Search results for: data envelopment analysis (DEA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42282

Search results for: data envelopment analysis (DEA)

40992 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant

Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih

Abstract:

ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.

Keywords: PWR, ALOHA, habitability, Maanshan

Procedia PDF Downloads 198
40991 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing

Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar

Abstract:

The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.

Keywords: hyperspectral, NDNI, nitrogen concentration, regression value

Procedia PDF Downloads 295
40990 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques

Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada

Abstract:

Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.

Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer

Procedia PDF Downloads 150
40989 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 161
40988 Critically Analyzing the Application of Big Data for Smart Transportation: A Case Study of Mumbai

Authors: Tanuj Joshi

Abstract:

Smart transportation is fast emerging as a solution to modern cities’ approach mobility issues, delayed emergency response rate and high congestion on streets. Present day scenario with Google Maps, Waze, Yelp etc. demonstrates how information and communications technologies controls the intelligent transportation system. This intangible and invisible infrastructure is largely guided by the big data analytics. On the other side, the exponential increase in Indian urban population has intensified the demand for better services and infrastructure to satisfy the transportation needs of its citizens. No doubt, India’s huge internet usage is looked as an important resource to guide to achieve this. However, with a projected number of over 40 billion objects connected to the Internet by 2025, the need for systems to handle massive volume of data (big data) also arises. This research paper attempts to identify the ways of exploiting the big data variables which will aid commuters on Indian tracks. This study explores real life inputs by conducting survey and interviews to identify which gaps need to be targeted to better satisfy the customers. Several experts at Mumbai Metropolitan Region Development Authority (MMRDA), Mumbai Metro and Brihanmumbai Electric Supply and Transport (BEST) were interviewed regarding the Information Technology (IT) systems currently in use. The interviews give relevant insights and requirements into the workings of public transportation systems whereas the survey investigates the macro situation.

Keywords: smart transportation, mobility issue, Mumbai transportation, big data, data analysis

Procedia PDF Downloads 179
40987 A Corpus Output Error Analysis of Chinese L2 Learners From America, Myanmar, and Singapore

Authors: Qiao-Yu Warren Cai

Abstract:

Due to the rise of big data, building corpora and using them to analyze ChineseL2 learners’ language output has become a trend. Various empirical research has been conducted using Chinese corpora built by different academic institutes. However, most of the research analyzed the data in the Chinese corpora usingcorpus-based qualitative content analysis with descriptive statistics. Descriptive statistics can be used to make summations about the subjects or samples that research has actually measured to describe the numerical data, but the collected data cannot be generalized to the population. Comte, a Frenchpositivist, has argued since the 19th century that human beings’ knowledge, whether the discipline is humanistic and social science or natural science, should be verified in a scientific way to construct a universal theory to explain the truth and human beings behaviors. Inferential statistics, able to make judgments of the probability of a difference observed between groups being dependable or caused by chance (Free Geography Notes, 2015)and to infer from the subjects or examples what the population might think or behave, is just the right method to support Comte’s argument in the field of TCSOL. Also, inferential statistics is a core of quantitative research, but little research has been conducted by combing corpora with inferential statistics. Little research analyzes the differences in Chinese L2 learners’ language corpus output errors by using theOne-way ANOVA so that the findings of previous research are limited to inferring the population's Chinese errors according to the given samples’ Chinese corpora. To fill this knowledge gap in the professional development of Taiwanese TCSOL, the present study aims to utilize the One-way ANOVA to analyze corpus output errors of Chinese L2 learners from America, Myanmar, and Singapore. The results show that no significant difference exists in ‘shì (是) sentence’ and word order errors, but compared with Americans and Singaporeans, it is significantly easier for Myanmar to have ‘sentence blends.’ Based on the above results, the present study provides an instructional approach and contributes to further exploration of how Chinese L2 learners can have (and use) learning strategies to lower errors.

Keywords: Chinese corpus, error analysis, one-way analysis of variance, Chinese L2 learners, Americans, myanmar, Singaporeans

Procedia PDF Downloads 107
40986 Relating Symptoms with Protein Production Abnormality in Patients with Down Syndrome

Authors: Ruolan Zhou

Abstract:

Trisomy of human chromosome 21 is the primary cause of Down Syndrome (DS), and this genetic disease has significantly burdened families and countries, causing great controversy. To address this problem, the research takes an approach in exploring the relationship between genetic abnormality and this disease's symptoms, adopting several techniques, including data analysis and enrichment analysis. It also explores open-source websites, such as NCBI, DAVID, SOURCE, STRING, as well as UCSC, to complement its result. This research has analyzed the variety of genes on human chromosome 21 with simple coding, and by using analysis, it has specified the protein-coding genes, their function, and their location. By using enrichment analysis, this paper has found the abundance of keratin production-related coding-proteins on human chromosome 21. By adopting past researches, this research has attempted to disclose the relationship between trisomy of human chromosome 21 and keratin production abnormality, which might be the reason for common diseases in patients with Down Syndrome. At last, by addressing the advantage and insufficiency of this research, the discussion has provided specific directions for future research.

Keywords: Down Syndrome, protein production, genome, enrichment analysis

Procedia PDF Downloads 127
40985 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
40984 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 356
40983 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios

Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook

Abstract:

There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.

Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis

Procedia PDF Downloads 639
40982 The Estimation of Human Vital Signs Complexity

Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius

Abstract:

Non-stationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables interactions.

Keywords: cardiac diseases, complex systems theory, ECG analysis, matrix analysis

Procedia PDF Downloads 345
40981 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 100
40980 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 390
40979 The Moderating Role of Test Anxiety in the Relationships Between Self-Efficacy, Engagement, and Academic Achievement in College Math Courses

Authors: Yuqing Zou, Chunrui Zou, Yichong Cao

Abstract:

Previous research has revealed relationships between self-efficacy (SE), engagement, and academic achievement among students in Western countries, but these relationships remain unknown in college math courses among college students in China. In addition, previous research has shown that test anxiety has a direct effect on engagement and academic achievement. However, how test anxiety affects the relationships between SE, engagement, and academic achievement is still unknown. In this study, the authors aimed to explore the mediating roles of behavioral engagement (BE), emotional engagement (EE), and cognitive engagement (CE) in the association between SE and academic achievement and the moderating role of test anxiety in college math courses. Our hypotheses are that the association between SE and academic achievement was mediated by engagement and that test anxiety played a moderating role in the association. To explore the research questions, the authors collected data through self-reported surveys among 147 students at a northwestern university in China. Self-reported surveys were used to collect data. The motivated strategies for learning questionnaire (MSLQ) (Pintrich, 1991), the metacognitive strategies questionnaire (Wolters, 2004), and the engagement versus disaffection with learning scale (Skinner et al., 2008) were used to assess SE, CE, and BE and EE, respectively. R software was used to analyze the data. The main analyses used were reliability and validity analysis of scales, descriptive statistics analysis of measured variables, correlation analysis, regression analysis, and structural equation modeling (SEM) analysis and moderated mediation analysis to look at the structural relationships between variables at the same time. The SEM analysis indicated that student SE was positively related to BE, EE, and CE and academic achievement. BE, EE, and CE were all positively associated with academic achievement. That is, as the authors expected, higher levels of SE led to higher levels of BE, EE, and CE, and greater academic achievement. Higher levels of BE, EE, and CE led to greater academic achievement. In addition, the moderated mediation analysis found that the path of SE to academic achievement in the model was as significant as expected, as was the moderating effect of test anxiety in the SE-Achievement association. Specifically, test anxiety was found to moderate the association between SE and BE, the association between SE and CE, and the association between EE and Achievement. The authors investigated possible mediating effects of BE, EE, and CE in the associations between SE and academic achievement, and all indirect effects were found to be significant. As for the magnitude of mediations, behavioral engagement was the most important mediator in the SE-Achievement association. This study has implications for college teachers, educators, and students in China regarding ways to promote academic achievement in college math courses, including increasing self-efficacy and engagement and lessening test anxiety toward math.

Keywords: academic engagement, self-efficacy, test anxiety, academic achievement, college math courses, behavioral engagement, cognitive engagement, emotional engagement

Procedia PDF Downloads 94
40978 The Impact of Resource-oriented Music Listening on Oversea Dispatch Employees Work Stress Relief

Authors: Wei Yaming

Abstract:

Objective: In order to compare the stress of employees sent overseas with (GRAS) before and after, we used the resource-oriented music listening intervention in this study. We also collected pertinent experimental data. Methods: The experiment involved 47 employees who were sent abroad by the Chinese side. They completed the stress scale test and documented it before the intervention. They tested for stress after five interventions and performed one-on-one interviews. Quantitative data and SPSS software were used to analyze relationships between stress reduction and resource-oriented music listening, as well as Pearson's correlation, multiple regression levels, and ANOVA. For the qualitative analysis, content analysis of one-on-one interviews was performed. Results: A comparison of data from before and after demonstrates how resource-focused music listening activities can lessen and relieve stress in remote workers. In the qualitative study, stress is broken down into six categories: relationship stress, health stress, emotional stress, and frustration stress. External pressures include work pressure and cultural stress. And it has been determined that listening to music that is resource-oriented can better ease internal stress (health, emotion, and dissatisfaction). Conclusion: The Guide Resource-oriented Music Listening (GROML) Program appears to have had some effect on the participants' stress levels. The resources that the participants encountered while listening to music are bravery, calm, letting go, and relaxing.

Keywords: resource-oriented, music listening, oversea dispatch employees, work stress

Procedia PDF Downloads 99
40977 Analysis of Land Use, Land Cover Changes in Damaturu, Nigeria: Using Satellite Images

Authors: Isa Muhammad Zumo, Musa Lawan

Abstract:

This study analyzes the land use/land cover changes in Damaturu metropolis from 1986 to 2005. LandSat TM Images of 1986, 1999, and 2005 were used. Built-up lands, agric lands, water body and other lands were created as themes within ILWIS 3.4 software. The images were displayed in False Colour Composite (FCC) for a better visualization and identification of the themes created. Training sample sets were collected based on the ground truth data during field the checks. Statistical data were then extracted from the classified sample set. Area in hectares for each theme was calculated for each year and the result for each land use/land cover types for each study year was compared. From the result, it was found out that built-up areas have a considerable increase from 37.71 hectares in 1986 to 1062.72 hectares in 2005. It has an annual increase rate of approximately 0.34%. The results also reveal that there is a decrease of 5829.66 hectares of other lands (vacant lands) from 1986 to 2005.

Keywords: land use, changes, analysis, environmental pollution

Procedia PDF Downloads 347
40976 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis

Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar

Abstract:

Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.

Keywords: NLP, multilingual, sentiment analysis, texts

Procedia PDF Downloads 108
40975 Evaluating Impact of Teacher Professional Development Program on Students’ Learning

Authors: S. C. Lin, W. W. Cheng, M. S. Wu

Abstract:

This study attempted to investigate the connection between teacher professional development program and students’ Learning. This study took Readers’ Theater Teaching Program (RTTP) for professional development as an example to inquiry how participants apply their new knowledge and skills learned from RTTP to their teaching practice and how the impact influence students learning. The goals of the RTTP included: 1) to enhance teachers RT content knowledge; 2) to implement RT instruction in teachers’ classrooms in response to their professional development. 2) to improve students’ ability of reading fluency in professional development teachers’ classrooms. This study was a two-year project. The researchers applied mixed methods to conduct this study including qualitative inquiry and one-group pretest-posttest experimental design. In the first year, this study focused on designing and implementing RTTP and evaluating participants’ satisfaction of RTTP, what they learned and how they applied it to design their English reading curriculum. In the second year, the study adopted quasi-experimental design approach and evaluated how participants RT instruction influenced their students’ learning, including English knowledge, skill, and attitudes. The participants in this study composed two junior high school English teachers and their students. Data were collected from a number of different sources including teaching observation, semi-structured interviews, teaching diary, teachers’ professional development portfolio, Pre/post RT content knowledge tests, teacher survey, and students’ reading fluency tests. To analyze the data, both qualitative and quantitative data analysis were used. Qualitative data analysis included three stages: organizing data, coding data, and analyzing and interpreting data. Quantitative data analysis included descriptive analysis. The results indicated that average percentage of correct on pre-tests in RT content knowledge assessment was 40.75% with two teachers ranging in prior knowledge from 35% to 46% in specific RT content. Post-test RT content scores ranged from 70% to 82% correct with an average score of 76.50%. That gives teachers an average gain of 35.75% in overall content knowledge as measured by these pre/post exams. Teachers’ pre-test scores were lowest in script writing and highest in performing. Script writing was also the content area that showed the highest gains in content knowledge. Moreover, participants hold a positive attitude toward RTTP. They recommended that the approach of professional learning community, which was applied in RTTP was benefit to their professional development. Participants also applied the new skills and knowledge which they learned from RTTP to their practices. The evidences from this study indicated that RT English instruction significantly influenced students’ reading fluency and classroom climate. The result indicated that all of the experimental group students had a big progress in reading fluency after RT instruction. The study also found out several obstacles. Suggestions were also made.

Keywords: teacher’s professional development, program evaluation, readers’ theater, english reading instruction, english reading fluency

Procedia PDF Downloads 399
40974 Interculturalizing Ethiopian Universities: Between Initiation and Institutionalization

Authors: Desta Kebede Ayana, Lies Sercu, Demelash Mengistu

Abstract:

The study is set in Ethiopia, a sub-Saharan multilingual, multiethnic African country, which has seen a significant increase in the number of universities in recent years. The aim of this growth is to provide access to education for all cultural and linguistic groups across the country. However, there are challenges in promoting intercultural competence among students in this diverse context. The aim of the study is to investigate the interculturalization of Ethiopian Higher Education Institutions as perceived by university lecturers and administrators. In particular, the study aims to determine the level of support for this educational innovation and gather suggestions for its implementation and institutionalization. The researchers employed semi-structured interviews with administrators and lecturers from two large Ethiopian universities to gather data. Thematic analysis was utilized for coding and analyzing the interview data, with the assistance of the NVIVO software. The findings obtained from the grounded analysis of the interview data reveal that while there are opportunities for interculturalization in the curriculum and campus life, support for educational innovation remains low. Administrators and lecturers also emphasize the government's responsibility to prioritize interculturalization over other educational innovation goals. The study contributes to the existing literature by examining an under-researched population in an under-researched context. Additionally, the study explores whether Western perspectives of intercultural competence align with the African context, adding to the theoretical understanding of intercultural education. The data for this study was collected through semi-structured interviews conducted with administrators and lecturers from two large Ethiopian universities. The interviews allowed for an in-depth exploration of the participants' views on interculturalization in higher education. Thematic analysis was applied to the interview data, allowing for the identification and organization of recurring themes and patterns. The analysis was conducted using the NVIVO software, which aided in coding and analyzing the data. The study addresses the extent to which administrators and lecturers support the interculturalization of Ethiopian Higher Education Institutions. It also explores their suggestions for implementing and institutionalizing intercultural education, as well as their perspectives on the current level of institutionalization. The study highlights the challenges in interculturalizing Ethiopian universities and emphasizes the need for greater support and prioritization of intercultural education. It also underscores the importance of considering the African context when conceptualizing intercultural competence. This research contributes to the understanding of intercultural education in diverse contexts and provides valuable insights for policymakers and educational institutions aiming to promote intercultural competence in higher education settings.

Keywords: administrators, educational change, Ethiopia, intercultural competence, lecturers

Procedia PDF Downloads 100
40973 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques

Authors: Stefan K. Behfar

Abstract:

The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.

Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing

Procedia PDF Downloads 78
40972 Mistuning in Radial Inflow Turbines

Authors: Valentina Futoryanova, Hugh Hunt

Abstract:

One of the common failure modes of the diesel engine turbochargers is high cycle fatigue of the turbine wheel blades. Mistuning of the blades due to the casting process is believed to contribute to the failure mode. Laser vibrometer is used to characterize mistuning for a population of turbine wheels through the analysis of the blade response to piezo speaker induced noise. The turbine wheel design under investigation is radial and is typically used in 6-12 L diesel engine applications. Amplitudes and resonance frequencies are reviewed and summarized. The study also includes test results for a paddle wheel that represents a perfectly tuned system and acts as a reference. Mass spring model is developed for the paddle wheel and the model suitability is tested against the actual data. Randomization is applied to the stiffness matrix to model the mistuning effect in the turbine wheels. Experimental data is shown to have good agreement with the model.

Keywords: vibration, radial turbines, mistuning, turbine blades, modal analysis, periodic structures, finite element

Procedia PDF Downloads 434
40971 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins

Authors: Ahmad Shayeq Azizi, Yuji Toda

Abstract:

In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.

Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins

Procedia PDF Downloads 167
40970 Health State Utility Values Related to COVID-19 Pandemic Using EQ-5D: A Systematic Review and Meta-Analysis

Authors: Xu Feifei

Abstract:

The prevalence of COVID-19 currently is the biggest challenge to improving people's quality of life. Its impact on the health-related quality of life (HRQoL) is highly uncertain and has not been summarized so far. The aim of the present systematic review was to assess and provide an up-to-date analysis of the impact of the COVID-19 pandemic on the HRQoL of participants who have been infected, have not been infected but isolated, frontline, with different diseases, and the general population. Therefore, an electronic search of the literature in PubMed databases was performed from 2019 to July 2022 (without date restriction). PRISMA guideline methodology was employed, and data regarding the HRQoL were extracted from eligible studies. Articles were included if they met the following inclusion criteria: (a) reports on the data collection of the health state utility values (HSUVs) related to COVID-19 from 2019 to 2021; (b) English language and peer-reviewed journals; and (c) original HSUV data; (d) using EQ-5D tool to quantify the HRQoL. To identify studies that reported the effects on COVID-19, data on the proportion of overall HSUVs of participants who had the outcome were collected and analyzed using a one-group meta-analysis. As a result, thirty-two studies fulfilled the inclusion criteria and, therefore, were included in the systematic review. A total of 45295 participants and provided 219 means of HSUVs during COVID-19 were included in this systematic review. The range of utility is from 0.224 to 1. The study included participants from Europe (n=16), North America (n=4), Asia (n=10), South America (n=1), and Africa (n=1). Twelve articles showed that the HRQoL of the participants who have been infected with COVID-19 (range of overall HSUVs from 0.6125 to 0.863). Two studies reported the population of frontline workers (the range of overall HSUVs from 0.82 to 0.93). Seven of the articles researched the participants who had not been infected with COVID-19 but suffered from morbidities during the pandemic (range of overall HSUVs from 0.5 to 0.96). Thirteen studies showed that the HRQoL of the respondents who have not been infected with COVID-19 and without any morbidities (range of overall HSUVs from 0.64 to 0.964). Moreover, eighteen articles reported the outcomes of overall HSUVs during the COVID-19 pandemic in different population groups. The estimate of overall HSUVs of direct COVID-19 experience population (n=1333) was 0.751 (95% CI 0.670 - 0.832, I2 = 98.64%); the estimate of frontline population (n=610) was 0.906 ((95% CI 0.854 – 0.957, I2 = 98.61%); participants with different disease (n=132) were 0.768 (95% CI 0.515 - 1.021, I2= 99.26%); general population without infection history (n=29,892) was 0.825 (95% CI 0.766 - 0.885, I2 =99.69%). Conclusively, taking into account these results, this systematic review might confirm that COVID-19 has a negative impact on the HRQoL of the infected population and illness population. It provides practical value for cost-effectiveness model analysis of health states related to COVID-19.

Keywords: COVID-19, health-related quality of life, meta-analysis, systematic review, utility value

Procedia PDF Downloads 82
40969 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 248
40968 Tagging a corpus of Media Interviews with Diplomats: Challenges and Solutions

Authors: Roberta Facchinetti, Sara Corrizzato, Silvia Cavalieri

Abstract:

Increasing interconnection between data digitalization and linguistic investigation has given rise to unprecedented potentialities and challenges for corpus linguists, who need to master IT tools for data analysis and text processing, as well as to develop techniques for efficient and reliable annotation in specific mark-up languages that encode documents in a format that is both human and machine-readable. In the present paper, the challenges emerging from the compilation of a linguistic corpus will be taken into consideration, focusing on the English language in particular. To do so, the case study of the InterDiplo corpus will be illustrated. The corpus, currently under development at the University of Verona (Italy), represents a novelty in terms both of the data included and of the tag set used for its annotation. The corpus covers media interviews and debates with diplomats and international operators conversing in English with journalists who do not share the same lingua-cultural background as their interviewees. To date, this appears to be the first tagged corpus of international institutional spoken discourse and will be an important database not only for linguists interested in corpus analysis but also for experts operating in international relations. In the present paper, special attention will be dedicated to the structural mark-up, parts of speech annotation, and tagging of discursive traits, that are the innovational parts of the project being the result of a thorough study to find the best solution to suit the analytical needs of the data. Several aspects will be addressed, with special attention to the tagging of the speakers’ identity, the communicative events, and anthropophagic. Prominence will be given to the annotation of question/answer exchanges to investigate the interlocutors’ choices and how such choices impact communication. Indeed, the automated identification of questions, in relation to the expected answers, is functional to understand how interviewers elicit information as well as how interviewees provide their answers to fulfill their respective communicative aims. A detailed description of the aforementioned elements will be given using the InterDiplo-Covid19 pilot corpus. The data yielded by our preliminary analysis of the data will highlight the viable solutions found in the construction of the corpus in terms of XML conversion, metadata definition, tagging system, and discursive-pragmatic annotation to be included via Oxygen.

Keywords: spoken corpus, diplomats’ interviews, tagging system, discursive-pragmatic annotation, english linguistics

Procedia PDF Downloads 187
40967 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 472
40966 Needs Analysis Survey of Hearing Impaired Students’ Teachers in Elementary Schools for Designing Curriculum Plans and Improving Human Resources

Authors: F. Rashno Seydari, M. Nikafrooz

Abstract:

This paper intends to study needs analysis of hearing-impaired students’ teachers in elementary schools all over Iran. The subjects of this study were 275 teachers who were teaching hearing-impaired students in elementary schools. The participants were selected by a quota sampling method. To collect the data, questionnaires of training needs consisting of 41 knowledge items and 31 performance items were used. The collected data were analyzed by using SPSS software in the form of descriptive analyses (frequency and mean) and inferential analyses (one sample t-test, paired t-test, independent t-test, and Pearson correlation coefficient). The findings of the study indicated that teachers generally have considerable needs in knowledge and performance domains. In 32 items out of the total 41 knowledge domain items and in the 27 items out of the total 31 performance domain items, the teachers had considerable needs. From the quantitative point of view, the needs of the performance domain were more than those of the knowledge domain, so they have to be considered as the first priority in training these teachers. There was no difference between the level of the needs of male and female teachers. There was a significant difference between the knowledge and performance domain needs and the teachers’ teaching experience, 0.354 and 0.322 respectively. The teachers who had been trained in working with hearing-impaired students expressed more training needs (both knowledge and performance).

Keywords: educational needs analysis, teachers of hearing impaired students, knowledge domain, function domain

Procedia PDF Downloads 97
40965 Examining the Attitudes of Pre-School Teachers towards Values Education in Terms of Gender, School Type, Professional Seniority and Location

Authors: Hatice Karakoyun, Mustafa Akdag

Abstract:

This study has been made to examine the attitudes of pre-school teachers towards values education. The study has been made as a general scanning model. The study’s working group contains 108 pre-school teachers who worked in Diyarbakır, Turkey. In this study Values Education Attitude Scale (VEAS), which developed by Yaşaroğlu (2014), was used. In order to analyze the data for sociodemographic structure, percentage and frequency values were examined. The Kolmogorov-Smirnov method was used in determination of the normal distribution of data. During analyzing the data, KolmogorovSimirnov test and the normal curved histograms were examined to determine which statistical analyzes would be applied on the scale and it was found that the distribution was not normal. Thus, the Mann Whitney U analysis technique which is one of the nonparametric statistical analysis techniques were used to test the difference of the scores obtained from the scale in terms of independent variables. According to the analyses, it seems that pre-school teachers’ attitudes toward values education are positive. According to the scale with the highest average, it points out that pre-school teachers think that values education is very important for students’ and children’s future. The variables included in the scale (gender, seniority, age group, education, school type, school place) seem to have no effect on the pre-school teachers’ attitude grades which joined to the study.

Keywords: attitude scale, pedagogy, pre-school teacher, values education

Procedia PDF Downloads 248
40964 Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis

Authors: R. F. B. Gonçalves, E. N. Iwama, J. A. F. F. Rocco, K. Iha

Abstract:

Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.

Keywords: shelf-life, thermal analysis, Ozawa method, Kissinger method, LAMMPS software, thrust

Procedia PDF Downloads 128
40963 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: taxi industry, decision making, recommendation system, embedding model

Procedia PDF Downloads 138