utilizing image processing techniques. This experimental study will describe the fluid flow and soil deformation characteristics under different boundary conditions. Further, a well refined coupled semi-analytical model will be developed to capture the physics involved in quantifying the deformation behaviour of geomaterial during fluid injection.

Keywords: solid-fluid interaction, permeation, poroelasticity, plasticity, continuum model

Procedia PDF Downloads 74
2631 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 134
2630 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386
2629 Computational Fluid Dynamics Simulation on Heat Transfer of Hot Air Bubble Injection into Water Column

Authors: Jae-Yeong Choi, Gyu-Mok Jeon, Jong-Chun Park, Yong-Jin Cho, Seok-Tae Yoon

Abstract:

When air flow is injected into water, bubbles are formed in various types inside the water pool along with the air flow rate. The bubbles are floated in equilibrium with forces such as buoyancy, surface tension and shear force. Single bubble generated at low flow rate maintains shape, but bubbles with high flow rate break up to make mixing and turbulence. In addition to this phenomenon, as the hot air bubbles are injected into the water, heat affects the interface of phases. Therefore, the main scope of the present work reveals how to proceed heat transfer between water and hot air bubbles injected into water. In the present study, a series of CFD simulation for the heat transfer of hot bubbles injected through a nozzle near the bottom in a cylindrical water column are performed using a commercial CFD software, STAR-CCM+. The governing equations for incompressible and viscous flow are the continuous and the RaNS (Reynolds- averaged Navier-Stokes) equations and discretized by the FVM (Finite Volume Method) manner. For solving multi-phase flow, the Eulerian multiphase model is employed and the interface is defined by VOF (Volume-of-Fluid) technique. As a turbulence model, the SST k-w model considering the buoyancy effects is introduced. For spatial differencing the 3th-order MUSCL scheme is adopted and the 2nd-order implicit scheme for time integration. As the results, the dynamic behavior of the rising hot bubbles with the flow rate injected and regarding heat transfer mechanism are discussed based on the simulation results.

Keywords: heat transfer, hot bubble injection, eulerian multiphase model, flow rate, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 152
2628 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 160
2627 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid

Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis

Abstract:

This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.

Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener

Procedia PDF Downloads 78
2626 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland

Authors: Raptis Sotirios

Abstract:

Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.

Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services

Procedia PDF Downloads 234
2625 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms

Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto

Abstract:

In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.

Keywords: capacity-booking, SPA, monthly production planning, linear programming

Procedia PDF Downloads 519
2624 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 396
2623 Optimizing Volume Fraction Variation Profile of Bidirectional Functionally Graded Circular Plate under Mechanical Loading to Minimize Its Stresses

Authors: Javad Jamali Khouei, Mohammadreza Khoshravan

Abstract:

Considering that application of functionally graded material is increasing in most industries, it seems necessary to present a methodology for designing optimal profile of structures such as plate under mechanical loading which is highly consumed in industries. Therefore, volume fraction variation profile of functionally graded circular plate which has been considered two-directional is optimized so that stress of structure is minimized. For this purpose, equilibrium equations of two-directional functionally graded circular plate are solved by applying semi analytical-numerical method under mechanical loading and support conditions. By solving equilibrium equations, deflections and stresses are obtained in terms of control variables of volume fraction variation profile. As a result, the problem formula can be defined as an optimization problem by aiming at minimization of critical von-mises stress under constraints of deflections, stress and a physical constraint relating to structure of material. Then, the related problem can be solved with help of one of the metaheuristic algorithms such as genetic algorithm. Results of optimization for the applied model under constraints and loadings and boundary conditions show that functionally graded plate should be graded only in radial direction and there is no need for volume fraction variation of the constituent particles in thickness direction. For validating results, optimal values of the obtained design variables are graphically evaluated.

Keywords: two-directional functionally graded material, single objective optimization, semi analytical-numerical solution, genetic algorithm, graphical solution with contour

Procedia PDF Downloads 279
2622 Basins of Attraction for Quartic-Order Methods

Authors: Young Hee Geum

Abstract:

We compare optimal quartic order method for the multiple zeros of nonlinear equations illustrating the basins of attraction. To construct basins of attraction effectively, we take a 600×600 uniform grid points at the origin of the complex plane and paint the initial values on the basins of attraction with different colors according to the iteration number required for convergence.

Keywords: basins of attraction, convergence, multiple-root, nonlinear equation

Procedia PDF Downloads 252
2621 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model

Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge

Abstract:

Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.

Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model

Procedia PDF Downloads 131
2620 The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep

Authors: Mustafa Salman, Nurcan Cetinkaya, Zehra Selcuk, Bugra Genc

Abstract:

The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P<0.001) were found among months for purine derivatives index, purine derivatives excretion, purine derivatives absorption, microbial-N and DOMI. Through urine sampling and the determination of levels of excreted urinary PD and Purine Derivatives / Creatinine ratio (PDC index), microbial-N values were estimated and they indicated that the protein nutrition of the sheep was insufficient. In conclusion, the prediction of protein nutrition of sheep under the field conditions may be possible with the use of spot urine sampling, urinary excreted PD and PDC index. The mean purine derivative levels in spot urine samples from sheep were highest in June, July and October. Protein nutrition of pastured sheep may be affected by weather changes, including rainfall. Spot urine sampling may useful in modeling the feed consumption of pasturing sheep. However, further studies are required under different field conditions with different breeds of sheep to develop spot urine sampling as a model.

Keywords: Karayaka sheep, spot sampling, urinary purine derivatives, PDC index, microbial-N, feed intake

Procedia PDF Downloads 529
2619 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction

Procedia PDF Downloads 310
2618 Blood Flow Simulations to Understand the Role of the Distal Vascular Branches of Carotid Artery in the Stroke Prediction

Authors: Muhsin Kizhisseri, Jorg Schluter, Saleh Gharie

Abstract:

Atherosclerosis is the main reason of stroke, which is one of the deadliest diseases in the world. The carotid artery in the brain is the prominent location for atherosclerotic progression, which hinders the blood flow into the brain. The inclusion of computational fluid dynamics (CFD) into the diagnosis cycle to understand the hemodynamics of the patient-specific carotid artery can give insights into stroke prediction. Realistic outlet boundary conditions are an inevitable part of the numerical simulations, which is one of the major factors in determining the accuracy of the CFD results. The Windkessel model-based outlet boundary conditions can give more realistic characteristics of the distal vascular branches of the carotid artery, such as the resistance to the blood flow and compliance of the distal arterial walls. This study aims to find the most influential distal branches of the carotid artery by using the Windkessel model parameters in the outlet boundary conditions. The parametric study approach to Windkessel model parameters can include the geometrical features of the distal branches, such as radius and length. The incorporation of the variations of the geometrical features of the major distal branches such as the middle cerebral artery, anterior cerebral artery, and ophthalmic artery through the Windkessel model can aid in identifying the most influential distal branch in the carotid artery. The results from this study can help physicians and stroke neurologists to have a more detailed and accurate judgment of the patient's condition.

Keywords: stroke, carotid artery, computational fluid dynamics, patient-specific, Windkessel model, distal vascular branches

Procedia PDF Downloads 215
2617 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 76
2616 Effects of Nutrients Supply on Milk Yield, Composition and Enteric Methane Gas Emissions from Smallholder Dairy Farms in Rwanda

Authors: Jean De Dieu Ayabagabo, Paul A.Onjoro, Karubiu P. Migwi, Marie C. Dusingize

Abstract:

This study investigated the effects of feed on milk yield and quality through feed monitoring and quality assessment, and the consequent enteric methane gas emissions from smallholder dairy farms in drier areas of Rwanda, using the Tier II approach for four seasons in three zones, namely; Mayaga and peripheral Bugesera (MPB), Eastern Savanna and Central Bugesera (ESCB), and Eastern plateau (EP). The study was carried out using 186 dairy cows with a mean live weight of 292 Kg in three communal cowsheds. The milk quality analysis was carried out on 418 samples. Methane emission was estimated using prediction equations. Data collected were subjected to ANOVA. The dry matter intake was lower (p<0.05) in the long dry season (7.24 Kg), with the ESCB zone having the highest value of 9.10 Kg, explained by the practice of crop-livestock integration agriculture in that zone. The Dry matter digestibility varied between seasons and zones, ranging from 52.5 to 56.4% for seasons and from 51.9 to 57.5% for zones. The daily protein supply was higher (p<0.05) in the long rain season with 969 g. The mean daily milk production of lactating cows was 5.6 L with a lower value (p<0.05) during the long dry season (4.76 L), and the MPB zone having the lowest value of 4.65 L. The yearly milk production per cow was 1179 L. The milk fat varied from 3.79 to 5.49% with a seasonal and zone variation. No variation was observed with milk protein. The seasonal daily methane emission varied from 150 g for the long dry season to 174 g for the long rain season (p<0.05). The rain season had the highest methane emission as it is associated with high forage intake. The mean emission factor was 59.4 Kg of methane/year. The present EFs were higher than the default IPPC value of 41 Kg from developing countries in African, the Middle East, and other tropical regions livestock EFs using Tier I approach due to the higher live weight in the current study. The methane emission per unit of milk production was lower in the EP zone (46.8 g/L) due to the feed efficiency observed in that zone. Farmers should use high-quality feeds to increase the milk yield and reduce the methane gas produced per unit of milk. For an accurate assessment of the methane produced from dairy farms, there is a need for the use of the Life Cycle Assessment approach that considers all the sources of emissions.

Keywords: footprint, forage, girinka, tier

Procedia PDF Downloads 205