Search results for: circular business models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10055

Search results for: circular business models

8765 Variable-Fidelity Surrogate Modelling with Kriging

Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract:

Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.

Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients

Procedia PDF Downloads 558
8764 Measurement of CES Production Functions Considering Energy as an Input

Authors: Donglan Zha, Jiansong Si

Abstract:

Because of its flexibility, CES attracts much interest in economic growth and programming models, and the macroeconomics or micro-macro models. This paper focuses on the development, estimating methods of CES production function considering energy as an input. We leave for future research work of relaxing the assumption of constant returns to scale, the introduction of potential input factors, and the generalization method of the optimal nested form of multi-factor production functions.

Keywords: bias of technical change, CES production function, elasticity of substitution, energy input

Procedia PDF Downloads 282
8763 Ontologies for Social Media Digital Evidence

Authors: Edlira Kalemi, Sule Yildirim-Yayilgan

Abstract:

Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.

Keywords: criminal digital evidence, social media, ontologies, reasoning

Procedia PDF Downloads 388
8762 Groundwater Pollution Models for Hebron/Palestine

Authors: Hassan Jebreen

Abstract:

These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers.

Keywords: groundwater, models, pollutants, wadis, hebron

Procedia PDF Downloads 439
8761 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 345
8760 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes

Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek

Abstract:

Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.

Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling

Procedia PDF Downloads 140
8759 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 334
8758 Clean Technology: Hype or Need to Have

Authors: Dirk V. H. K. Franco

Abstract:

For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.

Keywords: clean technologies, catastrophic, climate, possible solutions

Procedia PDF Downloads 499
8757 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 134
8756 Collaborative Technology Implementation Success and Knowledge Capacity: Case of Tunisian Banks with Mixed Capital

Authors: Amira Khelil, Habib Affes

Abstract:

Organization resource planning implementation success is important. Today`s competitors in business, in enterprise resource planning and in managing are becoming one of the main tools of achieving competitiveness in business. Resource technologies are considered as an infrastructure to create and maintain business to improve front and back-office efficiency and effectiveness. This study is significant to bring new ideas in determining the key antecedents which are technological resource planning implementation based on knowledge capacity perspectives and help to understand the key success factor in the Tunisian banks. Based on a survey of 150 front office Tunisian agents working in Tunisian banks with mixed capital, using Groupware system, only 51 respondents had given feedback to this survey. By using Warp PLS 3.0, through several tests the relationship between knowledge capability and Groupware implementation success having beta coefficient 0.37 and P-Value <0.01. This result highlights that knowledge capability of bank agent can influence the success of the Groupware implementation.

Keywords: groupware implementation, knowledge capacity, partial least squares method, Tunisian banks

Procedia PDF Downloads 489
8755 eTransformation Framework for the Cognitive Systems

Authors: Ana Hol

Abstract:

Digital systems are in the cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber for example does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems, this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new sheared economy business models as Uber and, 3. New requirements for demand driven, cognitive systems capable of learning and just in time decision making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.

Keywords: system implementations, AI supported systems, cognitive systems, eTransformation

Procedia PDF Downloads 238
8754 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 206
8753 Using Business Simulations and Game-Based Learning for Enterprise Resource Planning Implementation Training

Authors: Carin Chuang, Kuan-Chou Chen

Abstract:

An Enterprise Resource Planning (ERP) system is an integrated information system that supports the seamless integration of all the business processes of a company. Implementing an ERP system can increase efficiencies and decrease the costs while helping improve productivity. Many organizations including large, medium and small-sized companies have already adopted an ERP system for decades. Although ERP system can bring competitive advantages to organizations, the lack of proper training approach in ERP implementation is still a major concern. Organizations understand the importance of ERP training to adequately prepare managers and users. The low return on investment, however, for the ERP training makes the training difficult for knowledgeable workers to transfer what is learned in training to the jobs at workplace. Inadequate and inefficient ERP training limits the value realization and success of an ERP system. That is the need to call for a profound change and innovation for ERP training in both workplace at industry and the Information Systems (IS) education in academia. The innovated ERP training approach can improve the users’ knowledge in business processes and hands-on skills in mastering ERP system. It also can be instructed as educational material for IS students in universities. The purpose of the study is to examine the use of ERP simulation games via the ERPsim system to train the IS students in learning ERP implementation. The ERPsim is the business simulation game developed by ERPsim Lab at HEC Montréal, and the game is a real-life SAP (Systems Applications and Products) ERP system. The training uses the ERPsim system as the tool for the Internet-based simulation games and is designed as online student competitions during the class. The competitions involve student teams with the facilitation of instructor and put the students’ business skills to the test via intensive simulation games on a real-world SAP ERP system. The teams run the full business cycle of a manufacturing company while interacting with suppliers, vendors, and customers through sending and receiving orders, delivering products and completing the entire cash-to-cash cycle. To learn a range of business skills, student needs to adopt individual business role and make business decisions around the products and business processes. Based on the training experiences learned from rounds of business simulations, the findings show that learners have reduced risk in making mistakes that help learners build self-confidence in problem-solving. In addition, the learners’ reflections from their mistakes can speculate the root causes of the problems and further improve the efficiency of the training. ERP instructors teaching with the innovative approach report significant improvements in student evaluation, learner motivation, attendance, engagement as well as increased learner technology competency. The findings of the study can provide ERP instructors with guidelines to create an effective learning environment and can be transferred to a variety of other educational fields in which trainers are migrating towards a more active learning approach.

Keywords: business simulations, ERP implementation training, ERPsim, game-based learning, instructional strategy, training innovation

Procedia PDF Downloads 139
8752 Models of Environmental, Crack Propagation of Some Aluminium Alloys (7xxx)

Authors: H. A. Jawan

Abstract:

This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state.

Keywords: microstructure, environmental, propagation, mechanism

Procedia PDF Downloads 418
8751 A Comprehensive Framework to Ensure Data Security in Cloud Computing: Analysis, Solutions, and Approaches

Authors: Loh Fu Quan, Fong Zi Heng, Burra Venkata Durga Kumar

Abstract:

Cloud computing has completely transformed the way many businesses operate. Traditionally, confidential data of a business is stored in computers located within the premise of the business. Therefore, a lot of business capital is put towards maintaining computing resources and hiring IT teams to manage them. The advent of cloud computing changes everything. Instead of purchasing and managing their infrastructure, many businesses have started to shift towards working with the cloud with the help of a cloud service provider (CSP), leading to cost savings. However, it also introduces security risks. This research paper focuses on the security risks that arise during data migration and user authentication in cloud computing. To overcome this problem, this paper provides a comprehensive framework that includes Transport Layer Security (TLS), user authentication, security tokens and multi-level data encryption. This framework aims to prevent authorized access to cloud resources and data leakage, ensuring the confidentiality of sensitive information. This framework can be used by cloud service providers to strengthen the security of their cloud and instil confidence in their users.

Keywords: Cloud computing, Cloud security, Cloud security issues, Cloud security framework

Procedia PDF Downloads 121
8750 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
8749 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model

Procedia PDF Downloads 151
8748 Saving Energy through Scalable Architecture

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.

Keywords: scalable architectures, sustainability, application design, disruptive technology, machine learning and natural language processing, AI, social media platform, cloud computing, advanced networking and storage devices, advanced monitoring and metering infrastructure, climate change

Procedia PDF Downloads 106
8747 Modeling and Simulation Methods Using MATLAB/Simulink

Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,

Abstract:

This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.

Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)

Procedia PDF Downloads 343
8746 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 319
8745 Studying Growth as a Pursuit of Disseminating Social Impact: A Conceptual Study

Authors: Saila Tykkyläinen

Abstract:

The purpose of this study is to pave the way for more focused accumulation of knowledge on social enterprise growth. The body of research touching upon the phenomenon is somewhat fragmented. In order to make an effort to create a solid common ground, this study draws from the theoretical starting points and guidelines developed within small firm growth research. By analyzing their use in social enterprise growth literature, the study offers insights on whether the proven theories and concepts from small firm context could be more systematically applied when investigating growth of social enterprises. Towards this end, the main findings from social enterprise growth research are classified under the three research streams on growth. One of them focuses on factors of growth, another investigates growth as a process and the third is interested in outcomes of growth. During the analysis, special attention is paid on exploring how social mission of the company and the pursuit of augmenting its social impact are dealt within those lines of research. The next step is to scrutinize and discuss some of the central building blocks of growth research, namely the unit of analysis, conceptualization of a firm and operationalizing growth, in relation to social enterprise studies. It appears that the social enterprise growth literature stresses the significance of 'social' both as a main driver and principle outcome of growth. As for the growth process, this emphasis is manifested by special interest in strategies and models tailored to disseminate social impact beyond organizational limits. Consequently, this study promotes more frequent use of business activity as a unit of analysis in the social enterprise context. Most of the times, it is their products, services or programs with which social enterprises and entrepreneurs aim to create the impact. Thus the focus should be placed on activities rather than on organizations. The study also seeks to contribute back to the small firm growth research. Even though the recommendation to think of business activities as an option for unit of analysis stems from there, it is all too rarely used. Social entrepreneurship makes a good case for testing and developing the approach further.

Keywords: conceptual study, growth, scaling, social enterprise

Procedia PDF Downloads 315
8744 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution

Procedia PDF Downloads 355
8743 Navigating Creditors' Interests in the Context of Business Rescue

Authors: Hermanus J. Moolman

Abstract:

The COVID-19 pandemic had a severe impact on the society and companies in South Africa. This raises questions about the position of creditors of companies facing financial distress and the actions that directors should take to cater to the interests of creditors. The extent to which directors owe their duties and consideration to creditors has been the subject of debate. The directors of a solvent company owe their duties to the company in favour of its shareholders. When the company becomes insolvent, creditors are the beneficiaries of the directors’ duties. However, the intermittent phase between solvency and insolvency, otherwise referred to as the realm of insolvency, is not accounted for. The purpose of this paper is to determine whether South African company law appropriately addresses the duties that directors owe to creditors and the extent of consideration given to creditors’ interests when the company is in the realm of insolvency and has started business rescue proceedings. A comparative study on South Africa, the United States of America, the United Kingdom and international instruments was employed to achieve the purpose statement. In the United States of America and the United Kingdom, the focus shifts from shareholders to the best interests of creditors when business recue proceedings commence. Such an approach is not aligned with the purpose of the Companies Act of 2008 that calls for a balance of interests of all persons affected by a company’s financial distress and will not be suitable for the South African context. Business rescue in South Africa is relatively new when compared to the practices of the United States of America and the United Kingdom, and the entrepreneurial landscape in South Africa is still evolving. The interests of creditors are not the only interests at risk when a company is financially distressed. It is recommended that an enlightened creditor value approach is adopted for South Africa, where the interests of creditors, albeit paramount, are balanced with those of other stakeholders. This approach optimises a gradual shift in the duties of directors from shareholders to creditors, without disregarding the interests of shareholders.

Keywords: business rescue, shareholders, creditors, financial distress, balance of interests, alternative remedies, company law

Procedia PDF Downloads 44
8742 Bio-Hub Ecosystems: Profitability through Circularity for Sustainable Forestry, Energy, Agriculture and Aquaculture

Authors: Kimberly Samaha

Abstract:

The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding biomass as a feedstock for power plants. Yet the lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. This study analyzed data and submittals to the Born Global Maine Innovation Challenge. The Innovation Challenge was a global innovation challenge to identify process innovations that could address a ‘whole-tree’ approach of maximizing the products, byproducts, energy value and process slip-streams into a circular zero-waste design. Participating companies were at various stages of developing bioproducts and included biofuels, lignin-based products, carbon capture platforms and biochar used as both a filtration medium and as a soil amendment product. This case study shows the QCA (Qualitative Comparative Analysis) methodology of the prequalification process and the resulting techno-economic model that was developed for the maximizing profitability of the Bio-Hub Ecosystem through continuous expansion of system waste streams into valuable process inputs for co-hosts. A full site plan for the integration of co-hosts (biorefinery, land-based shrimp and salmon aquaculture farms, a tomato green-house and a hops farm) at an operating forestry-based biomass to energy plant in West Enfield, Maine USA. This model and process for evaluating the profitability not only proposes models for integration of forestry, aquaculture and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. In this particular study, profitability is assessed at two levels CAPEX (Capital Expenditures) and in OPEX (Operating Expenditures). Given that these projects start with repurposing facilities where the industrial level infrastructure is already built, permitted and interconnected to the grid, the addition of co-hosts first realizes a dramatic reduction in permitting, development times and costs. In addition, using the biomass energy plant’s waste streams such as heat, hot water, CO₂ and fly ash as valuable inputs to their operations and a significant decrease in the OPEX costs, increasing overall profitability to each of the co-hosts bottom line. This case study utilizes a proprietary techno-economic model to demonstrate how utilizing waste streams of a biomass energy plant and/or biorefinery, results in significant reduction in OPEX for both the biomass plants and the agriculture and aquaculture co-hosts. Economically viable Bio-Hubs with favorable environmental and community impacts may prove critical in garnering local and federal government support for pilot programs and more wide-scale adoption, especially for those living in severely economically depressed rural areas where aging industrial sites have been shuttered and local economies devastated.

Keywords: bio-economy, biomass energy, financing, zero-waste

Procedia PDF Downloads 134
8741 A Demonstration of How to Employ and Interpret Binary IRT Models Using the New IRT Procedure in SAS 9.4

Authors: Ryan A. Black, Stacey A. McCaffrey

Abstract:

Over the past few decades, great strides have been made towards improving the science in the measurement of psychological constructs. Item Response Theory (IRT) has been the foundation upon which statistical models have been derived to increase both precision and accuracy in psychological measurement. These models are now being used widely to develop and refine tests intended to measure an individual's level of academic achievement, aptitude, and intelligence. Recently, the field of clinical psychology has adopted IRT models to measure psychopathological phenomena such as depression, anxiety, and addiction. Because advances in IRT measurement models are being made so rapidly across various fields, it has become quite challenging for psychologists and other behavioral scientists to keep abreast of the most recent developments, much less learn how to employ and decide which models are the most appropriate to use in their line of work. In the same vein, IRT measurement models vary greatly in complexity in several interrelated ways including but not limited to the number of item-specific parameters estimated in a given model, the function which links the expected response and the predictor, response option formats, as well as dimensionality. As a result, inferior methods (a.k.a. Classical Test Theory methods) continue to be employed in efforts to measure psychological constructs, despite evidence showing that IRT methods yield more precise and accurate measurement. To increase the use of IRT methods, this study endeavors to provide a comprehensive overview of binary IRT models; that is, measurement models employed on test data consisting of binary response options (e.g., correct/incorrect, true/false, agree/disagree). Specifically, this study will cover the most basic binary IRT model, known as the 1-parameter logistic (1-PL) model dating back to over 50 years ago, up until the most recent complex, 4-parameter logistic (4-PL) model. Binary IRT models will be defined mathematically and the interpretation of each parameter will be provided. Next, all four binary IRT models will be employed on two sets of data: 1. Simulated data of N=500,000 subjects who responded to four dichotomous items and 2. A pilot analysis of real-world data collected from a sample of approximately 770 subjects who responded to four self-report dichotomous items pertaining to emotional consequences to alcohol use. Real-world data were based on responses collected on items administered to subjects as part of a scale-development study (NIDA Grant No. R44 DA023322). IRT analyses conducted on both the simulated data and analyses of real-world pilot will provide a clear demonstration of how to construct, evaluate, and compare binary IRT measurement models. All analyses will be performed using the new IRT procedure in SAS 9.4. SAS code to generate simulated data and analyses will be available upon request to allow for replication of results.

Keywords: instrument development, item response theory, latent trait theory, psychometrics

Procedia PDF Downloads 357
8740 Hyaluronic Acid - Alginate Hydrogel for the Transdifferentiation of Testis Cells into Erythrocyte and Hepatocyte-like Cells; A Practice Within an Effective Agent Choice

Authors: Leila Rashki Ghaleno, Mohamad Amin Hajari, Leila Montazeri, Abdolhossein Shahverdi, Mojtaba Rezazadeh Valojerdi

Abstract:

Background: Spermatogonia stem cells (SSCs) exhibit pluripotency, enabling them to undergo differentiation into many cell lineages, including neurons, glia, endothelial cells, and hepatocytes when cultured in vitro. Although the specific mechanisms are not yet fully understood, it has been observed that biopolymer agents, such as hyaluronic acid (HA) and alginate (Alg), have the potential to induce transdifferentiation of SSCs. The current work aimed to examine the process of in vitro spermatogenesis and the conversion of mouse testicular cells into hepatocytes and erythrocyte-like cells utilizing the HA-Alg hydrogel. Method: After being extracted from the testes of a 5-day postpartum mouse (5 DPP), the testicular cells were separated into two enzymatic stages and then put into a composite hydrogel containing 0.5% HA and 1% alginate. On days 14 and 28 of culture, the colonies' growth, the cells' viability, and their histology were assessed. Result: Despite observing significant cell proliferation on day 14 and the development of circular-shaped organoids on day 28, it was noted that the organoids generated in the HA-Alg medium tended to maintain their circular morphology on day 28. Notably, the testicular cells underwent transdifferentiation into cell types resembling erythrocytes and hepatocytes. The hepatocyte-like cells exhibited the presence of glycogen and lipid deposits, indicating their hepatocyte-like characteristics. Interestingly, immunostaining analysis revealed the secretion of albumin and the presence of VEGFR on day 14. However, on day 28, albumin expression was not detected, while the expression of Sox9 (a marker for hepatocytes), Vegf, CD34, and C-kit (markers for erythrocytes) showed increased levels in the gene expression evaluation. Conclusion: The present findings indicated that HA-Alg could be a potent and effective agent for the transdifferentiation of testis cells into erythrocyte and hepatocyte-like cells, as recent studies have confirmed the transformation of SSCs into hepatocyte cells during in vitro culture.

Keywords: 3D culture, mouse testicular cell, hyaluronic acid, liver organoids

Procedia PDF Downloads 71
8739 Impact Evaluation of Intellectual Capital on Business Performance Using Composite Ratios: Longitudinal Analysis in Latvia, Estonia and Lithuania

Authors: Nellija Titova

Abstract:

Latvia, Lithuania, and Estonia, as Baltic Countries, have gone throughout transformational changes since 90s leading to the high level of economic development. As countries departing Soviet Union with industrialization policy moved to service economies, the issues of intangibles, human capital, structural capital, and innovation capital have gained impetus. Following the growing demand of practitioners and later academia, intellectual capital as a discipline, which appeared in 90s, became fundamental nowadays. Aim of the paper is to analyze the Baltic companies entering stock markets at Nasdaq Baltic from the perspective of Intellectual Capital. Methodology of the research is based on a longitudinal analysis of the companies using composite ratios of Intellectual Capital and Business performance in the period 2012-2019. Data for 2020 as COVID year) were excluded from the analysis. Findings allow concluding there is a pattern of influence and companies clearly experience the systemic impact of IC on business performance, identifying also time effect investing in intangibles.

Keywords: intellectual capital, impact analysis, longitudinal effect, composite ratios

Procedia PDF Downloads 103
8738 Business Model Innovation and Firm Performance: Exploring Moderation Effects

Authors: Mohammad-Ali Latifi, Harry Bouwman

Abstract:

Changes in the business environment accelerated dramatically over the last decades as a result of changes in technology, regulation, market, and competitors’ behavior. Firms need to change the way they do business in order to survive or maintain their growth. Innovating business model (BM) can create competitive advantages and enhance firm performance. However, many companies fail to achieve expected outcomes in practice, mostly due to irreversible fundamental changes in key components of the company’s BM. This leads to more ambiguity, uncertainty, and risks associated with business performance. However, the relationship among BM Innovation, moderating factors, and the firm’s overall performance is by and large ignored in the current literature. In this study, we identified twenty moderating factors from our comprehensive literature review. We categorized these factors based on two criteria regarding the extent to which: the moderating factors can be controlled and managed by firms, and they are generic or specific changes to the firms. This leads to four moderation groups. The first group is BM implementation, which includes management support, employees’ commitment, employees’ skills, communication, detailed plan. The second group is called BM practices, which consists of BM tooling, BM experimentation, the scope of change, speed of change, degree of novelty. The third group is Firm characteristics, including firm size, age, and ownership. The last group is called Industry characteristics, which considers the industry sector, competitive intensity, industry life cycle, environmental dynamism, high-tech vs. low-tech industry. Through collecting data from 508 European small and medium-sized enterprises (SMEs) and using the structural equation modeling technique, the developed moderation model was examined. Results revealed that all factors highlighted through these four groups moderate the relation between BMI and firm performance significantly. Particularly, factors related to BM-Implementation and BM-Practices are more manageable and would potentially improve firm overall performance. We believe that this result is more important for researchers and practitioners since the possibility of working on factors in Firm characteristics and Industry characteristics groups are limited, and the firm can hardly control and manage them to improve the performance of BMI efforts.

Keywords: business model innovation, firm performance, implementation, moderation

Procedia PDF Downloads 120
8737 Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements

Authors: Dragan Ribarić

Abstract:

We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes.

Keywords: Mindlin plate theory, problem-independent linked interpolation, problem-dependent interpolation, quadrilateral displacement-based plate finite elements

Procedia PDF Downloads 312
8736 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409