Search results for: offensive language detection
5904 Lithuanian Sign Language Literature: Metaphors at the Phonological Level
Authors: Anželika Teresė
Abstract:
In order to solve issues in sign language linguistics, address matters pertaining to maintaining high quality of sign language (SL) translation, contribute to dispelling misconceptions about SL and deaf people, and raise awareness and understanding of the deaf community heritage, this presentation discusses literature in Lithuanian Sign Language (LSL) and inherent metaphors that are created by using the phonological parameter –handshape, location, movement, palm orientation and nonmanual features. The study covered in this presentation is twofold, involving both the micro-level analysis of metaphors in terms of phonological parameters as a sub-lexical feature and the macro-level analysis of the poetic context. Cognitive theories underlie research of metaphors in sign language literature in a range of SL. The study follows this practice. The presentation covers the qualitative analysis of 34 pieces of LSL literature. The analysis employs ELAN software widely used in SL research. The target is to examine how specific types of each phonological parameter are used for the creation of metaphors in LSL literature and what metaphors are created. The results of the study show that LSL literature employs a range of metaphors created by using classifier signs and by modifying the established signs. The study also reveals that LSL literature tends to create reference metaphors indicating status and power. As the study shows, LSL poets metaphorically encode status by encoding another meaning in the same sign, which results in creating double metaphors. The metaphor of identity has been determined. Notably, the poetic context has revealed that the latter metaphor can also be identified as a metaphor for life. The study goes on to note that deaf poets create metaphors related to the importance of various phenomena significance of the lyrical subject. Notably, the study has allowed detecting locations, nonmanual features and etc., never mentioned in previous SL research as used for the creation of metaphors.Keywords: Lithuanian sign language, sign language literature, sign language metaphor, metaphor at the phonological level, cognitive linguistics
Procedia PDF Downloads 1365903 Communicative Language Teaching Technique: A Neglected Approach in Reading Comprehension Instruction
Authors: Olumide Yusuf Jimoh
Abstract:
Reading comprehension is an interactive and purposeful process of getting meaning from and bringing meaning to a text. Over the years, teachers of the English Language (in Nigeria) have been glued to the monotonous method of making students read comprehension passages silently and then answer the questions that follow such passages without making the reading session interactive. Hence, students often find such exercises monotonous and boring. Consequently, students' interest in language learning continues to dwindle, and this often affects their overall academic performance. Relying on Communicative Accommodation Theory therefore, the study employed the qualitative research design method to x-ray Communicative Language Teaching Approach (CLTA) in reading comprehension. Moreover, techniques such as the Genuinely Collaborative Reading Approach (GCRA), Jigsaw reading, Pre-reading, and Post-reading tasks were examined. The researcher submitted that effective reading comprehension could not be done passively. Students must respond to what they read; they must interact not only with the materials being read but also with one another and with the teacher; this can be achieved by developing communicative and interactive reading programs.Keywords: collaborative reading approach, communicative teaching, interactive reading program, pre-reading task, reading comprehension
Procedia PDF Downloads 1065902 Silicon-Photonic-Sensor System for Botulinum Toxin Detection in Water
Authors: Binh T. T. Nguyen, Zhenyu Li, Eric Yap, Yi Zhang, Ai-Qun Liu
Abstract:
Silicon-photonic-sensor system is an emerging class of analytical technologies that use evanescent field wave to sensitively measure the slight difference in the surrounding environment. The wavelength shift induced by local refractive index change is used as an indicator in the system. These devices can be served as sensors for a wide variety of chemical or biomolecular detection in clinical and environmental fields. In our study, a system including a silicon-based micro-ring resonator, microfluidic channel, and optical processing is designed, fabricated for biomolecule detection. The system is demonstrated to detect Clostridium botulinum type A neurotoxin (BoNT) in different water sources. BoNT is one of the most toxic substances known and relatively easily obtained from a cultured bacteria source. The toxin is extremely lethal with LD50 of about 0.1µg/70kg intravenously, 1µg/ 70 kg by inhalation, and 70µg/kg orally. These factors make botulinum neurotoxins primary candidates as bioterrorism or biothreat agents. It is required to have a sensing system which can detect BoNT in a short time, high sensitive and automatic. For BoNT detection, silicon-based micro-ring resonator is modified with a linker for the immobilization of the anti-botulinum capture antibody. The enzymatic reaction is employed to increase the signal hence gains sensitivity. As a result, a detection limit to 30 pg/mL is achieved by our silicon-photonic sensor within a short period of 80 min. The sensor also shows high specificity versus the other type of botulinum. In the future, by designing the multifunctional waveguide array with fully automatic control system, it is simple to simultaneously detect multi-biomaterials at a low concentration within a short period. The system has a great potential to apply for online, real-time and high sensitivity for the label-free bimolecular rapid detection.Keywords: biotoxin, photonic, ring resonator, sensor
Procedia PDF Downloads 1175901 Reasons for Language Words in the Quran and Literary Approaches That Are Persian
Authors: Fateme Mazbanpoor, Sayed Mohammad Amiri
Abstract:
In this article, we will examine the Persian words in Quran and study the reasons of their presence in this holy book. Writers of this paper extracted about 70 Persian words of Quran by referring to resources. (Alalfaz ol Moarab ol Farsieh Edishir, Almoarabol Javalighi, Almahzab va Etghan Seuti; Vocabulary involved in Quran Arthur Jeffry;, and etc…), some of these words are: ‘Abarigh, ‘Estabragh’,’Barzakh’, ‘Din’,’Zamharir, ‘Sondos’ ‘Sejil’,’ Namaregh’, ‘Fil’ etc. These Persian words have entered Arabic and finally entered Quran in two ways: 1) directly from Persian language, 2) via other languages. The first way: because of the Iranian dominance on Hira, Yemen, whole Oman and Bahrein land in Sasanian period, there were political, religious, linguistic, literary, and trade ties between these Arab territories causing the impact of Persian on Arabic; giving way to many Persian-loan words into Arabic in this period of time. The second way: Since the geographical and business conditions of the areas were dominated by Iran, Hejaz had lots of deals and trades with Mesopotamia and Yemen. On the other hand, Arabic language which was relatively a young language at that time, used to be impressed by Semitic languages in order to expand its vocabulary (Syrian and Aramaic were influenced by the languages of Iran). Consequently, due to the long relationship between Iranian and Arabs, some of the Persian words have taken longer ways through Aramaic and Syrian to find their way into Quran.Keywords: Quran, Persian word, Arabic language, Persian
Procedia PDF Downloads 4625900 Diversity Indices as a Tool for Evaluating Quality of Water Ways
Authors: Khadra Ahmed, Khaled Kheireldin
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: planktons, diversity indices, water quality index, water ways
Procedia PDF Downloads 5185899 The Experiences of Agency in the Utilization of Twitter for English Language Learning in a Saudi EFL Context
Authors: Fahd Hamad Alqasham
Abstract:
This longitudinal study investigates Saudi students’ use trajectory and experiences of Twitter as an innovative tool for in-class learning of the English language in a Saudi tertiary English as a foreign language (EFL) context for a 12-week semester. The study adopted van Lier’s agency theory (2008, 2010) as the analytical framework to obtain an in-depth analysis of how the learners’ could utilize Twitter to create innovative ways for them to engage in English learning inside the language classroom. The study implemented a mixed methods approach, including six data collection instruments consisting of a research log, observations, focus group participation, initial and post-project interviews, and a post-project questionnaire. The study was conducted at Qassim University, specifically at Preparatory Year Program (PYP) on the main campus. The sample included 25 male students studying in the first level of PYP. The findings results revealed that although Twitter’s affordances initially paled a crucial role in motivating the learners to initiate their agency inside the classroom to learn English, the contextual constraints, mainly anxiety, the university infrastructure, and the teacher’s role negatively influenced the sustainability of Twitter’s use past week nine of its implementation.Keywords: CALL, agency, innovation, EFL, language learning
Procedia PDF Downloads 725898 Sensor Registration in Multi-Static Sonar Fusion Detection
Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin
Abstract:
In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem
Procedia PDF Downloads 1695897 Vehicular Speed Detection Camera System Using Video Stream
Authors: C. A. Anser Pasha
Abstract:
In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.Keywords: radar, image processing, detection, tracking, segmentation
Procedia PDF Downloads 4675896 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery
Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi
Abstract:
we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image
Procedia PDF Downloads 1425895 Training a Neural Network to Segment, Detect and Recognize Numbers
Authors: Abhisek Dash
Abstract:
This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.Keywords: convolutional neural networks, OCR, text detection, text segmentation
Procedia PDF Downloads 1615894 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform
Authors: Khadija Refouh
Abstract:
Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms
Procedia PDF Downloads 1495893 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location
Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa
Abstract:
This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.Keywords: specific absorption rate (SAR), ultra wideband (UWB), coordinates, cancer detection
Procedia PDF Downloads 4035892 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value
Authors: Mostafa Ghasemi, Andrew Urquhart
Abstract:
In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor
Procedia PDF Downloads 755891 Alternator Fault Detection Using Wigner-Ville Distribution
Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi
Abstract:
This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution
Procedia PDF Downloads 3745890 Using “Debate” in Enhancing Advanced Chinese Language Classrooms and Learning
Authors: ShuPei Wang, Yina Patterson
Abstract:
This article outlines strategies for improving oral expression to advance proficiency in speaking and listening skills through structured argumentation. The objective is to empower students to effectively use the target language to express opinions and construct compelling arguments. This empowerment is achieved by honing learners' debating and questioning skills, which involves increasing their familiarity with vocabulary and phrases relevant to debates and deepening their understanding of the cultural context surrounding pertinent issues. Through this approach, students can enhance their ability to articulate complex concepts and discern critical points, surpassing superficial comprehension and enabling them to engage in the target language actively and competently.Keywords: debate, teaching and materials design, spoken expression, listening proficiency, critical thinking
Procedia PDF Downloads 695889 Robust Segmentation of Salient Features in Automatic Breast Ultrasound (ABUS) Images
Authors: Lamees Nasser, Yago Diez, Robert Martí, Joan Martí, Ibrahim Sadek
Abstract:
Automated 3D breast ultrasound (ABUS) screening is a novel modality in medical imaging because of its common characteristics shared with other ultrasound modalities in addition to the three orthogonal planes (i.e., axial, sagittal, and coronal) that are useful in analysis of tumors. In the literature, few automatic approaches exist for typical tasks such as segmentation or registration. In this work, we deal with two problems concerning ABUS images: nipple and rib detection. Nipple and ribs are the most visible and salient features in ABUS images. Determining the nipple position plays a key role in some applications for example evaluation of registration results or lesion follow-up. We present a nipple detection algorithm based on color and shape of the nipple, besides an automatic approach to detect the ribs. In point of fact, rib detection is considered as one of the main stages in chest wall segmentation. This approach consists of four steps. First, images are normalized in order to minimize the intensity variability for a given set of regions within the same image or a set of images. Second, the normalized images are smoothed by using anisotropic diffusion filter. Next, the ribs are detected in each slice by analyzing the eigenvalues of the 3D Hessian matrix. Finally, a breast mask and a probability map of regions detected as ribs are used to remove false positives (FP). Qualitative and quantitative evaluation obtained from a total of 22 cases is performed. For all cases, the average and standard deviation of the root mean square error (RMSE) between manually annotated points placed on the rib surface and detected points on rib borders are 15.1188 mm and 14.7184 mm respectively.Keywords: Automated 3D Breast Ultrasound, Eigenvalues of Hessian matrix, Nipple detection, Rib detection
Procedia PDF Downloads 3305888 Analyzing the Perception of Identity in Bilingual Communities: Case Study of Eritrean Immigrants in Switzerland
Authors: Warsa Melles
Abstract:
This study examines the way second-generation Eritrean immigrants living in the French-speaking part of Switzerland behave linguistically and culturally. The aim of this research is to demonstrate how the participants deal with their bilingualism (Tigrinya and French). More precisely, how does their language use correlates with their socio-cultural attitudes and how do these aspects (re)construct their identity? Data for this research was collected via, questionnaires and semi-structured interviews. Participants were asked to answer questions regarding their linguistic habits, their perception on being bilingual and their cultural identity. The major findings demonstrate that generation 2 relates more with the host country’s language since French is used as the main language in their daily interactions. On the other hand, due to the fact that they have never lived in Eritrea yet were raised by Eritrean born parents in a foreign country, it is more difficult for them to unanimously identify with just one culture. In that sense, intergenerational transmission plays a major role in the perception of identity. All the participants have at least a basic knowledge of Tigrinya, but the use of languages varies according to the purpose. Proficiency in the native language and sense of belonging can be correlated with the frequency of visits to Eritrea. In conclusion, the question of identity in the second-generation Eritrean community cannot be given a categorical and clear-cut answer instead, the new-self image that this social group aims to build is shaped by different factors that are essential to take into consideration.Keywords: biculturalism, identity, language, migration
Procedia PDF Downloads 2455887 Architectural Adaptation for Road Humps Detection in Adverse Light Scenario
Authors: Padmini S. Navalgund, Manasi Naik, Ujwala Patil
Abstract:
Road hump is a semi-cylindrical elevation on the road made across specific locations of the road. The vehicle needs to maneuver the hump by reducing the speed to avoid car damage and pass over the road hump safely. Road Humps on road surfaces, if identified in advance, help to maintain the security and stability of vehicles, especially in adverse visibility conditions, viz. night scenarios. We have proposed a deep learning architecture adaptation by implementing the MISH activation function and developing a new classification loss function called "Effective Focal Loss" for Indian road humps detection in adverse light scenarios. We captured images comprising of marked and unmarked road humps from two different types of cameras across South India to build a heterogeneous dataset. A heterogeneous dataset enabled the algorithm to train and improve the accuracy of detection. The images were pre-processed, annotated for two classes viz, marked hump and unmarked hump. The dataset from these images was used to train the single-stage object detection algorithm. We utilised an algorithm to synthetically generate reduced visible road humps scenarios. We observed that our proposed framework effectively detected the marked and unmarked hump in the images in clear and ad-verse light environments. This architectural adaptation sets up an option for early detection of Indian road humps in reduced visibility conditions, thereby enhancing the autonomous driving technology to handle a wider range of real-world scenarios.Keywords: Indian road hump, reduced visibility condition, low light condition, adverse light condition, marked hump, unmarked hump, YOLOv9
Procedia PDF Downloads 245886 Synthesis and Characterization of CNPs Coated Carbon Nanorods for Cd2+ Ion Adsorption from Industrial Waste Water and Reusable for Latent Fingerprint Detection
Authors: Bienvenu Gael Fouda Mbanga
Abstract:
This study reports a new approach of preparation of carbon nanoparticles coated cerium oxide nanorods (CNPs/CeONRs) nanocomposite and reusing the spent adsorbent of Cd2+- CNPs/CeONRs nanocomposite for latent fingerprint detection (LFP) after removing Cd2+ ions from aqueous solution. CNPs/CeONRs nanocomposite was prepared by using CNPs and CeONRs with adsorption processes. The prepared nanocomposite was then characterized by using UV-visible spectroscopy (UV-visible), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CNPs was 7.84nm. The synthesized CNPs/CeONRs nanocomposite has proven to be a good adsorbent for Cd2+ removal from water with optimum pH 8, dosage 0. 5 g / L. The results were best described by the Langmuir model, which indicated a linear fit (R2 = 0.8539-0.9969). The adsorption capacity of CNPs/CeONRs nanocomposite showed the best removal of Cd2+ ions with qm = (32.28-59.92 mg/g), when compared to previous reports. This adsorption followed pseudo-second order kinetics and intra particle diffusion processes. ∆G and ∆H values indicated spontaneity at high temperature (40oC) and the endothermic nature of the adsorption process. CNPs/CeONRs nanocomposite therefore showed potential as an effective adsorbent. Furthermore, the metal loaded on the adsorbent Cd2+- CNPs/CeONRs has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Cd2+-CNPs/CeONRs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent.Keywords: Cd2+-CNPs/CeONRs nanocomposite, cadmium adsorption, isotherm, kinetics, thermodynamics, reusable for latent fingerprint detection
Procedia PDF Downloads 1215885 Unveiling the Linguistic Pathways to Environmental Consciousness: An Eco Linguistic Study in the Algerian
Authors: Toumi Khamari
Abstract:
This abstract presents an ecolinguistic investigation of the role of language in cultivating environmental consciousness within the Algerian context. Grounded in the field of applied linguistics, this study aims to explore how language shapes perceptions, attitudes, and behaviors related to the environment in Algeria. By examining linguistic practices and discourse patterns, this research sheds light on the potential for language to inspire ecological sustainability and foster environmental awareness. Employing a qualitative research design, the study incorporates discourse analysis and ethnographic methods to analyze language use and its environmental implications. Drawing from Algerian linguistic and cultural contexts, we investigate the unique ways in which language reflects and influences environmental consciousness among Algerian individuals and communities. This research explores the impact of linguistic features, metaphors, and narratives on environmental perceptions, addressing the complex interplay between language, culture, and the natural world. Previous studies have emphasized the significance of language in shaping environmental ideologies and worldviews. In the Algerian context, linguistic representations of nature, such as traditional proverbs and indigenous knowledge, hold immense potential in cultivating a harmonious relationship between humans and the environment. This research delves into the multifaceted connections between language, cultural heritage, and ecological sustainability, aiming to identify linguistic practices that promote environmental stewardship and conservation in Algeria. Furthermore, the study investigates the effectiveness of ecolinguistic interventions tailored to the Algerian context. By examining the impact of eco-education programs, eco-literature, and language-based environmental campaigns, we aim to uncover the potential of language as a catalyst for transformative environmental change. These interventions seek to engage Algerian individuals and communities in dialogue, empowering them to take active roles in environmental advocacy and decision-making processes. Through this research, we contribute to the field of ecolinguistics by shedding light on the Algerian perspective and its implications for environmental consciousness. By understanding the linguistic dynamics at play and leveraging Algeria's rich linguistic heritage, we can foster environmental awareness, encourage sustainable practices, and nurture a deeper appreciation for Algeria's unique ecological landscapes. Ultimately, this research seeks to inspire a collective commitment to environmental stewardship and contribute to the global discourse on language, culture, and the environment.Keywords: eco-linguistics, environmental consciousness, language and culture, Algeria and North Africa
Procedia PDF Downloads 805884 Review of Literature: Using Technology to Help Language Learners at Improving Their Language Skills
Authors: Eyup Bayram Guzel, Osman Tunc
Abstract:
People have been fairly interested in what technology offers to them around a scope of human necessities and it has become a part of human life. In this study, experimental studies were reviewed for the purpose of how technology helps language learners improve their phonemic awareness, reading comprehension and vocabulary development skills. As a conclusion, experimental studies demonstrated that students showed significant improvements up to 70% in phonological awareness, while they demonstrated up to 76% of improvements in reading comprehension and up to 77% in vocabulary development. The use of computer-assisted technologies and its positive outcomes were encouraged to be used more widely in order to meet the diverse needs of students.Keywords: technology, phonemic awareness, reading comprehension, vocabulary development
Procedia PDF Downloads 2995883 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect
Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk
Abstract:
This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect
Procedia PDF Downloads 2965882 The Motivational Factors of Learning Languages for Specific Purposes
Authors: Janos Farkas, Maria Czeller, Ildiko Tar
Abstract:
A remarkable feature of today’s language teaching is the learners’ language learning motivation. It is always considered as a very important factor and has been widely discussed and investigated. This paper aims to present a research study conducted in higher education institutions among students majoring in business and administration in Hungary. The aim of the research was to investigate the motivational factors of students learning languages for business purposes and set up a multivariate statistical model of language learning motivation, and examine the model's main components by different social background variables. The research question sought to answer the question of whether the motivation of students of business learning LSP could be characterized through some main components. The principal components of LSP have been created, and the correlations with social background variables have been explored. The main principal components of learning a language for business purposes were "professional future", "abroad", "performance", and "external". In the online voluntary questionnaire, 28 questions were asked about students’ motivational attitudes. 449 students have filled in the questionnaire. Descriptive statistical calculations were performed, then the difference between the highest and lowest mean was analyzed by one-sample t-test. The assessment of LSP learning was examined by one-way analysis of variance and Tukey post-hoc test among students of parents with different qualifications. The correlations between student motivation statements and various social background variables and other variables related to LSP learning motivation (gender, place of residence, mother’s education, father’s education, family financial situation, etc.) have also been examined. The attitudes related to motivation were seperated by principal component analysis, and then the different language learning motivation between socio-economic variables and other variables using principal component values were examined using an independent two-sample t-test. The descriptive statistical analysis of language learning motivation revealed that students learn LSP because this knowledge will come in handy in the future. It can be concluded that students consider learning the language for business purposes to be essential and see its future benefits. Therefore, LSP teaching has an important role and place in higher education. The results verify the second linguistic motivational self-system where the ideal linguistic self embraces the ideas and desires that the foreign language learner wants to achieve in the future. One such desire is to recognize that students will need technical language skills in the future, and it is a powerful motivation for them to learn a language.Keywords: higher education, language learning motivation, LSP, statistical analysis
Procedia PDF Downloads 945881 Automatic Vowel and Consonant's Target Formant Frequency Detection
Authors: Othmane Bouferroum, Malika Boudraa
Abstract:
In this study, a dual exponential model for CV formant transition is derived from locus theory of speech perception. Then, an algorithm for automatic vowel and consonant’s target formant frequency detection is developed and tested on real speech. The results show that vowels and consonants are detected through transitions rather than their small stable portions. Also, vowel reduction is clearly observed in our data. These results are confirmed by the observations made in perceptual experiments in the literature.Keywords: acoustic invariance, coarticulation, formant transition, locus equation
Procedia PDF Downloads 2715880 Translation and Sociolinguistics of Classical Books
Authors: Laura de Almeida
Abstract:
This paper aims to present research involving the translation of classical books originally in English and translated into the Portuguese language. The objective is to analyze the linguistic varieties evident and how they appear in the other language the work was translated into. We based our study on the sociolinguistics theory, more specifically, the study of the Black English Vernacular. Our methodology is built on collecting data from the speech characters of the Black English Vernacular from some books such as The Adventures of Huckleberry Finn by Mark Twain. On doing so, we compare the two versions of a book and how they reflected the linguistic variety. Our purpose is to show that some translators do not worry when dealing with linguistic variety. In other words, they just translate the story without taking into account some important linguistic aspects which need attention, such as language variation.Keywords: classical books, linguistic variation, sociolinguistics, translation
Procedia PDF Downloads 3965879 Design, Implementation, and Evaluation of ALS-PBL Model in the EMI Classroom
Authors: Yen-Hui Lu
Abstract:
In the past two decades, in order to increase university visibility and internationalization, English as a medium of instruction (EMI) has become one of the main language policies in higher education institutions where English is not a dominant language. However, given the complex, discipline-embedded nature of academic communication, academic literacy does not come with students’ everyday language experience, and it is a challenge for all students. Particularly, to engage students in the effective learning process of discipline concepts in the EMI classrooms, teachers need to provide explicit academic language instruction to assist students in deep understanding of discipline concepts. To bridge the gap between academic language development and discipline learning in the EMI classrooms, the researcher incorporates academic language strategies and key elements of project-based learning (PBL) into an Academic Language Strategy driven PBL (ALS-PBL) model. With clear steps and strategies, the model helps EMI teachers to scaffold students’ academic language development in the EMI classrooms. ALS-PBL model includes three major stages: preparation, implementation, and assessment. First, in the preparation stage, ALS-PBL teachers need to identify learning goals for both content and language learning and to design PBL topics for investigation. Second, during the implementation stage, ALS-PBL teachers use the model as a guideline to create a lesson structure and class routine. There are five important elements in the implementation stage: (1) academic language preparation, (2) connecting background knowledge, (3) comprehensible input, (4) academic language reinforcement, and (5) sustained inquiry and project presentation. Finally, ALS-PBL teachers use formative assessments such as student learning logs, teachers’ feedback, and peer evaluation to collect detailed information that demonstrates students’ academic language development in the learning process. In this study, ALS-PBL model was implemented in an interdisciplinary course entitled “Science is Everywhere”, which was co-taught by five professors from different discipline backgrounds, English education, civil engineering, business administration, international business, and chemical engineering. The purpose of the course was to cultivate students’ interdisciplinary knowledge as well as English competency in disciplinary areas. This study used a case-study design to systematically investigate students’ learning experiences in the class using ALS-PBL model. The participants of the study were 22 college students with different majors. This course was one of the elective EMI courses in this focal university. The students enrolled in this EMI course to fulfill the school language policy, which requires the students to complete two EMI courses before their graduation. For the credibility, this study used multiple methods to collect data, including classroom observation, teachers’ feedback, peer assessment, student learning log, and student focus-group interviews. Research findings show four major successful aspects of implementing ALS-PBL model in the EMI classroom: (1) clear focus on both content and language learning, (2) meaningful practice in authentic communication, (3) reflective learning in academic language strategies, and (4) collaborative support in content knowledge.This study will be of value to teachers involved in delivering English as well as content lessons to language learners by providing a theoretically-sound practical model for application in the classroom.Keywords: academic language development, content and language integrated learning, english as a medium of instruction, project-based learning
Procedia PDF Downloads 835878 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems
Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang
Abstract:
In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.Keywords: fault detection, linear parameter varying, model predictive control, set theory
Procedia PDF Downloads 2525877 A Review of Blog Assisted Language Learning Research: Based on Bibliometric Analysis
Authors: Bo Ning Lyu
Abstract:
Blog assisted language learning (BALL) has been trialed by educators in language teaching with the development of Web 2.0 technology. Understanding the development trend of related research helps grasp the whole picture of the use of blog in language education. This paper reviews current research related to blogs enhanced language learning based on bibliometric analysis, aiming at (1) identifying the most frequently used keywords and their co-occurrence, (2) clustering research topics based on co-citation analysis, (3) finding the most frequently cited studies and authors and (4) constructing the co-authorship network. 330 articles were searched out in Web of Science, 225 peer-viewed journal papers were finally collected according to selection criteria. Bibexcel and VOSviewer were used to visualize the results. Studies reviewed were published between 2005 to 2016, most in the year of 2014 and 2015 (35 papers respectively). The top 10 most frequently appeared keywords are learning, language, blog, teaching, writing, social, web 2.0, technology, English, communication. 8 research themes could be clustered by co-citation analysis: blogging for collaborative learning, blogging for writing skills, blogging in higher education, feedback via blogs, blogging for self-regulated learning, implementation of using blogs in classroom, comparative studies and audio/video blogs. Early studies focused on the introduction of the classroom implementation while recent studies moved to the audio/video blogs from their traditional usage. By reviewing the research related to BALL quantitatively and objectively, this paper reveals the evolution and development trends as well as identifies influential research, helping researchers and educators quickly grasp this field overall and conducting further studies.Keywords: blog, bibliometric analysis, language learning, literature review
Procedia PDF Downloads 2105876 Sinhala Sign Language to Grammatically Correct Sentences using NLP
Authors: Anjalika Fernando, Banuka Athuraliya
Abstract:
This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired communityKeywords: Sinhala sign language, sign Language, NLP, LSTM, NMT
Procedia PDF Downloads 1045875 Audio-Lingual Method and the English-Speaking Proficiency of Grade 11 Students
Authors: Marthadale Acibo Semacio
Abstract:
Speaking skill is a crucial part of English language teaching and learning. This actually shows the great importance of this skill in English language classes. Through speaking, ideas and thoughts are shared with other people, and a smooth interaction between people takes place. The study examined the levels of speaking proficiency of the control and experimental groups on pronunciation, grammatical accuracy, and fluency. As a quasi-experimental study, it also determined the presence or absence of significant changes in their speaking proficiency levels in terms of pronouncing the words correctly, the accuracy of grammar and fluency of a language given the two methods to the groups of students in the English language, using the traditional and audio-lingual methods. Descriptive and inferential statistics were employed according to the stated specific problems. The study employed a video presentation with prior information about it. In the video, the teacher acts as model one, giving instructions on what is going to be done, and then the students will perform the activity. The students were paired purposively based on their learning capabilities. Observing proper ethics, their performance was audio recorded to help the researcher assess the learner using the modified speaking rubric. The study revealed that those under the traditional method were more fluent than those in the audio-lingual method. With respect to the way in which each method deals with the feelings of the student, the audio-lingual one fails to provide a principle that would relate to this area and follows the assumption that the intrinsic motivation of the students to learn the target language will spring from their interest in the structure of the language. However, the speaking proficiency levels of the students were remarkably reinforced in reading different words through the aid of aural media with their teachers. The study concluded that using an audio-lingual method of teaching is not a stand-alone method but only an aid of the teacher in helping the students improve their speaking proficiency in the English Language. Hence, audio-lingual approach is encouraged to be used in teaching English language, on top of the chalk-talk or traditional method, to improve the speaking proficiency of students.Keywords: audio-lingual, speaking, grammar, pronunciation, accuracy, fluency, proficiency
Procedia PDF Downloads 68