Search results for: ozone distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5272

Search results for: ozone distribution

3982 Interlinkages and Impacts of the Indian Ocean on the Nile River

Authors: Zeleke Ayalew Alemu

Abstract:

Indian Ocean and the Nile River play significant roles in shaping the hydrological and ecological systems of the regions they traverse. This study explores the interlinkages and impacts of the Indian Ocean on the Nile River, highlighting key factors such as water flow, nutrient distribution, climate patterns, and biodiversity. The Indian Ocean serves as a major source of moisture for the Nile River, contributing to its annual flood cycle and sustaining the river's ecosystem. The Indian Ocean's monsoon winds influence the amount of rainfall received in East Africa, which directly impacts the Nile's water levels. These monsoonal patterns create a vital connection between the Indian Ocean and the Nile, affecting agricultural productivity, freshwater availability, and overall river health. The Indian Ocean also influences the nutrient levels in the Nile River. Coastal upwelling driven by oceanic currents brings nutrient-rich waters from the depths of the ocean to the surface. These nutrients are transported by ocean currents towards the Red Sea and subsequently enter the Nile. This influx of nutrients supports the growth of plankton, which forms the basis of the river's food web and sustains various aquatic species. Additionally, the Indian Ocean's climate patterns, such as El Niño and Indian Ocean Dipole events, exert influence on the Nile River basin. El Niño, for example, can result in drought conditions, reduced precipitation, and altered river flows, impacting agricultural activities and water resource management along the Nile. The Indian Ocean Dipole events can influence the rainfall distribution in East Africa, further impacting the Nile's water levels and ecosystem dynamics. The Indian Ocean's biodiversity is interconnected with the Nile River's ecological system. Many species that inhabit the Indian Ocean, such as migratory birds and marine mammals, migrate along the Nile River basin, utilizing its resources for feeding and breeding purposes. The health of the Indian Ocean's ecosystem thus indirectly affects the biodiversity and ecological balance of the Nile River. Indian Ocean plays a crucial role in shaping the dynamics of the Nile River. Its influence on water flow, nutrient distribution, climate patterns, and biodiversity highlights the complex interdependencies between these two important water bodies. Understanding the interconnectedness and impacts of the Indian Ocean on the Nile is essential for effective water resource management and conservation efforts in the region.

Keywords: water, management, environment, planning

Procedia PDF Downloads 99
3981 Business Continuity Risk Review for a Large Petrochemical Complex

Authors: Michel A. Thomet

Abstract:

A discrete-event simulation model was used to perform a Reliability-Availability-Maintainability (RAM) study of a large petrochemical complex which included sixteen process units, and seven feeds and intermediate streams. All the feeds and intermediate streams have associated storage tanks, so that if a processing unit fails and shuts down, the downstream units can keep producing their outputs. This also helps the upstream units which do not have to reduce their outputs, but can store their excess production until the failed unit restart. Each process unit and each pipe section carrying the feeds and intermediate streams has a probability of failure with an associated distribution and a Mean Time Between Failure (MTBF), as well as a distribution of the time to restore and a Mean Time To Restore (MTTR). The utilities supporting the process units can also fail and have their own distributions with specific MTBF and MTTR. The model runs are for ten years or more and the runs are repeated several times to obtain statistically relevant results. One of the main results is the On-Stream factor (OSF) of each process unit (percent of hours in a year when the unit is running in nominal conditions). One of the objectives of the study was to investigate if the storage capacity of each of the feeds and the intermediate stream was adequate. This was done by increasing the storage capacities in several steps and through running the simulation to see if the OSF were improved and by how much. Other objectives were to see if the failure of the utilities were an important factor in the overall OSF, and what could be done to reduce their failure rates through redundant equipment.

Keywords: business continuity, on-stream factor, petrochemical, RAM study, simulation, MTBF

Procedia PDF Downloads 222
3980 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing

Authors: S. Bouhouche, R. Drai, J. Bast

Abstract:

This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.

Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement

Procedia PDF Downloads 286
3979 Review of Microstructure, Mechanical and Corrosion Behavior of Aluminum Matrix Composite Reinforced with Agro/Industrial Waste Fabricated by Stir Casting Process

Authors: Mehari Kahsay, Krishna Murthy Kyathegowda, Temesgen Berhanu

Abstract:

Aluminum matrix composites have gained focus on research and industrial use, especially those not requiring extreme loading or thermal conditions, for the last few decades. Their relatively low cost, simple processing and attractive properties are the reasons for the widespread use of aluminum matrix composites in the manufacturing of automobiles, aircraft, military, and sports goods. In this article, the microstructure, mechanical, and corrosion behaviors of the aluminum metal matrix were reviewed, focusing on the stir casting fabrication process and usage of agro/industrial waste reinforcement particles. The results portrayed that mechanical properties like tensile strength, ultimate tensile strength, hardness, percentage of elongation, impact, and fracture toughness are highly dependent on the amount, kind, and size of reinforcing particles. Additionally, uniform distribution, wettability of reinforcement particles, and the porosity level of the resulting composite also affect the mechanical and corrosion behaviors of aluminum matrix composites. The two-step stir-casting process resulted in better wetting characteristics, a lower porosity level, and a uniform distribution of particles with proper handling of process parameters. On the other hand, the inconsistent and contradicting results on corrosion behavior regarding monolithic and hybrid aluminum matrix composites need further study.

Keywords: microstructure, mechanical behavior, corrosion, aluminum matrix composite

Procedia PDF Downloads 74
3978 Design and Application of a Model Eliciting Activity with Civil Engineering Students on Binomial Distribution to Solve a Decision Problem Based on Samples Data Involving Aspects of Randomness and Proportionality

Authors: Martha E. Aguiar-Barrera, Humberto Gutierrez-Pulido, Veronica Vargas-Alejo

Abstract:

Identifying and modeling random phenomena is a fundamental cognitive process to understand and transform reality. Recognizing situations governed by chance and giving them a scientific interpretation, without being carried away by beliefs or intuitions, is a basic training for citizens. Hence the importance of generating teaching-learning processes, supported using technology, paying attention to model creation rather than only executing mathematical calculations. In order to develop the student's knowledge about basic probability distributions and decision making; in this work a model eliciting activity (MEA) is reported. The intention was applying the Model and Modeling Perspective to design an activity related to civil engineering that would be understandable for students, while involving them in its solution. Furthermore, the activity should imply a decision-making challenge based on sample data, and the use of the computer should be considered. The activity was designed considering the six design principles for MEA proposed by Lesh and collaborators. These are model construction, reality, self-evaluation, model documentation, shareable and reusable, and prototype. The application and refinement of the activity was carried out during three school cycles in the Probability and Statistics class for Civil Engineering students at the University of Guadalajara. The analysis of the way in which the students sought to solve the activity was made using audio and video recordings, as well as with the individual and team reports of the students. The information obtained was categorized according to the activity phase (individual or team) and the category of analysis (sample, linearity, probability, distributions, mechanization, and decision-making). With the results obtained through the MEA, four obstacles have been identified to understand and apply the binomial distribution: the first one was the resistance of the student to move from the linear to the probabilistic model; the second one, the difficulty of visualizing (infering) the behavior of the population through the sample data; the third one, viewing the sample as an isolated event and not as part of a random process that must be viewed in the context of a probability distribution; and the fourth one, the difficulty of decision-making with the support of probabilistic calculations. These obstacles have also been identified in literature on the teaching of probability and statistics. Recognizing these concepts as obstacles to understanding probability distributions, and that these do not change after an intervention, allows for the modification of these interventions and the MEA. In such a way, the students may identify themselves the erroneous solutions when they carrying out the MEA. The MEA also showed to be democratic since several students who had little participation and low grades in the first units, improved their participation. Regarding the use of the computer, the RStudio software was useful in several tasks, for example in such as plotting the probability distributions and to exploring different sample sizes. In conclusion, with the models created to solve the MEA, the Civil Engineering students improved their probabilistic knowledge and understanding of fundamental concepts such as sample, population, and probability distribution.

Keywords: linear model, models and modeling, probability, randomness, sample

Procedia PDF Downloads 120
3977 A Critical Review of Assessments of Geological CO2 Storage Resources in Pennsylvania and the Surrounding Region

Authors: Levent Taylan Ozgur Yildirim, Qihao Qian, John Yilin Wang

Abstract:

A critical review of assessments of geological carbon dioxide (CO2) storage resources in Pennsylvania and the surrounding region was completed with a focus on the studies of Midwest Regional Carbon Sequestration Partnership (MRCSP), United States Department of Energy (US-DOE), and United States Geological Survey (USGS). Pennsylvania Geological Survey participated in the MRCSP Phase I research to characterize potential storage formations in Pennsylvania. The MRCSP’s volumetric method estimated ~89 gigatonnes (Gt) of total CO2 storage resources in deep saline formations, depleted oil and gas reservoirs, coals, and shales in Pennsylvania. Meanwhile, the US-DOE calculated storage efficiency factors using log-odds normal distribution and Monte Carlo sampling, revealing contingent storage resources of ~18 Gt to ~20 Gt in deep saline formations, depleted oil and gas reservoirs, and coals in Pennsylvania. Additionally, the USGS employed Beta-PERT distribution and Monte Carlo sampling to determine buoyant and residual storage efficiency factors, resulting in 20 Gt of contingent storage resources across four storage assessment units in Appalachian Basin. However, few studies have explored CO2 storage resources in shales in the region, yielding inconclusive findings. This article provides a critical and most up to date review and analysis of geological CO2 storage resources in Pennsylvania and the region.

Keywords: carbon capture and storage, geological CO2 storage, pennsylvania, appalachian basin

Procedia PDF Downloads 56
3976 Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis

Authors: Mohamed Bendoukha, Mustapha Mosbah

Abstract:

The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension.

Keywords: intervertebral disc, lumbar spine, degenerative nuclesion, L4-L5, range of motion finite element model, hyperelasticy

Procedia PDF Downloads 186
3975 Circulating Oxidized LDL and Insulin Resistance among Obese School Students

Authors: Nayera E. Hassan, Sahar A. El-Masry, Mones M. Abu Shady, Rokia A. El Banna, Muhammad Al-Tohamy, Mehrevan M. Abd El-Moniem, Mona Anwar

Abstract:

Circulating oxidized LDL (ox-LDL) is associated with obesity, insulin resistance (HOMA), metabolic syndrome, and cardiovascular disease in adults. Little is known about relations in children. Aim: To assess association of ox-LDL with fat distribution and insulin resistance in a group of obese Egyptian children. Methods: Study is cross-sectional consisting of 68 obese children, with a mean age of 9.96 ± 1.32. Each underwent a complete physical examination; blood pressure (SBP, DBP) and anthropometric measurements (weight, height, BMI; waist, hip circumferences, waist/hip ratio), biochemical tests of fasting blood glucose (FBS), insulin levels; lipid profile (TC, LDL,HDL, TG) and ox-LDL; calculated HOMA. Sample was classified according to waist/hip ratio into: group I with and group II without central obesity. Results: ox-LDL showed significant positive correlation with LDL and TC in all groups of obesity. After adjustment for age and sex, significant positive correlation was detected between ox-LDL with SBP, DBP, TC, LDL, insulin, and HOMA in group II and with TC and FBS in group I. Insignificant association was detected between ox-LDL and other anthropometric parameters including BMI in any group of obese children (p > 0.05). Conclusions: ox-LDL, as a marker of oxidative stress is not correlated with BMI among all studied obese children (aged 6-12 years). Increased oxidative stress has causal effects on insulin resistance in obese children without central obesity and on fasting blood sugar in those with central obesity. These findings emphasize the importance of obesity during childhood and suggest that the metabolic complications of obesity and body fat distribution are detectable early in life.

Keywords: ox-LDL, obesity, insulin resistance, children

Procedia PDF Downloads 359
3974 Detection and Distribution Pattern of Prevelant Genotypes of Hepatitis C in a Tertiary Care Hospital of Western India

Authors: Upasana Bhumbla

Abstract:

Background: Hepatitis C virus is a major cause of chronic hepatitis, which can further lead to cirrhosis of the liver and hepatocellular carcinoma. Worldwide the burden of Hepatitis C infection has become a serious threat to the human race. Hepatitis C virus (HCV) has population-specific genotypes and provides valuable epidemiological and therapeutic information. Genotyping and assessment of viral load in HCV patients are important for planning the therapeutic strategies. The aim of the study is to study the changing trends of prevalence and genotypic distribution of hepatitis C virus in a tertiary care hospital in Western India. Methods: It is a retrospective study; blood samples were collected and tested for anti HCV antibodies by ELISA in Dept. of Microbiology. In seropositive Hepatitis C patients, quantification of HCV-RNA was done by real-time PCR and in HCV-RNA positive samples, genotyping was conducted. Results: A total of 114 patients who were seropositive for Anti HCV were recruited in the study, out of which 79 (69.29%) were HCV-RNA positive. Out of these positive samples, 54 were further subjected to genotype determination using real-time PCR. Genotype was not detected in 24 samples due to low viral load; 30 samples were positive for genotype. Conclusion: Knowledge of genotype is crucial for the management of HCV infection and prediction of prognosis. Patients infected with HCV genotype 1 and 4 will have to receive Interferon and Ribavirin for 48 weeks. Patients with these genotypes show a poor sustained viral response when tested 24 weeks after completion of therapy. On the contrary, patients infected with HCV genotype 2 and 3 are reported to have a better response to therapy.

Keywords: hepatocellular, genotype, ribavarin, seropositive

Procedia PDF Downloads 128
3973 Two-Dimensional CFD Simulation of the Behaviors of Ferromagnetic Nanoparticles in Channel

Authors: Farhad Aalizadeh, Ali Moosavi

Abstract:

This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, particle tracking. The purpose of this paper is applied magnetic field effect on Magnetic Nanoparticles velocities distribution. It is shown that the permeability of the particles determines the effect of the magnetic field on the deposition of the particles and the deposition of the particles is inversely proportional to the Reynolds number. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form. we consider a channel 2D geometry and solve for the resulting spatial distribution of particles. According to obtained results when only magnetic fields are applied perpendicular to the flow, local particles velocity is decreased due to the direct effect of the magnetic field return the system to its original fom. In the method first, in order to avoid mixing with blood, the ferromagnetic particles are covered with a gel-like chemical composition and are injected into the blood vessels. Then, a magnetic field source with a specified distance from the vessel is used and the particles are guided to the affected area. This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, laminar flow of an incompressible magnetorheological (MR) fluid between two fixed parallel plates in the presence of a uniform magnetic field. The purpose of this study is to develop a numerical tool that is able to simulate MR fluids flow in valve mode and determineB0, applied magnetic field effect on flow velocities and pressure distributions.

Keywords: MHD, channel clots, magnetic nanoparticles, simulations

Procedia PDF Downloads 369
3972 Studying the Value-Added Chain for the Fish Distribution Process at Quang Binh Fishing Port in Vietnam

Authors: Van Chung Nguyen

Abstract:

The purpose of this study is to study the current status of the value chain for fish distribution at Quang Binh Fishing Port with 360 research samples in which the research subjects are fishermen, traders, retailers, and businesses. The research uses the approach of applying the value chain theoretical framework of Kaplinsky and Morris to quantify and describe market channels and actors participating in the value chain and analyze the value-added process of these companies according to market channels. The analysis results show that fishermen directly catch fish with high economic efficiency, but processing enterprises and, especially retailers, are the agents to obtain higher added value. Processing enterprises play a role that is not really clear due to outdated processing technology; in contrast, retailers have the highest added value. This shows that the added value of the fish supply chain at Quang Binh fishing port is still limited, leading to low output quality. Therefore, the selling price of fish to the market is still high compared to the abundant fish resources, leading to low consumption and limiting exports due to the quality of processing enterprises. This reduces demand and fishing capacity, and productivity is lower than potential. To improve the fish value chain at fishing ports, it is necessary to focus on improving product quality, strengthening linkages between actors, building brands and product consumption markets at the same time, improving the capacity of export processing enterprises.

Keywords: Quang Binh fishing port, value chain, market, distributions channel

Procedia PDF Downloads 74
3971 Pharmacokinetic and Tissue Distribution of Etoposide Loaded Modified Glycol Chitosan Nanoparticles

Authors: Akhtar Aman, Abida Raza, Shumaila Bashir, Mehboob Alam

Abstract:

The development of efficient delivery systems remains a major concern in cancer chemotherapy as many efficacious anticancer drugs are hydrophobic and difficult to formulate. Nanomedicines based on drug-loaded amphiphilic glycol chitosan micelles offer potential advantages for the formulation of drugs such as etoposide that may improve the pharmacokinetics and reduce the formulation-related adverse effects observed with current formulations. Amphiphilic derivatives of glycol chitosan were synthesized by chemical grafting of palmitic acid N-hydroxysuccinimide and quaternization to glycol chitosan backbone. To this end, a 7.9 kDa glycol chitosan was modified by palmitoylation and quaternization, yielding a 13 kDa amphiphilic polymer. Micelles prepared from this amphiphilic polymer had a size of 162nm and were able to encapsulate up to 3 mg/ml etoposide. Pharmacokinetic results indicated that the GCPQ micelles transformed the biodistribution pattern and increased etoposide concentration in the brain significantly compared to free drugs after intravenous administration. AUC 0.5-24h showed statistically significant difference in ETP-GCPQ vs. Commercial preparation in liver (25 vs.70, p<0.001), spleen (27 vs.36, p<0.05), lungs (42 vs.136,p<0.001),kidneys(25 vs.70,p< 0.05),and brain(19 vs.9,p<0.001). ETP-GCPQ crossed the blood-brain barrier, and 4, 3.5, 2.6, 1.8, 1.7, 1.5, and 2.5 fold higher levels of etoposide were observed at 0.5, 1, 2, 4, 6, 12, and 24hrs; respectively suggesting these systems could deliver hydrophobic anticancer drugs such as etoposide to tumors but also increased their transport through the biological barriers, thus making it a good delivery system

Keywords: glycol chitosan, micelles, pharmacokinetics, tissue distribution

Procedia PDF Downloads 106
3970 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models

Authors: Yungtai Lo

Abstract:

Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.

Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve

Procedia PDF Downloads 351
3969 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations

Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri

Abstract:

Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.

Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size

Procedia PDF Downloads 226
3968 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 85
3967 Reorientation of Anisotropic Particles in Free Liquid Microjets

Authors: Mathias Schlenk, Susanne Seibt, Sabine Rosenfeldt, Josef Breu, Stephan Foerster

Abstract:

Thin liquid jets on micrometer scale play an important role in processing such as in fiber fabrication, inkjet printing, but also for sample delivery in modern synchrotron X-ray devices. In all these cases the liquid jets contain solvents and dissolved materials such as polymers, nanoparticles, fibers pigments or proteins. As liquid flow in liquid jets differs significantly from flow in capillaries and microchannels, particle localization and orientation will also be different. This is of critical importance for applications, which depend on well-defined homogeneous particle and fiber distribution and orientation in liquid jets. Investigations of particle orientation in liquid microjets of diluted solutions have been rare, despite their importance. With the arise of micro-focused X-ray beams it has become possible to scan across samples with micrometer resolution to locally analyse structure and orientation of the samples. In the present work, we used this method to scan across liquid microjets to determine the local distribution and orientation of anisotropic particles. The compromise wormlike block copolymer micelles as an example of long flexible fibrous structures, hectorite materials as a model of extended nanosheet structures, and gold nanorods as an illustration of short stiff cylinders to comprise all relevant anisotropic geometries. We find that due to the different velocity profile in the liquid jet, which resembles plug flow, the orientation of the particles which was generated in the capillary is lost or changed into non-oriented or bi-axially orientations depending on the geometrical shape of the particle.

Keywords: anisotropic particles, liquid microjets, reorientation, SAXS

Procedia PDF Downloads 340
3966 Examining Litter Distributions in Lethbridge, Alberta, Canada, Using Citizen Science and GIS Methods: OpenLitterMap App and Story Maps

Authors: Tali Neta

Abstract:

Humans’ impact on the environment has been incredibly brutal, with enormous plastic- and other pollutants (e.g., cigarette buds, paper cups, tires) worldwide. On land, litter costs taxpayers a fortune. Most of the litter pollution comes from the land, yet it is one of the greatest hazards to marine environments. Due to spatial and temporal limitations, previous litter data covered very small areas. Currently, smartphones can be used to obtain information on various pollutants (through citizen science), and they can greatly assist in acknowledging and mitigating the environmental impact of litter. Litter app data, such as the Litterati, are available for study through a global map only; these data are not available for download, and it is not clear whether irrelevant hashtags have been eliminated. Instagram and Twitter open-source geospatial data are available for download; however, these are considered inaccurate, computationally challenging, and impossible to quantify. Therefore, the resulting data are of poor quality. Other downloadable geospatial data (e.g., Marine Debris Tracker8 and Clean Swell10) are focused on marine- rather than terrestrial litter. Therefore, accurate terrestrial geospatial documentation of litter distribution is needed to improve environmental awareness. The current research employed citizen science to examine litter distribution in Lethbridge, Alberta, Canada, using the OpenLitterMap (OLM) app. The OLM app is an application used to track litter worldwide, and it can mark litter locations through photo georeferencing, which can be presented through GIS-designed maps. The OLM app provides open-source data that can be downloaded. It also offers information on various litter types and “hot-spots” areas where litter accumulates. In this study, Lethbridge College students collected litter data with the OLM app. The students produced GIS Story Maps (interactive web GIS illustrations) and presented these to school children to improve awareness of litter's impact on environmental health. Preliminary results indicate that towards the Lethbridge Coulees’ (valleys) East edges, the amount of litter significantly increased due to shrubs’ presence, that acted as litter catches. As wind generally travels from west to east in Lethbridge, litter in West-Lethbridge often finds its way down in the east part of the coulees. The students’ documented various litter types, while the majority (75%) included plastic and paper food packaging. The students also found metal wires, broken glass, plastic bottles, golf balls, and tires. Presentations of the Story Maps to school children had a significant impact, as the children voluntarily collected litter during school recess, and they were looking into solutions to reduce litter. Further litter distribution documentation through Citizen Science is needed to improve public awareness. Additionally, future research will be focused on Drone imagery of highly concentrated litter areas. Finally, a time series analysis of litter distribution will help us determine whether public education through Citizen Science and Story Maps can assist in reducing litter and reaching a cleaner and healthier environment.

Keywords: citizen science, litter pollution, Open Litter Map, GIS Story Map

Procedia PDF Downloads 80
3965 Power Production Performance of Different Wave Energy Converters in the Southwestern Black Sea

Authors: Ajab G. Majidi, Bilal Bingölbali, Adem Akpınar

Abstract:

This study aims to investigate the amount of energy (economic wave energy potential) that can be obtained from the existing wave energy converters in the high wave energy potential region of the Black Sea in terms of wave energy potential and their performance at different depths in the region. The data needed for this purpose were obtained using the calibrated nested layered SWAN wave modeling program version 41.01AB, which was forced with Climate Forecast System Reanalysis (CFSR) winds from 1979 to 2009. The wave dataset at a time interval of 2 hours was accumulated for a sub-grid domain for around Karaburun beach in Arnavutkoy, a district of Istanbul city. The annual sea state characteristic matrices for the five different depths along with a vertical line to the coastline were calculated for 31 years. According to the power matrices of different wave energy converter systems and characteristic matrices for each possible installation depth, the probability distribution tables of the specified mean wave period or wave energy period and significant wave height were calculated. Then, by using the relationship between these distribution tables, according to the present wave climate, the energy that the wave energy converter systems at each depth can produce was determined. Thus, the economically feasible potential of the relevant coastal zone was revealed, and the effect of different depths on energy converter systems is presented. The Oceantic at 50, 75 and 100 m depths and Oyster at 5 and 25 m depths presents the best performance. In the 31-year long period 1998 the most and 1989 is the least dynamic year.

Keywords: annual power production, Black Sea, efficiency, power production performance, wave energy converter

Procedia PDF Downloads 136
3964 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications

Authors: Avinoam Rabinovich

Abstract:

CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.

Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow

Procedia PDF Downloads 72
3963 Diversity and Distribution of Butterflies (Lepidoptera-Rhopalocera) along with Altitudinal Gradient and Vegetation Types at Lahoul Valley, Trans-Himalaya Region, India

Authors: Saveena Bogtapa, Jagbir Singh Kirti

Abstract:

Himalaya is one of the most fascinating ranges in the world. In India, it comprises 18 percent of the land area. Lahoul valley which is a part of Trans-Himalaya region is well known for its unique, diverse flora and fauna. It lies in the North-Eastern corner of the state Himachal Pradesh where its altitude ranges between 2500m to 5000m. Vegetation of this region is dry-temperate to alpine type. The diversity of the area is very less, rare, unique and highly endemic. But today, as a lot of environmental degradation has taken place in this hot spot of biodiversity because of frequent developmental and commercial activities which lead to the diversity of this area comes under a real threat. Therefore, as part of the research, butterflies which are known for their attractiveness as well as usefulness to the ecosystem, are used for the study. The diversity of butterflies of a particular area not only provides a healthy environment but also serves as the first step of conservation to the biodiversity. Their distribution in different habitats and altitude type helps us to understand the species richness and abundance in an area. Moreover, different environmental parameters which affect the butterfly community has also recorded. Hence, the present study documents the butterfly diversity in an unexplored habitat and altitude types at Lahoul valley. The valley has been surveyed along with altitudinal gradients (from 2500m to 4500m) and in various habitats like agriculture land, grassland, scrubland, riverine and in different types of forests. Very rare species of butterflies have been explored, and these will be discussed along with different parameters during the presentation.

Keywords: butterflies, diversity, Lahoul valley, altitude, vegetation

Procedia PDF Downloads 247
3962 Analysis of Productivity and Poverty Status among Users of Improved Sorghum Varieties in Kano State, Nigeria

Authors: Temitope Adefunsho Olatoye, Julius Olabode Elega

Abstract:

Raising agricultural productivity is an important policy goal for governments and development agencies, and this is central to growth, income distribution, improved food security, and poverty alleviation among practitioners. This study analyzed the productivity and poverty status among users of improved sorghum varieties in Kano State, Nigeria. A multistage sampling technique was adopted in the selection of 131 sorghum farmers who were users of improved sorghum varieties. Data collected were analyzed using both descriptive (frequency distribution and percentage) and inferential (productivity index and FGT model) statistics. The result of the socioeconomic characteristics of the sorghum farmers showed a mean age of 40 years, with about 93.13% of the sorghum farmers being male. Also, as indicated by the result, the majority (82.44%) of the farmers were married, with most of them having qur’anic education with a mean farm size of 3.6 ha, as reported in the study area. Furthermore, the result showed that the mean farming experience of the sorghum farmers in the study area was 19 years, with an average monthly income of about ₦48,794, as reported in the study area. The result of the productivity index showed a ratio of 192,977kg/ha, while the result of poverty status shows that 62.88% were in the non-poor category, 21.21% were poor, and 15.91% were very poor, respectively. The result also showed that the incidence of poverty for sorghum farmers was 16%, indicating that the incidence of poverty was prevalent in the study area. Based on the findings of this study, it was therefore recommended that seed companies should facilitate the spread of improved sorghum varieties as it has an impact on the productivity and poverty status of sorghum farmers in the study area.

Keywords: Foster Greer Thorbecke model, improved sorghum varieties, productivity, poverty status

Procedia PDF Downloads 77
3961 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring

Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie

Abstract:

Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.

Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement

Procedia PDF Downloads 14
3960 Sequence Polymorphism and Haplogroup Distribution of Mitochondrial DNA Control Regions HVS1 and HVS2 in a Southwestern Nigerian Population

Authors: Ogbonnaya O. Iroanya, Samson T. Fakorede, Osamudiamen J. Edosa, Hadiat A. Azeez

Abstract:

The human mitochondrial DNA (mtDNA) is about 17 kbp circular DNA fragments found within the mitochondria together with smaller fragments of 1200 bp known as the control region. Knowledge of variation within populations has been employed in forensic and molecular anthropology studies. The study was aimed at investigating the polymorphic nature of the two hypervariable segments (HVS) of the mtDNA, i.e., HVS1 and HVS2, and to determine the haplogroup distribution among individuals resident in Lagos, Southwestern Nigeria. Peripheral blood samples were obtained from sixty individuals who are not related maternally, followed by DNA extraction and amplification of the extracted DNA using primers specific for the regions under investigation. DNA amplicons were sequenced, and sequenced data were aligned and compared to the revised Cambridge Reference Sequence (rCRS) GenBank Accession number: NC_012920.1) using BioEdit software. Results obtained showed 61 and 52 polymorphic nucleotide positions for HVS1 and HVS2, respectively. While a total of three indels mutation were recorded for HVS1, there were seven for HVS2. Also, transition mutations predominate nucleotide change observed in the study. Genetic diversity (GD) values for HVS1 and HVS2 were estimated to be 84.21 and 90.4%, respectively, while random match probability was 0.17% for HVS1 and 0.89% for HVS2. The study also revealed mixed haplogroups specific to the African (L1-L3) and the Eurasians (U and H) lineages. New polymorphic sites obtained from the study are promising for human identification purposes.

Keywords: hypervariable region, indels, mitochondrial DNA, polymorphism, random match probability

Procedia PDF Downloads 116
3959 Biaxial Fatigue Specimen Design and Testing Rig Development

Authors: Ahmed H. Elkholy

Abstract:

An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling.

Keywords: biaxial, fatigue, stress, testing

Procedia PDF Downloads 130
3958 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions

Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.

Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation

Procedia PDF Downloads 216
3957 FACTS Based Stabilization for Smart Grid Applications

Authors: Adel. M. Sharaf, Foad H. Gandoman

Abstract:

Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.

Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)

Procedia PDF Downloads 414
3956 Influence of Yield Stress and Compressive Strength on Direct Shear Behaviour of Steel Fibre-Reinforced Concrete

Authors: Bensaid Boulekbache, Mostefa Hamrat, Mohamed Chemrouk, Sofiane Amziane

Abstract:

This study aims in examining the influence of the paste yield stress and compressive strength on the behaviour of fibre-reinforced concrete (FRC) versus direct shear. The parameters studied are the steel fibre contents, the aspect ratio of fibres and the concrete strength. Prismatic specimens of dimensions 10x10x35cm made of concrete of various yield stress reinforced with steel fibres hooked at the ends with three fibre volume fractions (i.e. 0, 0.5, and 1%) and two aspects ratio (65 and 80) were tested to direct shear. Three types of concretes with various compressive strength and yield stress were tested, an ordinary concrete (OC), a self-compacting concrete (SCC) and a high strength concrete (HSC). The concrete strengths investigated include 30 MPa for OC, 60 MPa for SCC and 80 MPa for HSC. The results show that the shear strength and ductility are affected and have been improved very significantly by the fibre contents, fibre aspect ratio and concrete strength. As the compressive strength and the volume fraction of fibres increase, the shear strength increases. However, yield stress of concrete has an important influence on the orientation and distribution of the fibres in the matrix. The ductility was much higher for ordinary and self-compacting concretes (concrete with good workability). The ductility in direct shear depends on the fibre orientation and is significantly improved when the fibres are perpendicular to the shear plane. On the contrary, for concrete with poor workability, an inadequate distribution and orientation of fibres occurred, leading to a weak contribution of the fibres to the direct shear behaviour.

Keywords: concrete, fibre, direct shear, yield stress, orientation, strength

Procedia PDF Downloads 543
3955 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 300
3954 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair

Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar

Abstract:

Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.

Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol

Procedia PDF Downloads 207
3953 Evaluation of Actual Nutrition Patients of Osteoporosis

Authors: Aigul Abduldayeva, Gulnar Tuleshova

Abstract:

Osteoporosis (OP) is a major socio-economic problem and is a major cause of disability, reduced quality of life and premature death of elderly people. In Astana, the study involved 93 respondents, of whom 17 were men (18.3%), and 76 were women (81.7%). Age distribution of the respondents is as follows: 40-59 (66.7%), 60-75 (29.0%), 75-90 (4.3%). In the city of Astana general breach of bone mass (CCM) was determined in 83.8% (nationwide figure - RRP - 79.0%) of the patients, and normal levels of ultrasound densitometry were detected in 16.1% (RRP 21.0%) of the patients. OP was diagnosed in 20.4% of people over 40 (RRP for citizens is 19.0%), 25.4% in the group older than 50 (23.4% PIU), 22,6% in the group older than 60 (RRP 32.6%), 25.0% in the group older than 70 (47.6% of RRP). OPN was detected in 63.4% (RRP 59.6%) of the surveyed population. These data indicate that, there is no sharp difference between Astana and other cities in the country regarding the incidence of OP, that is, the situation with the OP is not aggravated by any regional characteristics. In the distribution of respondents by clusters it was found that 80.0% of the respondents with CCM were in the "best urban cluster", 93.8% were in "average urban cluster", and 77.4% were in a "poor urban cluster". There is a high rate construction of new buildings in Astana, presumably, that the new settlers inhabit the outskirts of the city, and very difficult to trace the socio-economic differences there. Based on these data the following conclusions can be made: 1. According to the ultrasound densitometry of the calcaneus the prevalence rate of NCM among the residents of Astana is 83.3%, OP - 20.4%, which generally coincides with data elsewhere in the country. 2. The urban population of Astana is under a high degree of risk for low energetic fracture, 46.2% of the population had medium and high risks of fracture, while the nationwide index is 26.7%. 3. In the development of CCM residents of Akmola region play a significant role gender, age, ethnic factors. According to the ultrasound densitometry women are more prone to Astana OP - 22.4% of respondents than men - 11.8% of respondents.

Keywords: nutrition, osteoporosis, elderly, urban population

Procedia PDF Downloads 476