Search results for: vertical axis wind turbine performances
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3957

Search results for: vertical axis wind turbine performances

2697 Effect of Print Orientation on the Mechanical Properties of Multi Jet Fusion Additively Manufactured Polyamide-12

Authors: Tyler Palma, Praveen Damasus, Michael Munther, Mehrdad Mohsenizadeh, Keivan Davami

Abstract:

The advancement of additive manufacturing, in both research and commercial realms, is highly dependent upon continuing innovations and creativity in materials and designs. Additive manufacturing shows great promise towards revolutionizing various industries, due largely to the fact that design data can be used to create complex products and components, on demand and from the raw materials, for the end user at the point of use. However, it will be critical that the material properties of additively-made parts for engineering purposes be fully understood. As it is a relatively new additive manufacturing method, the response of properties of Multi Jet Fusion (MJF) produced parts to different printing parameters has not been well studied. In this work, testing of mechanical and tribological properties MJF-printed Polyamide 12 parts was performed to determine whether printing orientation in this method results in significantly different part performances. Material properties were studied at macro- and nanoscales. Tensile tests, in combination with tribology tests including steady-state wear, were performed. Results showed a significant difference in resultant part characteristics based on whether they were printed in a vertical or horizontal orientation. Tensile performance of vertically and horizontally printed samples varied, both in ultimate strength and strain. Tribology tests showed that printing orientation has notable effects on the resulting mechanical and wear properties of tested surfaces, due largely to layer orientation and the presence of unfused fused powder grain inclusions. This research advances the understanding of how print orientation affects the mechanical properties of additively manufactured structures, and also how print orientation can be exploited in future engineering design.

Keywords: additive manufacturing, indentation, nano mechanical characterization, print orientation

Procedia PDF Downloads 126
2696 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity

Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier

Abstract:

The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.

Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model

Procedia PDF Downloads 300
2695 Correlation of Unsuited and Suited 5ᵗʰ Female Hybrid III Anthropometric Test Device Model under Multi-Axial Simulated Orion Abort and Landing Conditions

Authors: Christian J. Kennett, Mark A. Baldwin

Abstract:

As several companies are working towards returning American astronauts back to space on US-made spacecraft, NASA developed a human flight certification-by-test and analysis approach due to the cost-prohibitive nature of extensive testing. This process relies heavily on the quality of analytical models to accurately predict crew injury potential specific to each spacecraft and under dynamic environments not tested. As the prime contractor on the Orion spacecraft, Lockheed Martin was tasked with quantifying the correlation of analytical anthropometric test devices (ATDs), also known as crash test dummies, against test measurements under representative impact conditions. Multiple dynamic impact sled tests were conducted to characterize Hybrid III 5th ATD lumbar, head, and neck responses with and without a modified shuttle-era advanced crew escape suit (ACES) under simulated Orion landing and abort conditions. Each ATD was restrained via a 5-point harness in a mockup Orion seat fixed to a dynamic impact sled at the Wright Patterson Air Force Base (WPAFB) Biodynamics Laboratory in the horizontal impact accelerator (HIA). ATDs were subject to multiple impact magnitudes, half-sine pulse rise times, and XZ - ‘eyeballs out/down’ or Z-axis ‘eyeballs down’ orientations for landing or an X-axis ‘eyeballs in’ orientation for abort. Several helmet constraint devices were evaluated during suited testing. Unique finite element models (FEMs) were developed of the unsuited and suited sled test configurations using an analytical 5th ATD model developed by LSTC (Livermore, CA) and deformable representations of the seat, suit, helmet constraint countermeasures, and body restraints. Explicit FE analyses were conducted using the non-linear solver LS-DYNA. Head linear and rotational acceleration, head rotational velocity, upper neck force and moment, and lumbar force time histories were compared between test and analysis using the enhanced error assessment of response time histories (EEARTH) composite score index. The EEARTH rating paired with the correlation and analysis (CORA) corridor rating provided a composite ISO score that was used to asses model correlation accuracy. NASA occupant protection subject matter experts established an ISO score of 0.5 or greater as the minimum expectation for correlating analytical and experimental ATD responses. Unsuited 5th ATD head X, Z, and resultant linear accelerations, head Y rotational accelerations and velocities, neck X and Z forces, and lumbar Z forces all showed consistent ISO scores above 0.5 in the XZ impact orientation, regardless of peak g-level or rise time. Upper neck Y moments were near or above the 0.5 score for most of the XZ cases. Similar trends were found in the XZ and Z-axis suited tests despite the addition of several different countermeasures for restraining the helmet. For the X-axis ‘eyeballs in’ loading direction, only resultant head linear acceleration and lumbar Z-axis force produced ISO scores above 0.5 whether unsuited or suited. The analytical LSTC 5th ATD model showed good correlation across multiple head, neck, and lumbar responses in both the unsuited and suited configurations when loaded in the XZ ‘eyeballs out/down’ direction. Upper neck moments were consistently the most difficult to predict, regardless of impact direction or test configuration.

Keywords: impact biomechanics, manned spaceflight, model correlation, multi-axial loading

Procedia PDF Downloads 98
2694 Interactive Effects of Challenge-Hindrance Stressors and Core Self-Evaluations on In-Role and Extra-Role Performance

Authors: Khansa Hayat

Abstract:

Organizational stress is one of the vital phenomena which is having its roots deep down in has deep roots in management, psychology, and organizational behavior research. In the meanwhile, keeping its focus on the positive strength of humans rather than the traditional negativity oriented research, positive psychology has emerged as a separate branch of organizational behavior. The current study investigates the interactive effects of Challenge and hindrance stressors and core Self Evaluations (CSE’s) of the individual on job performances including the in-role performance and extra role performances. The study also aims to investigate the supporting/buffering role of the human dispositions (i.e., self esteem, self efficacy, locus of control and emotional stability). The results show that Challenge stressors have a significant positive effect on in role performance and extra role performance of the individual. The findings of the study indicate that Core Self evaluations strengthen the relationship between challenge stressors and in role performance of the individual. In case of Hindrance Stressors the Core self Evaluations lessen the negative impact of Hindrance stressors and they let the individual perform at a better and normal position even when the Hindrance stressors are high. The relationship and implication of conservation of resource theory are also discussed. The limitations, future research directions and implications of the study are also discussed.

Keywords: challenge-hindrance stressors, core self evaluations, in-role performance, extra-role performance

Procedia PDF Downloads 254
2693 A Case Study of Ontology-Based Sentiment Analysis for Fan Pages

Authors: C. -L. Huang, J. -H. Ho

Abstract:

Social media has become more and more important in our life. Many enterprises promote their services and products to fans via the social media. The positive or negative sentiment of feedbacks from fans is very important for enterprises to improve their products, services, and promotion activities. The purpose of this paper is to understand the sentiment of the fan’s responses by analyzing the responses posted by fans on Facebook. The entity and aspect of fan’s responses were analyzed based on a predefined ontology. The ontology for cell phone sentiment analysis consists of aspect categories on the top level as follows: overall, shape, hardware, brand, price, and service. Each category consists of several sub-categories. All aspects for a fan’s response were found based on the ontology, and their corresponding sentimental terms were found using lexicon-based approach. The sentimental scores for aspects of fan responses were obtained by summarizing the sentimental terms in responses. The frequency of 'like' was also weighted in the sentimental score calculation. Three famous cell phone fan pages on Facebook were selected as demonstration cases to evaluate performances of the proposed methodology. Human judgment by several domain experts was also built for performance comparison. The performances of proposed approach were as good as those of human judgment on precision, recall and F1-measure.

Keywords: opinion mining, ontology, sentiment analysis, text mining

Procedia PDF Downloads 218
2692 Designing Sustainable Building Based on Iranian's Windmills

Authors: Negar Sartipzadeh

Abstract:

Energy-conscious design, which coordinates with the Earth ecological systems during its life cycle, has the least negative impact on the environment with the least waste of resources. Due to the increasing in world population as well as the consumption of fossil fuels that cause the production of greenhouse gasses and environmental pollution, mankind is looking for renewable and also sustainable energies. The Iranian native construction is a clear evidence of energy-aware designing. Our predecessors were forced to rely on the natural resources and sustainable energies as well as environmental issues which have been being considered in the recent world. One of these endless energies is wind energy. Iranian traditional architecture foundations is a appropriate model in solving the environmental crisis and the contemporary energy. What will come in this paper is an effort to recognition and introduction of the unique characteristics of the Iranian architecture in the application of aerodynamic and hydraulic energies derived from the wind, which are the most common and major type of using sustainable energies in the traditional architecture of Iran. Therefore, the recent research attempts to offer a hybrid system suggestions for application in new constructions designing in a region such as Nashtifan, which has potential through reviewing windmills and how they deal with sustainable energy sources, as a model of Iranian native construction.

Keywords: renewable energy, sustainable building, windmill, Iranian architecture

Procedia PDF Downloads 401
2691 Preparation and Characterization of a Nickel-Based Catalyst Supported by Silica Promoted by Cerium for the Methane Steam Reforming Reaction

Authors: Ali Zazi, Ouiza Cherifi

Abstract:

Natural gas currently represents a raw material of choice for the manufacture of a wide range of chemical products via synthesis gas, among the routes of transformation of methane into synthesis gas The reaction of the oxidation of methane by gas vapor 'water. This work focuses on the study of the effect of cerieum on the nickel-based catalyst supported by silica for the methane vapor reforming reaction, with a variation of certain parameters of the reaction. The reaction temperature, the H₂O / CH₄ ratio and the flow rate of the reaction mixture (CH₄-H₂O). Two catalysts were prepared by impregnation of Degussa silica with a solution of nickel nitrates and a solution of cerium nitrates [Ni (NO₃) 2 6H₂O and Ce (NO₃) 3 6H₂O] so as to obtain the 1.5% nickel concentrations. For both catalysts and plus 1% cerium for the second catalyst. These Catalysts have been characterized by physical and chemical analysis techniques: BET technique, Atomic Absorption, IR Spectroscopy, X-ray diffraction. These characterizations indicated that the nitrates had impregnated the silica. And that the NiO and Ce₂O3 phases are present and Ni°(after reaction). The BET surface of the silica decreases without being affected. The catalytic tests carried out on the two catalysts for the steam reforming reactions show that the addition of cerium to the nickel improves the catalytic performances of the nickel. And that these performances also depend on the parameters of the reaction, namely the temperature, the rate of the reaction mixture, and the ratio (H₂O / CH₄).

Keywords: heterogeneous catalysis, steam reforming, Methane, Nickel, Cerium, synthesis gas, hydrogen

Procedia PDF Downloads 144
2690 Influence of Strike-Slip Faulting in the Tectonic Evolution of North-Eastern Tunisia

Authors: Aymen Arfaoui, Abdelkader Soumaya, Ali Kadri, Noureddine Ben Ayed

Abstract:

The major contractional events characterized by strike-slip faulting, folding, and thrusting occurred in the Eocene, Late Miocene, and Quaternary along with the NE Tunisian domain between Bou Kornine-Ressas- Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order extensive regions within a regional compressional regime. Using available tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformations are dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds, and grabens. Based on our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB), and Hammamet-Korbous (HK) form an N-S first order restraining stepover within a left-lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults, and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Seismic tomography images reveal a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene sequences above this crustal scale fault may be the result of a recent lithospheric vertical motion of this STEP fault due to the rollback and lateral migration of the Calabrian slab eastward.

Keywords: Tunisia, strike-slip fault, contractional duplex, tectonic stress, restraining stepover, STEP fault

Procedia PDF Downloads 111
2689 Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis

Authors: Mohsen Sheikholeslami, Zahra Khalili, Ladan Momayez

Abstract:

Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature.

Keywords: photovoltaic system, CO₂ mitigation, ternary nanofluid, thermoelectric generator, environmental parameters, trapezoidal cooling channel

Procedia PDF Downloads 58
2688 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces

Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang

Abstract:

Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.

Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide

Procedia PDF Downloads 425
2687 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor

Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud

Abstract:

Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.

Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification

Procedia PDF Downloads 118
2686 Thermal Radiation Effect on Mixed Convection Boundary Layer Flow over a Vertical Plate with Varying Density and Volumetric Expansion Coefficient

Authors: Sadia Siddiqa, Z. Khan, M. A. Hossain

Abstract:

In this article, the effect of thermal radiation on mixed convection boundary layer flow of a viscous fluid along a highly heated vertical flat plate is considered with varying density and volumetric expansion coefficient. The density of the fluid is assumed to vary exponentially with temperature, however; volumetric expansion coefficient depends linearly on temperature. Boundary layer equations are transformed into convenient form by introducing primitive variable formulations. Solutions of transformed system of equations are obtained numerically through implicit finite difference method along with Gaussian elimination technique. Results are discussed in view of various parameters, like thermal radiation parameter, volumetric expansion parameter and density variation parameter on the wall shear stress and heat transfer rate. It is concluded from the present investigation that increase in volumetric expansion parameter decreases wall shear stress and enhances heat transfer rate.

Keywords: thermal radiation, mixed convection, variable density, variable volumetric expansion coefficient

Procedia PDF Downloads 352
2685 Contribution to the Study of Phenotypic, Reproduction and Growth Parameters of Sheep in Eastern Algeria

Authors: Mohammed Titaouine, Toufik Meziane, Kahramen Deghnouche, Hanane Mohamdi, Nabil Mohamdi

Abstract:

In order to better understand the morphological characters and the zootechniques measures of sheeps races in the in South-East Algeria, a study that was conducted on 1344 heads, taken from 8 farms in different parts of the region, namely T’kout 1, T’kout 2, Tafrent, Barika, Sidi-Okba, Biskra, Ouled-Djellal and Msila. The results from the present study showed significant differences in the group of 14 morphological studied variables, the body length is the most important variable. Reproduction performance of 160 ewes and growth performances of 56 lambs were analysed. The analyses of the data showed that the ewes have a fertility level of 69%, a prolificacy level of 114% and a fecundity level of 79%. Lambs weigh 3.5kg at birth, 9.38kg at 30d, 13.45kg at 60d, 16.91kg at 90d and 21.51 kg at 120d. The speed of the growth level 0.20kg/d from birth to 30d, 0.14 kg/d between 30d and 60d, 0.12kg/d between 60d and 90d and 0.15kg/d between 90d and 120d. The simple born lambs were more heavy than the double born lambs. By contrast, sex was not significant for all the variables except the weight at 60d, the birth month has a significant effect on the weight at birth, at 30d, at 60d and it was no significant for the weight at 90d and at 120d.The flocks born on September, October, November, and December were more heavy than the flocks born on January, February, and March.

Keywords: morphological characterization, reproduction performance, growth performances, algeria

Procedia PDF Downloads 477
2684 Thermophoresis Particle Precipitate on Heated Surfaces

Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak

Abstract:

This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favourable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.

Keywords: thermophoresis, porous medium, variable surface heat flux, heat transfer

Procedia PDF Downloads 184
2683 Trial of Faecal Microbial Transplantation for the Prevention of Canine Atopic Dermatitis

Authors: Caroline F. Moeser

Abstract:

The skin-gut axis defines the relationship between the intestinal microbiota and the development of pathological skin diseases. Low diversity within the gut can predispose to the development of allergic skin conditions, and a greater diversity of the gastrointestinal microflora has been associated with a reduction of skin flares in people with atopic dermatitis. Manipulation of the gut microflora has been used as a treatment option for several conditions in people, but there is limited data available on the use of faecal transplantation as a preventative measure in either people or dogs. Six, 4-month-old pups from a litter of ten were presented for diarrhea and/or signs of skin disease (chronic scratching, otitis externa). Of these pups, two were given probiotics with a resultant resolution of diarrhea. The other four pups were given faecal transplantation, either as a sole treatment or in combination with other treatments. Follow-up on the litter of ten pups was performed at 18 months of age. At this stage, the four pups that had received faecal transplantation had resolved all clinical signs and had no recurrence of either skin or gastrointestinal symptoms. Of the remaining six pups from the litter, all had developed at least one episode of Malassezia otitis externa within the period of 5 months to 18 months of age. Two pups had developed two Malassezia otitis infections, and one had developed three Malassezia otitis infections during this period. Favrot’s criteria for the diagnosis of canine atopic dermatitis include chronic or recurrent Malassezia infections by the age of three years. Early results from this litter predict a reduction in the development of canine atopic disease in dogs given faecal microbial transplantation. Follow-up studies at three years of age and within a larger population of dogs can enhance understanding of the impact of early faecal transplantation in the prevention of canine atopic dermatitis.

Keywords: canine atopic dermatitis, faecal microbial transplant, skin-gut axis, otitis

Procedia PDF Downloads 139
2682 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)

Authors: Tauhidur Rahman, Dhrubajyoti Thakuria

Abstract:

In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.

Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control

Procedia PDF Downloads 386
2681 Numerical Analysis of Prefabricated Horizontal Drain Induced Consolidation Using ABAQUS

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

This paper deals with the numerical analysis of Prefabricated Horizontal Drain (PHD) induced consolidation of clayey deposits, using ABAQUS. PHDs are much like Prefabricated Vertical Drains (PVDs) installed in horizontal layers, used mainly for enhancing the consolidation of clayey fill embankments, and dredged mud deposits. The efficiency of the system depends mainly on the spacing and layout of the drain. Hence, two spacing related parameters are defined, namely WH (width to horizontal spacing ratio) and VH (vertical to horizontal spacing ratio), and the finite element models are developed based on plane strain unit cell conditions under various combinations of these parameters. The analysis results, in terms of degree of consolidation (U), are compared with the established theories. Based on the analysis, a set of equations are proposed to analyse the PHD induced consolidation. The proposed method is found to be reasonably accurate. Further, the effect of PHDs at different spacing ratios, in accelerating consolidation of a clayey embankment fill is analysed in terms of pore pressure dissipation rate, and settlement. The PHD is found to accelerate the rate of pore pressure dissipation by more than 50%, thus reducing the time for final settlement significantly.

Keywords: ABAQUS, consolidation, plane strain, prefabricated horizontal drain

Procedia PDF Downloads 338
2680 Performance Evaluation of Iar Multi Crop Thresher

Authors: Idris Idris Sunusi, U.S. Muhammed, N.A. Sale, I.B. Dalha, N.A. Adam

Abstract:

Threshing efficiency and mechanical grain damages are among the important parameters used in rating the performance of agricultural threshers. To be acceptable to farmers, threshers should have high threshing efficiency and low grain. The objective of the research is to evaluate the performances of the thresher using sorghum and millet, the performances parameters considered are; threshing efficiency and mechanical grain damage. For millet, four drum speed levels; 700, 800, 900 and 1000 rpm were considered while for sorghum; 600, 700, 800 and 900 rpm were considered. The feed rate levels were 3, 4, 5 and 6 kg/min for both sorghum and millet; the levels of moisture content were 8.93 and 10.38% for sorghum and 9.21 and 10.81% for millet. For millet the test result showed a maximum of 98.37 threshing efficiencies and a minimum of 0.24% mechanical grain damage while for sorghum the test result indicated a maximum of 99.38 threshing efficiencies, and a minimum of 0.75% mechanical grain damage. In comparison to the previous thresher, the threshing efficiency and mechanical grain damage of the modified machine has improved by 2.01% and 330.56% for millet and 5.31%, 287.64% for sorghum. Also analysis of variance (ANOVA) showed that, the effect of drum speed, feed rate and moisture content were significant on the performance parameters.

Keywords: Threshing Efficiency, Mechanical Grain Damages, Sorghum and Millet, Multi Crop Thresher

Procedia PDF Downloads 333
2679 Parametric Study of Underground Opening Stability under Uncertainty Conditions

Authors: Aram Yakoby, Yossef H. Hatzor, Shmulik Pinkert

Abstract:

This work presents an applied engineering method for evaluating the stability of underground openings under conditions of uncertainty. The developed method is demonstrated by a comprehensive parametric study on a case of large-diameter vertical borehole stability analysis, with uncertainties regarding the in-situ stress distribution. To this aim, a safety factor analysis is performed for the stability of both supported and unsupported boreholes. In the analysis, we used analytic geomechanical calculations and advanced numerical modeling to evaluate the estimated stress field. In addition, the work presents the development of a boundary condition for the numerical model that fits the nature of the problem and yields excellent accuracy. The borehole stability analysis is studied in terms of (1) the stress ratio in the vertical and horizontal directions, (2) the mechanical properties and geometry of the support system, and (3) the parametric sensitivity. The method's results are studied in light of a real case study of an underground waste disposal site. The conclusions of this study focus on the developed method for capturing the parametric uncertainty, the definition of critical geological depths, the criteria for implementing structural support, and the effectiveness of further in-situ investigations.

Keywords: borehole stability, in-situ stress, parametric study, factor of safety

Procedia PDF Downloads 42
2678 Evaluation of Alternative Energy Sources for Energy Production in Turkey

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen

Abstract:

In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.

Keywords: alternative energy sources, energy productions, hydroenergy, solar energy, wind energy

Procedia PDF Downloads 609
2677 High Performance of Square GAA SOI MOSFET Using High-k Dielectric with Metal Gate

Authors: Fatima Zohra Rahou, A. Guen Bouazza, B. Bouazza

Abstract:

Multi-gate SOI MOSFETs has shown better results in subthreshold performances. The replacement of SiO2 by high-k dielectric can fulfill the requirements of Multi-gate MOSFETS with a scaling trend in device dimensions. The advancement in fabrication technology has also boosted the use of different high -k dielectric materials as oxide layer at different places in MOSFET structures. One of the most important multi-gate structures is square GAA SOI MOSFET that is a strong candidate for the next generation nanoscale devices; show an even stronger control of short channel effects. In this paper, GAA SOI MOSFET structure with using high -k dielectrics materials Al2O3 (k~9), HfO2 (k~20), La2O3 (k~30) and metal gate TiN are simulated by using 3-D device simulator DevEdit and Atlas of SILVACO TCAD tools. Square GAA SOI MOSFET transistor with High-k HfO2 gate dielectrics and TiN metal gate exhibits significant improvements performances compared to Al2O3 and La2O3 dielectrics for the same structure. Simulation results of GAA SOI MOSFET transistor with HfO2 dielectric show the increase in saturation current and Ion/Ioff ratio while leakage current, subthreshold slope and DIBL effect are decreased.

Keywords: technology SOI, short-channel effects (SCEs), multi-gate SOI MOSFET, square GAA SOI MOSFET, high-k dielectric, Silvaco software

Procedia PDF Downloads 243
2676 Utilization of Fins to Improve the Response of Pile under Torsional Loads

Authors: Waseim Ragab Azzam Ahmed Mohamed Nasr, Aalaa Ibrahim Khater

Abstract:

Torsional loads from offshore wind turbines, waves, wind, earthquakes, ship collisions in the maritime environment, and electrical transmission towers might affect the pile foundations. Torsional loads can also be caused by the axial load from the sustaining structures. The paper introduces the finned pile, an alternative method of pile modification. The effects of torsional loads were investigated through a series of experimental tests aimed at improving the torsional capacity of a single pile in the sand (where sand was utilized in a state of medium density (Dr = 50%), with or without fins. In these tests, the fins' length, width, form, and number were varied to see how these attributes affected the maximum torsional capacity of the piles. We have noticed the torsion-rotation reaction. The findings demonstrated that the fins improve the maximum torsional capacity of the piles. It was demonstrated that a length of 0.6 times the embedded pile's length and a width equivalent to the pile's diameter constitute the optimal fin geometry. For the conventional pile and the finned pile, the maximum torsional capacities were determined to be 4.12 N.m. and 7.36 N.m., respectively. When subjected to torsional loads, the fins' presence enhanced the piles' maximum torsional capacity by almost 79%.

Keywords: clean sand, finned piles, model tests, torsional load

Procedia PDF Downloads 44
2675 Effect of Scarp Topography on Seismic Ground Motion

Authors: Haiping Ding, Rongchu Zhu, Zhenxia Song

Abstract:

Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors.

Keywords: scarp topography, ground motion, amplification factor, vertical incident wave

Procedia PDF Downloads 245
2674 Errors and Misconceptions for Students with Mathematical Learning Disabilities: Quest for Suitable Teaching Strategy

Authors: A. K. Tsafe

Abstract:

The study investigates the efficacy of Special Mathematics Teaching Strategy (SMTS) as against Conventional Mathematics Teaching Strategy (CMTS) in teaching students identified with Mathematics Learning Disabilities (MLDs) – dyslexia, Down syndrome, dyscalculia, etc., in some junior secondary schools around Sokoto metropolis. Errors and misconceptions in learning Mathematics displayed by these categories of students were observed. Theory of variation was used to provide a prism for viewing the MLDs from theoretical perspective. Experimental research design was used, involving pretest-posttest non-randomized approach. Pretest was administered to the intact class taught using CMTS before the class was split into experimental and control groups. Experimental group of the students – those identified with MLDs was taught with SMTS and later mean performance of students taught using the two strategies was sought to find if there was any significant difference between the performances of the students. A null hypothesis was tested at α = 0.05 level of significance. T-test was used to establish the difference between the mean performances of the two tests. The null hypothesis was rejected. Hence, the performance of students, identified with MLDs taught using SMTS was found to be better than their earlier performance taught using CMTS. The study, therefore, recommends amongst other things that teachers should be encouraged to use SMTS in teaching mathematics especially when students are found to be suffering from MLDs and exhibiting errors and misconceptions in the process of learning mathematics.

Keywords: disabilities, errors, learning, misconceptions

Procedia PDF Downloads 76
2673 Modeling of Carbon Monoxide Distribution under the Sky-Train Stations

Authors: Suranath Chomcheon, Nathnarong Khajohnsaksumeth, Benchawan Wiwatanapataphee

Abstract:

Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds.

Keywords: air pollution, carbon monoxide, finite element, street canyon

Procedia PDF Downloads 105
2672 A Computational Fluid Dynamics Study of Turbulence Flow and Parameterization of an Aerofoil

Authors: Mohamed Z. M. Duwahir, Shian Gao

Abstract:

The main objective of this project was to introduce and test a new scheme for parameterization of subsonic aerofoil, using a function called Shape Function. Python programming was used to create a user interactive environment for geometry generation of aerofoil using NACA and Shape Function methodologies. Two aerofoils, NACA 0012 and NACA 1412, were generated using this function. Testing the accuracy of the Shape Function scheme was done by Linear Square Fitting using Python and CFD modelling the aerofoil in Fluent. NACA 0012 (symmetrical aerofoil) was better approximated using Shape Function than NACA 1412 (cambered aerofoil). The second part of the project involved comparing two turbulent models, k-ε and Spalart-Allmaras (SA), in Fluent by modelling the aerofoils NACA 0012 and NACA 1412 in conditions of Reynolds number of 3 × 106. It was shown that SA modelling is better for aerodynamic purpose. The experimental coefficient of lift (Cl) and coefficient of drag (Cd) were compared with empirical wind tunnel data for a range of angle of attack (AOA). As a further step, this project involved drawing and meshing 3D wings in Gambit. The 3D wing flow was solved and compared with 2D aerofoil section experimental results and wind tunnel data.

Keywords: CFD simulation, shape function, turbulent modelling, aerofoil

Procedia PDF Downloads 339
2671 Optimizing the Insertion of Renewables in the Colombian Power Sector

Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner

Abstract:

Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.

Keywords: energy policy and planning, stochastic programming, sustainable development, water management

Procedia PDF Downloads 269
2670 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 129
2669 Comparing the Knee Kinetics and Kinematics during Non-Steady Movements in Recovered Anterior Cruciate Ligament Injured Badminton Players against an Uninjured Cohort: Case-Control Study

Authors: Anuj Pathare, Aleksandra Birn-Jeffery

Abstract:

Background: The Anterior Cruciate Ligament(ACL) helps stabilize the knee joint minimizing tibial anterior translation. Anterior Cruciate Ligament (ACL) injury is common in racquet sports and often occurs due to sudden acceleration, deceleration or changes of direction. This mechanism in badminton most commonly occurs during landing after an overhead stroke. Knee biomechanics during dynamic movements such as walking, running and stair negotiation, do not return to normal for more than a year after an ACL reconstruction. This change in the biomechanics may lead to re-injury whilst performing non-steady movements during sports, where these injuries are most prevalent. Aims: To compare if the knee kinetics and kinematics in ACL injury recovered athletes return to the same level as those from an uninjured cohort during standard movements used for clinical assessment and badminton shots. Objectives: The objectives of the study were to determine: Knee valgus during the single leg squat, vertical drop jump, net shot and drop shot; Degree of internal or external rotation during the single leg squat, vertical drop jump, net shot and drop shot; Maximum knee flexion during the single leg squat, vertical drop jump and net shot. Methods: This case-control study included 14 participants with three ACL injury recovered athletes and 11 uninjured participants. The participants performed various functional tasks including vertical drop jump, single leg squat; the forehand net shot and the forehand drop shot. The data was analysed using the two-way ANOVA test, and the reliability of the data was evaluated using the Intra Class Coefficient. Results: The data showed a significant decrease in the range of knee rotation in ACL injured participants as compared to the uninjured cohort (F₇,₅₅₆=2.37; p=0.021). There was also a decrease in the maximum knee flexion angles and an increase in knee valgus angles in ACL injured participants although they were not statistically significant. Conclusion: There was a significant decrease in the knee rotation angles in the ACL injured participants which could be a potential cause for re-injury in these athletes in the future. Although the results for decrease in maximum knee flexion angles and increase in knee valgus angles were not significant, this may be due to a limited sample of ACL injured participants; there is potential for it to be identified as a variable of interest in the rehabilitation of ACL injuries. These changes in the knee biomechanics could be vital in the rehabilitation of ACL injured athletes in the future, and an inclusion of sports based tasks, e.g., Net shot along with standard protocol movements for ACL assessment would provide a better measure of the rehabilitation of the athlete.

Keywords: ACL, biomechanics, knee injury, racquet sport

Procedia PDF Downloads 157
2668 Techno-Economic Analysis of Offshore Hybrid Energy Systems with Hydrogen Production

Authors: Anna Crivellari, Valerio Cozzani

Abstract:

Even though most of the electricity produced in the entire world still comes from fossil fuels, new policies are being implemented in order to promote a more sustainable use of energy sources. Offshore renewable resources have become increasingly attractive thanks to the huge entity of power potentially obtained. However, the intermittent nature of renewables often limits the capacity of the systems and creates mismatches between supply and demand. Hydrogen is foreseen to be a promising vector to store and transport large amounts of excess renewable power by using existing oil and gas infrastructure. In this work, an offshore hybrid energy system integrating wind energy conversion with hydrogen production was conceptually defined and applied to offshore gas platforms. A techno-economic analysis was performed by considering two different locations for the installation of the innovative power system, i.e., the North Sea and the Adriatic Sea. The water depth, the distance of the platform from the onshore gas grid, the hydrogen selling price and the green financial incentive were some of the main factors taken into account in the comparison. The results indicated that the use of well-defined indicators allows to capture specifically different cost and revenue features of the analyzed systems, as well as to evaluate their competitiveness in the actual and future energy market.

Keywords: cost analysis, energy efficiency assessment, hydrogen production, offshore wind energy

Procedia PDF Downloads 109