Search results for: fuels from biomass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1511

Search results for: fuels from biomass

221 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification

Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).

Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk

Procedia PDF Downloads 273
220 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar

Abstract:

The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.

Keywords: sowing, irrigation, yield, heat stress

Procedia PDF Downloads 83
219 Technico-Economical Study of a Rapeseed Based Biorefinery Using High Voltage Electrical Discharges and Ultrasounds as Pretreatment Technologies

Authors: Marwa Brahim, Nicolas Brosse, Nadia Boussetta, Nabil Grimi, Eugene Vorobiev

Abstract:

Rapeseed plant is an established product in France which is mainly dedicated to oil production. However, the economic potential of residues from this industry (rapeseed hulls, rapeseed cake, rapeseed straw etc.), has not been fully exploited. Currently, only low-grade applications are found in the market. As a consequence, it was deemed of interest to develop a technological platform aiming to convert rapeseed residues into value- added products. Specifically, a focus is given on the conversion of rapeseed straw into valuable molecules (e.g. lignin, glucose). Existing pretreatment technologies have many drawbacks mainly the production of sugar degradation products that limit the effectiveness of saccharification and fermentation steps in the overall scheme of the lignocellulosic biorefinery. In addition, the viability of fractionation strategies is a challenge in an environmental context increasingly standardized. Hence, the need to find cleaner alternatives with comparable efficiency by implementing physical phenomena that could destabilize the structural integrity of biomass without necessarily using chemical solvents. To meet environmental standards increasingly stringent, the present work aims to study the new pretreatment strategies involving lower consumption of chemicals with an attenuation of the severity of the treatment. These strategies consist on coupling physical treatments either high voltage electrical discharges or ultrasounds to conventional chemical pretreatments (soda and organosolv). Ultrasounds treatment is based on the cavitation phenomenon, and high voltage electrical discharges cause an electrical breakdown accompanied by many secondary phenomena. The choice of process was based on a technological feasibility study taking into account the economic profitability of the whole chain after products valorization. Priority was given to sugars valorization into bioethanol and lignin sale.

Keywords: high voltage electrical discharges, organosolv, pretreatment strategies, rapeseed straw, soda, ultrasounds

Procedia PDF Downloads 358
218 Exploring the Prebiotic Potential of Glucosamine

Authors: Shilpi Malik, Ramneek Kaur, Archita Gupta, Deepshikha Yadav, Ashwani Mathur, Manisha Singh

Abstract:

Glucosamine (GS) is the most abundant naturally occurring amino monosaccharide and is normally produced in human body via cellular glucose metabolism. It is regarded as the building block of cartilage matrix and is also an essential component of cartilage matrix repair mechanism. Besides that, it can also be explored for its prebiotic potential as many bacterial species are known to utilize the amino sugar by acquiring them to form peptidoglycans and lipopolysaccharides in the bacterial cell wall. Glucosamine can therefore be considered for its fermentation by bacterial species present in the gut. Current study is focused on exploring the potential of glucosamine as prebiotic. The studies were done to optimize considerable concentration of GS to reach GI tract and being fermented by the complex gut microbiota and food grade GS was added to various Simulated Fluids of Gastro-Intestinal Tract (GIT) such as Simulated Saliva, Gastric Fluid (Fast and Fed State), Colonic fluid, etc. to detect its degradation. Since it was showing increase in microbial growth (CFU) with time, GS was Further, encapsulated to increase its residential time in the gut, which exhibited improved resistance to the simulated Gut conditions. Moreover, prepared microspehres were optimized and characterized for their encapsulation efficiency and toxicity. To further substantiate the prebiotic activity of Glucosamine, studies were also performed to determine the effect of Glucosamine on the known probiotic bacterial species, i.e. Lactobacillus delbrueckii (MTCC 911) and Bifidobacteriumbifidum (MTCC 5398). Culture conditions for glucosamine will be added in MRS media in anaerobic tube at 0.20%, 0.40%, 0.60%, 0.80%, and 1.0%, respectively. MRS media without GS was included in this experiment as the control. All samples were autoclaved at 118° C for 15 min. Active culture was added at 5% (v/v) to each anaerobic tube after cooling to room temperature and incubated at 37° C then determined biomass and pH and viable count at incubation 18h. The experiment was completed in triplicate and the results were presented as Mean ± SE (Standard error).The experimental results are conclusive and suggest Glucosamine to hold prebiotic properties.

Keywords: gastro intestinal tract, microspheres, peptidoglycans, simulated fluid

Procedia PDF Downloads 325
217 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 362
216 Bio Based Agro Textiles

Authors: K. Sakthivel

Abstract:

With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.

Keywords: biodegradation, environment, mulching film, PLA, technical textiles

Procedia PDF Downloads 381
215 Land Suitability Analysis Based on Ecosystems Service Approach for Wind Farm Location in South-Central Chile: Net Primary Production as Proxy

Authors: Yenisleidy Martínez-Martínez, Yannay Casas-Ledón, Jo Dewulf

Abstract:

Wind power constitutes a cleaner energy source with smaller unfavorable impacts on the environment than fossil fuels. Its development could be an alternative to fight climate change while meeting energy demands. However, wind energy development requires first determining the existing potential and areas with aptitude. Also, potential socio-economic and environmental impacts should be analyzed to prevent social rejection of this technology. In this context, this work performs a suitability assessment on a GIS environment to locate suitable areas for wind energy expansion in South-Central Chile. In addition, suitable areas were characterized in terms of potential goods and services to be produced as a proxy for analyzing potential impacts and trade-offs. First, layers of annual wind speed were generated as they represent the resource potential, and layer representing previously defined territorial constraints were created. Zones depicting territorial constraints were removed from resource measurement layers to identify suitable sites. Then, the appropriation of the primary production in suitable sites was determined to measure potential ecosystem services derived from human interventions in those areas. Results show that approximately 52% of the total surface of the study area has a good aptitude to install wind farms. In this area, provisioning services like food crops production, timber, and other forest resources like firewood play a key role in the regional economy and thus are the main cause of human interventions. This is reflected by human appropriation of the primary production values of 0.71 KgC/m².yr, 0.36 KgC/m².yr, and 0.14 KgC/m².yr, respectively. In this sense, wind energy development could be compatible with croplands, which is the predominant land use in suitable areas, and provide farmers with cheaper energy and extra income. Also, studies have reported changes in local temperature associated with wind turbines, which could be beneficial to crop growth. The results obtained in this study prove to be useful for identifying available areas for wind development, which could be very useful in decision-making processes related to energy planning.

Keywords: net primary productivity, provisioning services, suitability assessment, wind energy

Procedia PDF Downloads 149
214 Preliminary WRF SFIRE Simulations over Croatia during the Split Wildfire in July 2017

Authors: Ivana Čavlina Tomašević, Višnjica Vučetić, Maja Telišman Prtenjak, Barbara Malečić

Abstract:

The Split wildfire on the mid-Adriatic Coast in July 2017 is one of the most severe wildfires in Croatian history, given the size and unexpected fire behavior, and it is used in this research as a case study to run the Weather Research and Forecasting Spread Fire (WRF SFIRE) model. This coupled fire-atmosphere model was successfully run for the first time ever for one Croatian wildfire case. Verification of coupled simulations was possible by using the detailed reconstruction of the Split wildfire. Specifically, precise information on ignition time and location, together with mapped fire progressions and spotting within the first 30 hours of the wildfire, was used for both – to initialize simulations and to evaluate the model’s ability to simulate fire’s propagation and final fire scar. The preliminary simulations were obtained using high-resolution vegetation and topography data for the fire area, additionally interpolated to fire grid spacing at 33.3 m. The results demonstrated that the WRF SFIRE model has the ability to work with real data from Croatia and produce adequate results for forecasting fire spread. As the model in its setup has the ability to include and exclude the energy fluxes between the fire and the atmosphere, this was used to investigate possible fire-atmosphere interactions during the Split wildfire. Finally, successfully coupled simulations provided the first numerical evidence that a wildfire from the Adriatic coast region can modify the dynamical structure of the surrounding atmosphere, which agrees with observations from fire grounds. This study has demonstrated that the WRF SFIRE model has the potential for operational application in Croatia with more accurate fire predictions in the future, which could be accomplished by inserting the higher-resolution input data into the model without interpolation. Possible uses for fire management in Croatia include prediction of fire spread and intensity that may vary under changing weather conditions, available fuels and topography, planning effective and safe deployment of ground and aerial firefighting forces, preventing wildland-urban interface fires, effective planning of evacuation routes etc. In addition, the WRF SFIRE model results from this research demonstrated that the model is important for fire weather research and education purposes in order to better understand this hazardous phenomenon that occurs in Croatia.

Keywords: meteorology, agrometeorology, fire weather, wildfires, couple fire-atmosphere model

Procedia PDF Downloads 82
213 Techno Commercial Aspects of Using LPG as an Alternative Energy Solution for Transport and Industrial Sector in Bangladesh: Case Studies in Industrial Sector

Authors: Mahadehe Hassan

Abstract:

Transport system and industries which are the main basis of industrial and socio-economic development of any country. It is mainly dependent on fossil fuels. Bangladesh has fossil fuel reserves of 9.51 TCF as of July 2023, and if no new gas fields are discovered in the next 7-9 years and if the existing gas consumption rate continues, the fossil fuel reserves will be exhausted. The demand for petroleum products in Bangladesh is increasing steadily, with 63% imported by BPC and 37% imported by private companies. 61.61% of BPC imported products are used in the transport sector and 5.49% in the industrial sector, which is expensive and harmful to the environment. Liquefied Petroleum Gas (LPG) should be considered as an alternative energy for Bangladesh based on Sustainable Development Goals (SDGs) criteria for sustainable, clean and affordable energy. This will not only lead to the much desired mitigation of energy famine in the country but also contribute favorably to the macroeconomic indicators. Considering the environmental and economic issues, the government has referred to CNG (compressed natural gas) as the fuel carrier since 2000, but currently due to the decline mode of gas reserves, the government of Bangladesh is thinking of new energy sources for transport and industrial sectors which will be sustainable, environmentally friendly and economically viable. Liquefied Petroleum Gas (LPG) is the best choice for fueling transport and industrial sectors in Bangladesh. At present, a total of 1.54 million metric tons of liquefied petroleum gas (LPG) is marketed in Bangladesh by the public and private sectors. 83% of it is used by households, 12% by industry and commerce and 5% by transportation. Industrial and transport sector consumption is negligible compared to household consumption. So the purpose of the research is to find out the challenges of LPG market development in transport and industrial sectors in Bangladesh and make recommendations to reduce the challenges. Secure supply chain, inadequate infrastructure, insufficient investment, lack of government monitoring and consumer awareness in the transport sector and industrial sector are major challenges for LPG market development in Bangladesh. Bangladesh government as well as private owners should come forward in the development of liquefied petroleum gas (LPG) industry to reduce the challenges of secure energy sector for sustainable development. Furthermore, ensuring adequate Liquefied Petroleum Gas (LPG) supply in Bangladesh requires government regulations, infrastructure improvements in port areas, awareness raising and most importantly proper pricing of Liquefied Petroleum Gas (LPG) to address the energy crisis in Bangladesh.

Keywords: transportand industries fuel, LPG consumption, challenges, economical sustainability

Procedia PDF Downloads 78
212 Scope, Relevance and Sustainability of Decentralized Renewable Energy Systems in Developing Economies: Imperatives from Indian Case Studies

Authors: Harshit Vallecha, Prabha Bhola

Abstract:

‘Energy for all’, is a global issue of concern for the past many years. Despite the number of technological advancements and innovations, significant numbers of people are living without access to electricity around the world. India, an emerging economy, tops the list of nations having the maximum number of residents living off the grid, thus raising global attention in past few years to provide clean and sustainable energy access solutions to all of its residents. It is evident from developed economies that centralized planning and electrification alone is not sufficient for meeting energy security. Implementation of off-grid and consumer-driven energy models like Decentralized Renewable Energy (DRE) systems have played a significant role in meeting the national energy demand in developed nations. Cases of DRE systems have been reported in developing countries like India for the past few years. This paper attempts to profile the status of DRE projects in the Indian context with their scope and relevance to ensure universal electrification. Diversified cases of DRE projects, particularly solar, biomass and micro hydro are identified in different Indian states. Critical factors affecting the sustainability of DRE projects are extracted with their interlinkages in the context of developers, beneficiaries and promoters involved in such projects. Socio-techno-economic indicators are identified through similar cases in the context of DRE projects. Exploratory factor analysis is performed to evaluate the critical sustainability factors followed by regression analysis to establish the relationship between the dependent and independent factors. The generated EFA-Regression model provides a basis to develop the sustainability and replicability framework for broader coverage of DRE projects in developing nations in order to attain the goal of universal electrification with least carbon emissions.

Keywords: climate change, decentralized generation, electricity access, renewable energy

Procedia PDF Downloads 120
211 Hydroponic Cultivation Enhances the Morpho-Physiological Traits and Quality Flower Production in Tagetes patula L

Authors: Ujala, Diksha Sharma, Mahinder Partap, Ashish R. Warghat, Bhavya Bhargava

Abstract:

In soil-less agriculture, hydroponic is considered a potential farming system for the production of uniform quality plant material in significantly less time. Therefore, for the first time, the current investigation corroborates the effect of different cultivation conditions (open-field, poly-house, and hydroponic) on morpho-physiological traits, phenolic content, and essential oil components analysis in three flower color variants (yellow, scarlet red, and orange) of Tagetes patula. The results revealed that the maximum plant height, number of secondary branches, number of flowers, photosynthesis, stomatal conductance, and transpiration rate were observed under the hydroponic system as compared to other conditions. However, the maximum content of gallic acid (0.82 mg/g DW), syringic acid (3.98 mg/g DW), epicatechin (0.48 mg/g DW), p-coumaric acid (7.28 mg/g DW), protocatechuic acid (0.59 mg/g DW), ferulic acid (2.58 mg/g DW), and luteolin (8.24 mg/g DW) were quantified maximally under open-field conditions. However, under hydroponic conditions, the higher content of vanillic acid (0.43 mg/g DW), caffeic acid (0.49 mg/g DW), and quercetin (0.92 mg/g DW) were quantified. Moreover, a total of nineteen volatile components were identified in the essential oil of different flower color variants of T. patula cultivated under different conditions. The major reported volatile components in essential oil were (-)-caryophyllene oxide, trans-β-caryophyllene, trans-geraniol, 3 methyl-benzyl alcohol, and 2,2’:5’,2”-terthiophene. It has also been observed that the volatile component percentage range in all variants was observed in open-field (70.85 % to 90.54 %), poly-house (59.03 % to 77.93 %), and hydroponic (68.78 % to 89.41 %). In conclusion, the research highlighted that morpho-physiological performance with flower production was enhanced in the hydroponic system. However, phenolic content and volatile components were maximally observed in open-field conditions. However, significant results have been reported under hydroponic conditions in all studied parameters, so it could be a potential strategy for quality biomass production in T. patula.

Keywords: Tagetes patula, cultivation conditions, hydroponic, morpho-physiology

Procedia PDF Downloads 66
210 Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions by Leaf and Stem Biochar Derived from Lantana camara: Adsorption Kinetics, Equilibrium, Thermodynamics and Possible Mechanism

Authors: Deepa Kundu, Prabhakar Sharma, Sayan Bhattacharya, Jianying Shang

Abstract:

The discharge of dye-containing effluents in the water bodies has raised concern due to the potential hazards related to their toxicity in the environment. There are various treatment technologies available for the removal of dyes from wastewaters. The use of biosorbent to remove dyes from wastewater is one of the effective and inexpensive techniques. In the study, the adsorption of phenothiazine dye methylene blue onto biosorbent prepared from Lantana camara L. has been studied in aqueous solutions. The batch adsorption experiments were conducted and the effects of various parameters such as pH (3-12), contact time, adsorbent dose (100-400 mg/L), initial dye concentration (5-20 mg/L), and temperature (303, 313 and 323 K) were investigated. The prepared leaf (BCL600) and shoot (BCS600) biochar of Lantana were characterized using FTIR, SEM, elemental analysis, and zeta potential (pH~7). A comparison between the adsorption potential of both the biosorbent was also evaluated. The results indicated that the amount of methylene blue dye (mg/g) adsorbed onto the surface of biochar was highly dependent on the pH of the dye solutions as it increased with an increase in pH from 3 to 12. It was observed that the dye treated with BCS600 and BCL600 attained an equilibrium within 60 and 100 minutes, respectively. The rate of the adsorption process was determined by performing the Lagergren pseudo-first-order and pseudo-second-order kinetics. It was found that dye treated with both BCS600 and BCL600 followed pseudo-second-order kinetics implying the multi-step nature of the adsorption process involving external adsorption and diffusion of dye molecules into the interior of the adsorbents. The data obtained from batch experiments were fitted well with Langmuir and Freundlich isotherms (R² > 0.98) to indicate the multilayer adsorption of dye over the biochar surfaces. The thermodynamic studies revealed that the adsorption process is favourable, spontaneous, and endothermic in nature. Based on the results, the inexpensive and easily available Lantana camara biomass can be used to remove methylene blue dye from wastewater. It can also help in managing the growth of the notorious weed in the environment.

Keywords: adsorption kinetics, biochar, Lantana camara, methylene blue dye, possible mechanism, thermodynamics

Procedia PDF Downloads 128
209 Response of Wheat (Triticum aestivum L.) to Deficit Irrigation Management in the Semi-Arid Awash Basin of Ethiopia

Authors: Gobena D. Bayisa, A. Mekonen, Megersa O. Dinka, Tilahun H. Nebi, M. Boja

Abstract:

Crop production in arid and semi-arid regions of Ethiopia is largely limited by water availability. Changing climate conditions and declining water resources increase the need for appropriate approaches to improve water use and find ways to increase production through reduced and more reliable water supply. In the years 2021/22 and 2022/23, a field experiment was conducted to evaluate the effect of limited irrigation water use on bread wheat (Triticum aestivum L.) production, water use efficiency, and financial benefits. Five irrigation treatments, i.e., full irrigation (100% ETc/ control), 85% ETc, 70% ETc, 55% ETc, and 40% ETc, were evaluated using a randomized complete block design (RCBD) with four replicates in the semi-arid climate condition of Awash basin of Ethiopia. Statistical analysis showed a significant effect of irrigation levels on wheat grain yield, water use efficiency, crop water response factor, economic profit, wheat grain quality, aboveground biomass, and yield index. The highest grain yield (5085 kg ha⁻¹) was obtained with 100% ETc irrigation (417.2 mm), and the lowest grain yield with 40% ETc (223.7 mm). Of the treatments, 70% ETc produced the higher wheat grain yield (4555 kg ha⁻¹), the highest water use efficiency (1.42 kg m⁻³), and the highest yield index (0.43). Using the saved water, wheat could be produced 23.4% more with a 70% ETc deficit than full irrigation on 1.38 ha of land, and it could get the highest profit (US$2563.9) and higher MRR (137%). The yield response factor and crop-water production function showed potential reductions associated with increased irrigation deficits. However, a 70% ETc deficit is optimal for increasing wheat grain yield, water use efficiency, and economic benefits of irrigated wheat production. The result indicates that deficit irrigation of wheat under the typical arid and semi-arid climatic conditions of the Awash Basin can be a viable irrigation management approach for enhancing water use efficiency while minimizing the decrease in crop yield could be considered effective.

Keywords: crop-water response factor, deficit irrigation, water use efficiency, wheat production

Procedia PDF Downloads 64
208 Synergistic Effect of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi to Enhance Wheat Grain Yield, Biofortification and Soil Health: A Field Study

Authors: Radheshyam Yadav, Ramakrishna Wusirika

Abstract:

Plant Growth Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal (AM) Fungi are ubiquitous in soil and often very critical for crop yield and agriculture sustainability, and this has motivated the agricultural practices to support and promote PGPB and AM Fungi in agriculture. PGPB can be involved in a range of processes that affect Nitrogen (N) and Phosphorus (P) transformations in soil and thus influence nutrient availability and uptake to the plants. A field study with two wheat cultivars, HD-3086, and HD-2967 was performed in Malwa region, Bathinda of Punjab, India, to evaluate the effect of native and non-native PGPB alone and in combination with AM fungi as an inoculant on wheat grain yield, nutrient uptake and soil health parameters (dehydrogenase, urease, β‐glucosidase). Our results showed that despite an early insignificant increase in shoot length, plants treated with PGPB (Bacillus sp.) and AM Fungi led to a significant increase in shoot growth at maturity, aboveground biomass, nitrogen (45% - 40%) and phosphorus (40% - 34%) content in wheat grains relative to untreated control plants. Similarly, enhanced grain yield and nutrients uptake i.e. copper (27.15% - 36.25%) iron (43% - 53%) and zinc (44% - 47%) was recorded in PGPB and AM Fungi treated plants relative to untreated control. Overall, inoculation with native PGPB alone and in combination with AM Fungi provided benefits to enhance grain yield, wheat biofortification, and improved soil fertility, despite this effect varied depending on different PGPB isolates and wheat cultivars. These field study results provide evidence of the benefits of agricultural practices involving native PGPB and AM Fungi to the plants. These native strains and AM Fungi increased accumulations of copper, iron, and zinc in wheat grains, enhanced grain yield, and soil fertility.

Keywords: AM Fungi, biofortification, PGPB, soil microbial enzymes

Procedia PDF Downloads 320
207 Selection of Most Appropriate Poplar and Willow Cultivars for Landfill Remediation Using Plant Physiology Parameters

Authors: Andrej Pilipović, Branislav Kovačević, Marina Milović, Lazar Kesić, Saša Pekeč, Leopold Poljaković-Pajnik, Saša Orlović

Abstract:

The effect of landfills on the environment reflects in the dispersion of the contaminants on surrounding soils by the groundwater plume. Such negative effect can be mitigated with the establishment of vegetative buffers surrounding landfills. The “TreeRemEnergy” project funded by the Science Fund of Republic of Serbia – Green program focuses on development of phytobuffers for landfill phytoremediation with the use of Short Rotation Woody Crops (SRWC) plantations that can be further used for the biomass for energy. One of the goals of the project is to select most appropriate poplar (Populus sp.) and willow (Salix sp.) clones through phytorecurrent selection that involves testing of various breeding traits. Physiological parameters serve as a significant contribution to the breeding process aimed to early detection of potential candidates. This study involved testing of the effect of the landfill soils on the photosynthetic processes of the selected poplar and willow candidates. For this purpose, measurements of the gas exchange, chlorophyll content and chlorophyll fluorescence were measured on the tested plants. Obtained results showed that there were differences in the influence of the controlled sources of variation on examined physiological parameters. The effect of clone was significant in all parameters, while the effect of the substrate was not statistically significant in any of measured parameters. However, the effect of interaction Clone×Substrate was significant in intercellular CO2 concentration(ci), stomatal conductance (gs) and transpiration rate (E), suggesting that water regime of the tested clones showed different response to the tested soils. Some clones showed more “generalist” behavior (380, 107/65/9, and PE19/66), while “specialist” behavior was recorded in clones PE4/68, S1-8, and 79/64/2. On the other hand, there was no significant effect of the tested substrate on the pigments content measured with SPAD meter. Results of this study allowed us to narrow the group of clones for further trails in field conditions.

Keywords: clones, net photosynthesis, WUE, transpiration, stomatal conductance, SPAD

Procedia PDF Downloads 55
206 Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon

Authors: Lucija Pustahija, Christine Bandl, Wolfgang Kern, Christian Mitterer

Abstract:

Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well.

Keywords: building materials, dry oxidation, organosilanes, pyrolytic carbon, resins, surface functionalization, wet oxidation

Procedia PDF Downloads 92
205 Development of an Integrated System for the Treatment of Rural Domestic Wastewater: Emphasis on Nutrient Removal

Authors: Prangya Ranjan Rout, Puspendu Bhunia, Rajesh Roshan Dash

Abstract:

In a developing country like India, providing reliable and affordable wastewater treatment facilities in rural areas is a huge challenge. With the aim of enhancing the nutrient removal from rural domestic wastewater while reducing the cost of treatment process, a novel, integrated treatment system consisting of a multistage bio-filter with drop aeration and a post positioned attached growth carbonaceous denitrifying-bioreactor was designed and developed in this work. The bio-filter was packed with ‘dolochar’, a sponge iron industry waste, as an adsorbent mainly for phosphate removal through physiochemical approach. The Denitrifying bio-reactor was packed with many waste organic solid substances (WOSS) as carbon sources and substrates for biomass attachment, mainly to remove nitrate in biological denitrification process. The performance of the modular system, treating real domestic wastewater was monitored for a period of about 60 days and the average removal efficiencies during the period were as follows: phosphate, 97.37%; nitrate, 85.91%, ammonia, 87.85%, with mean final effluent concentration of 0.73, 9.86, and 9.46 mg/L, respectively. The multistage bio-filter played an important role in ammonium oxidation and phosphate adsorption. The multilevel drop aeration with increasing oxygenation, and the special media used, consisting of certain oxides were likely beneficial for nitrification and phosphorus removal, respectively, whereas the nitrate was effectively reduced by biological denitrification in the carbonaceous bioreactor. This treatment system would allow multipurpose reuse of the final effluent. Moreover, the saturated dolochar can be used as nutrient suppliers in agricultural practices and the partially degraded carbonaceous substances can be subjected to composting, and subsequently used as an organic fertilizer. Thus, the system displays immense potential for treating domestic wastewater significantly decreasing the concentrations of nutrients and more importantly, facilitating the conversion of the waste materials into usable ones.

Keywords: nutrient removal, denitrifying bioreactor, multi-stage bio-filter, dolochar, waste organic solid substances

Procedia PDF Downloads 377
204 The Decline of Islamic Influence in the Global Geopolitics

Authors: M. S. Riyazulla

Abstract:

Since the dawn of the 21st century, there has been a perceptible decline in Islamic supremacy in world affairs, apart from the gradual waning of the amiable relations and relevance of Islamic countries in the International political arena. For a long, Islamic countries have been marginalised by the superpowers in the global conflicting issues. This was evident in the context of their recent invasions and interference in Afghanistan, Syria, Iraq, and Libya. The leading International Islamic organizations like the Arab League, Organization of Islamic Cooperation, Gulf Cooperation Council, and Muslim World League did not play any prominent role there in resolving the crisis that ensued due to the exogenous and endogenous causes. Hence, there is a need for Islamic countries to create a credible International Islamic organization that could dictate its terms and shape a new Islamic world order. The prominent Islamic countries are divided on ideological and religious fault lines. Their concord is indispensable to enhance their image and placate the relations with other countries and communities. The massive boon of oil and gas could be synergistically utilised to exhibit their omnipotence and eminence through constructive ways. The prevailing menace of Islamophobia could be abated through syncretic messages, discussions, and deliberations by the sagacious Islamic scholars with the other community leaders. Presently, as Muslims are at a crossroads, a dynamic leadership could navigate the agitated Muslim community on the constructive path and herald political stability around the world. The present political disorder, chaos, and economic challenges necessities a paradigm shift in approach to worldly affairs. This could also be accomplished through the advancement in science and technology, particularly space exploration, for peaceful purposes. The Islamic world, in order to regain its lost preeminence, should rise to the occasion in promoting peace and tranquility in the world and should evolve a rational and human-centric solution to global disputes and concerns. As a splendid contribution to humanity and for amicable international relations, they should devote all their resources and scientific intellect towards space exploration and should safely transport man from the Earth to the nearest and most accessible cosmic body, the Moon, within one hundred years as the mankind is facing the existential threat on the planet.

Keywords: carboniferous period, Earth, extinction, fossil fuels, global leaders, Islamic glory, international order, life, marginalization, Moon, natural catastrophes

Procedia PDF Downloads 64
203 Effect of Inoculum Ratio on Dark Fermentative Hydrogen Production

Authors: Zeynep Yilmazer Hitit, Patrick C. Hallenbeck

Abstract:

Fuel reserve requirements due to depletion of fossil fuels have increased interest in biohydrogen since the 1990’s. In fermentative hydrogen production, pure, mixed, and co-cultures can be used to produce hydrogen. Several previous studies have evaluated hydrogen production by pure cultures of Clostridium butyricum or Enterobacter aerogenes. Evaluating hydrogen production by co-culture of these microorganisms is an interestıng approach since E. aerogenes is a facultative microorganism with resistance to oxygen in contrast to the strict anaerobe C. butyricum, and therefore has the ability to maintain anaerobic conditions. It was found that using co-cultures of facultative E. aerogenes (as a reducing agent and H2 producer) and the obligate anaerobe C. butyricum for producing hydrogen increases the yield of hydrogen by about 50% compared to C. butyricum by itself. Also, using different types of microorganisms for hydrogen production eliminates the need to use expensive reducing agents. C. butyricum strain pre-cultured anaerobically at 37 0C for 15h by inoculating 100 mL of GP medium (pH 6.8) consisting of 1% glucose, 2% polypeptone, 0.2% KH2PO4, 0.05% yeast extract, 0.05% MgSO4. 7H2O and E. aerogenes strain was pre-cultured aerobically at 30 0C, 150 rpm for 9 h by inoculating 100 mL of TGY medium (pH 6.8), consisting of 0.1% glucose, 0.5% tryptone, 0.1% K2HPO4, 0.5% yeast extract. All duplicate batch experiments were conducted in 100 mL bottles with different inoculum ratios of Clostridium butyricum and Enterobater aerogenes (C:E) using 5x diluted rich media (GP) consisting of 2 g/L glucose, 4g/L polypeptone, 0.4 g/L KH2PO4, 0.1 g/L yeast extract, 0.1 MgSO4.7H2O. The range of inoculum ratio of C. butyricum to E. aerogenes were 2:1,4:1,8:1, 1:2,1:4, 1:8, 1:0, 0:1. Using glucose as a carbon source aided in the observation of microbial behavior as well as making the effect of inoculum ratio more evident. Nearly all the glucose in the medium was used to produce hydrogen, except at a 1:0 ratio of inoculum (i.e. containing only C. butyricum). Low glucose consumption leads to a higher hydrogen yield due to cumulative hydrogen production and consumption of glucose, but not as much as C:E, 8:1. The lowest hydrogen yield was achieved in 1:8 inoculum ratio of C:E, 71.9 mL, 1.007±0.01 mol H2/mol glucose and the highest cumulative hydrogen, hydrogen yield and dry cell weight were achieved in 8:1 inoculum ratio of C:E, 117.4 mL, 2.035±0.082 mol H2/mol glucose, 0.4 g/L respectively. In this study effect of inoculum ratio on dark fermentative biohydrogen production using C. butyricum and E. aerogenes was investigated. The maximum hydrogen yield of 2.035mol H2/mol glucose was obtained using 2g/L glucose, an initial pH of 6 and an inoculum ratio of C. butyricum to E. aerogenes of 8:1. Results showed that inoculum ratio is an important parameter on hydrogen production due to competition between the two microorganisms in using substrate for growth and production of by-products. The results presented here could be of great significance for further waste management studies using co-culture hydrogen production.

Keywords: biohydrogen, Clostridium butyricum, dark fermentation, Enterobacter aerogenes, inoculum ratio in biohydrogen production

Procedia PDF Downloads 229
202 Assessment of Biofuel Feedstock Production on Arkansas State Highway Transportation Department's Marginalized Lands

Authors: Ross J. Maestas

Abstract:

Biofuels are derived from multiple renewable bioenergy feedstocks including animal fats, wood, starchy grains, and oil seeds. Transportation agencies have considered growing the latter two on underutilized and nontraditional lands that they manage, such as in the Right of Way (ROW), abandoned weigh stations, and at maintenance yards. These crops provide the opportunity to generate revenue or supplement fuel once converted and offer a solution to increasing fuel costs and instability by creating a ‘home-grown’ alternative. Biofuels are non-toxic, biodegradable, and emit less Green House Gasses (GHG) than fossil fuels, therefore allowing agencies to meet sustainability goals and regulations. Furthermore, they enable land managers to achieve soil erosion and roadside aesthetic strategies. The research sought to understand if the cultivation of a biofuel feedstock within the Arkansas State Highway Transportation Department’s (AHTD) managed and marginalized lands is feasible by identifying potential land areas and crops. To determine potential plots the parcel data was downloaded from Arkansas’s GIS office. ArcGIS was used to query the data for all variations of the names of property owned by AHTD and a KML file was created that identifies the queried parcel data in Google Earth. Furthermore, biofuel refineries in the state were identified to optimize the harvest to transesterification process. Agricultural data was collected from federal and state agencies and universities to assess various oil seed crops suitable for conversion and suited to grow in Arkansas’s climate and ROW conditions. Research data determined that soybean is the best adapted biofuel feedstock for Arkansas with camelina and canola showing possibilities as well. Agriculture is Arkansas’s largest industry and soybean is grown in over half of the state’s counties. Successful cultivation of a feedstock in the aforementioned areas could potentially offer significant employment opportunity for which the skilled farmers already exist. Based on compiled data, AHTD manages 21,489 acres of marginalized land. The result of the feasibility assessment offer suggestions and guidance should AHTD decide to further investigate this type of initiative.

Keywords: Arkansas highways, biofuels, renewable energy initiative, marginalized lands

Procedia PDF Downloads 320
201 Effect of Enzymatic Hydrolysis and Ultrasounds Pretreatments on Biogas Production from Corn Cob

Authors: N. Pérez-Rodríguez, D. García-Bernet, A. Torrado-Agrasar, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

World economy is based on non-renewable, fossil fuels such as petroleum and natural gas, which entails its rapid depletion and environmental problems. In EU countries, the objective is that at least 20% of the total energy supplies in 2020 should be derived from renewable resources. Biogas, a product of anaerobic degradation of organic substrates, represents an attractive green alternative for meeting partial energy needs. Nowadays, trend to circular economy model involves efficiently use of residues by its transformation from waste to a new resource. In this sense, characteristics of agricultural residues (that are available in plenty, renewable, as well as eco-friendly) propitiate their valorisation as substrates for biogas production. Corn cob is a by-product obtained from maize processing representing 18 % of total maize mass. Corn cob importance lies in the high production of this cereal (more than 1 x 109 tons in 2014). Due to its lignocellulosic nature, corn cob contains three main polymers: cellulose, hemicellulose and lignin. Crystalline, highly ordered structures of cellulose and lignin hinders microbial attack and subsequent biogas production. For the optimal lignocellulose utilization and to enhance gas production in anaerobic digestion, materials are usually submitted to different pretreatment technologies. In the present work, enzymatic hydrolysis, ultrasounds and combination of both technologies were assayed as pretreatments of corn cob for biogas production. Enzymatic hydrolysis pretreatment was started by adding 0.044 U of Ultraflo® L feruloyl esterase per gram of dry corncob. Hydrolyses were carried out in 50 mM sodium-phosphate buffer pH 6.0 with a solid:liquid proportion of 1:10 (w/v), at 150 rpm, 40 ºC and darkness for 3 hours. Ultrasounds pretreatment was performed subjecting corn cob, in 50 mM sodium-phosphate buffer pH 6.0 with a solid: liquid proportion of 1:10 (w/v), at a power of 750W for 1 minute. In order to observe the effect of the combination of both pretreatments, some samples were initially sonicated and then they were enzymatically hydrolysed. In terms of methane production, anaerobic digestion of the corn cob pretreated by enzymatic hydrolysis was positive achieving 290 L CH4 kg MV-1 (compared with 267 L CH4 kg MV-1 obtained with untreated corn cob). Although the use of ultrasound as the only pretreatment resulted detrimentally (since gas production decreased to 244 L CH4 kg MV-1 after 44 days of anaerobic digestion), its combination with enzymatic hydrolysis was beneficial, reaching the highest value (300.9 L CH4 kg MV-1). Consequently, the combination of both pretreatments improved biogas production from corn cob.

Keywords: biogas, corn cob, enzymatic hydrolysis, ultrasound

Procedia PDF Downloads 262
200 The Effects of Green Manure Returning on Properties and Fungal Communities in Vanadium/Titanium Magnet Tailings

Authors: Hai-Hong Gu, Yan-Jun Ai, Zheng Zhou

Abstract:

Vanadium and titanium are rare metals with superior properties and are important resources in aerospace, aviation, and military. The vanadium/titanium magnetite are mostly ultra-lean ores, and a large number of tailings has been produced in the exploitation process. The tailings are characterized by loose structure, poor nutrient, complex composition and high trace metal contents. Returning green manure has been shown to not only increase plant biomass and soil nutrients but also change the bioavailability of trace metals and the microbial community structure. Fungi play an important role in decomposing organic matter and increasing soil fertility, and the application of organic matter also affects the community structure of fungi. The effects of green manure plants, alfalfa (Medicago sativa L.), returned to the tailings in situ on community structure of fungi, nutrients and bioavailability of trace metals in vanadium/titanium magnetite tailings were investigated in a pot experiment. The results showed that the fungal community diversity and richness were increase after alfalfa green manure returned in situ. The dominant phyla of the fungal community were Ascomycota, Basidiomycota and Ciliophora, especially, the phyla Ciliophora was rare in ordinary soil, but had been found to be the dominant phyla in tailings. Meanwhile, the nutrient properties and various trace metals may shape the microbial communities by affecting the abundance of fungi. It was found that the plant growth was stimulated and the available N and organic C were significantly improved in the vanadium/titanium magnetite tailing with the long-term returning of alfalfa green manure. Moreover, the DTPA-TEA extractable Cd and Zn concentrations in the vanadium/titanium magnetite tailing were reduced by 7.72%~23.8% and 8.02%~24.4%, respectively, compared with those in the non-returning treatment. The above results suggest that the returning of alfalfa green manure could be a potential approach to improve fungal community structure and restore mine tailing ecosystem.

Keywords: fungal community, green manure returning, vanadium/titanium magnet tailings, trace metals

Procedia PDF Downloads 64
199 Effect of Scattered Vachellia Tortilis (Umbrella Torn) and Vachellia nilotica (Gum Arabic) Trees on Selected Physio-Chemical Properties of the Soil and Yield of Sorghum (Sorghum bicolor (L.) Moench) in Ethiopia

Authors: Sisay Negash, Zebene Asfaw, Kibreselassie Daniel, Michael Zech

Abstract:

A significant portion of the Ethiopian landscape features scattered trees that are deliberately managed in crop fields to enhance soil fertility and crop yield in which the compatibility of crops with these trees varies depending on location, tree species, and annual crop type. This study aimed to examine the effects of scattered Vachellia tortilis and Vachellia nilotica trees on selected physico-chemical properties of the soil, as well as the yield and yield components of sorghum in Ethiopia. Vachellia tortilis and Vachellia nilotica were selected on abundance occurrence and managed in crop fields. A randomized complete block design was used, with a distance from the tree canopy (middle, edge, and outside) as a treatment, and five trees of each species served as replications. Sorghum was planted up to 15 meters in the east, west, south, and north directions from the tree trunk to assess growth and yield. Soil samples were collected from the two tree species, three distance factors, three soil depths(0-20cm, 20-40cm, and 40-60cm), and five replications, totaling 45 samples for each tree species. These samples were analyzed for physical and chemical properties. The results indicated that both V. tortilis and V. nilotica significantly affected soil physico-chemical properties and sorghum yield. Specifically, soil moisture content, EC, total nitrogen, organic carbon, available phosphorus and potassium, CEC, sorghum plant height, panicle length, biomass, and yield decreased with increasing distance from the canopy. Conversely, bulk density and pH increased. Under the canopy, sorghum yield increased by 66.4% and 53.5% for V. tortilis and V. nilotica, respectively, due to higher soil moisture and nutrient availability. The study recommends promoting trees in crop fields, management options for new saplings, and further research on root decomposition and nutrient supply.

Keywords: canopy, crop yield, soil nutrient, soil organic matter, yield components

Procedia PDF Downloads 13
198 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants

Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver

Abstract:

This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.

Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants

Procedia PDF Downloads 348
197 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant

Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter

Abstract:

Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.

Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis

Procedia PDF Downloads 491
196 Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands

Authors: Hongtao Zhu, Dezhi Sun

Abstract:

Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal.

Keywords: ammonium nitrogen, constructed wetlands, steel slag, zeolite

Procedia PDF Downloads 242
195 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine

Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins

Abstract:

Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.

Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG

Procedia PDF Downloads 141
194 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 223
193 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 115
192 Microbial Dark Matter Analysis Using 16S rRNA Gene Metagenomics Sequences

Authors: Hana Barak, Alex Sivan, Ariel Kushmaro

Abstract:

Microorganisms are the most diverse and abundant life forms on Earth and account for a large portion of the Earth’s biomass and biodiversity. To date though, our knowledge regarding microbial life is lacking, as it is based mainly on information from cultivated organisms. Indeed, microbiologists have borrowed from astrophysics and termed the ‘uncultured microbial majority’ as ‘microbial dark matter’. The realization of how diverse and unexplored microorganisms are, actually stems from recent advances in molecular biology, and in particular from novel methods for sequencing microbial small subunit ribosomal RNA genes directly from environmental samples termed next-generation sequencing (NGS). This has led us to use NGS that generates several gigabases of sequencing data in a single experimental run, to identify and classify environmental samples of microorganisms. In metagenomics sequencing analysis (both 16S and shotgun), sequences are compared to reference databases that contain only small part of the existing microorganisms and therefore their taxonomy assignment may reveal groups of unknown microorganisms or origins. These unknowns, or the ‘microbial sequences dark matter’, are usually ignored in spite of their great importance. The goal of this work was to develop an improved bioinformatics method that enables more complete analyses of the microbial communities in numerous environments. Therefore, NGS was used to identify previously unknown microorganisms from three different environments (industrials wastewater, Negev Desert’s rocks and water wells at the Arava valley). 16S rRNA gene metagenome analysis of the microorganisms from those three environments produce about ~4 million reads for 75 samples. Between 0.1-12% of the sequences in each sample were tagged as ‘Unassigned’. Employing relatively simple methodology for resequencing of original gDNA samples through Sanger or MiSeq Illumina with specific primers, this study demonstrates that the mysterious ‘Unassigned’ group apparently contains sequences of candidate phyla. Those unknown sequences can be located on a phylogenetic tree and thus provide a better understanding of the ‘sequences dark matter’ and its role in the research of microbial communities and diversity. Studying this ‘dark matter’ will extend the existing databases and could reveal the hidden potential of the ‘microbial dark matter’.

Keywords: bacteria, bioinformatics, dark matter, Next Generation Sequencing, unknown

Procedia PDF Downloads 244