Search results for: method detection limit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22188

Search results for: method detection limit

20928 Lunar Exploration based on Ground-Based Radar: Current Research Progress and Future Prospects

Authors: Jiangwan Xu, Chunyu Ding

Abstract:

Lunar exploration is of significant importance in the development and utilization of in-situ lunar resources, water ice exploration, space and astronomical science, as well as in political and military strategy. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. It introduces the fundamental principles of lunar imaging using GBR, and systematically reviews studies on lunar surface layer detection, inversion of lunar regolith dielectric properties, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for future GBR radar lunar exploration missions.

Keywords: ground-based radar, lunar exploration, radar imaging, lunar surface/subsurface detection

Procedia PDF Downloads 35
20927 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 90
20926 A Simulation Study on the Applicability of Overbooking Strategies in Inland Container Transport

Authors: S. Fazi, B. Behdani

Abstract:

The inland transportation of maritime containers entails the use of different modalities whose capacity is typically booked in advance. Containers may miss their scheduled departure time at a terminal for several reasons, such as delays, change of transport modes, multiple bookings pending. In those cases, it may be difficult for transport service providers to find last minute containers to fill the vacant capacity. Similarly to other industries, overbooking could potentially limit these drawbacks at the cost of a lower service level in case of actual excess of capacity in overbooked rides. However, the presence of multiple modalities may provide the required flexibility in rescheduling and limit the dissatisfaction of the shippers in case of containers in overbooking. This flexibility is known with the term 'synchromodality'. In this paper, we evaluate via discrete event simulation the application of overbooking. Results show that in certain conditions overbooking can significantly increase profit and utilization of high-capacity means of transport, such as barges and trains. On the other hand, in case of high penalty costs and limited no-show, overbooking may lead to an excessive use of expensive trucks.

Keywords: discrete event simulation, flexibility, inland shipping, multimodality, overbooking

Procedia PDF Downloads 135
20925 Instability of H2-O2-CO2 Premixed Flames on Flat Burner

Authors: Kaewpradap Amornrat, Endo Takahiro, Kadowaki Satoshi

Abstract:

The combustion of hydrogen-oxygen (H2-O2) mixtures was investigated to consider the reduction of carbon dioxide (CO2) and nitrogen oxide (NOx) as the greenhouse emission. Normally, the flame speed of combustion H2-O2 mixtures are very fast thus it is necessary to control the limit of mixtures with CO2 addition as H2-O2-CO2 combustion. The limit of hydrogen was set and replaced by CO2 with O2:CO2 ratio as 1:3.76, 1:4 and 1:5 for this study. In this study, the combustion of H2-O2 -CO2 on flat burner at equivalence ratio =0.5 was investigated for 10, 15 and 20 L/min of flow rate mixtures. When the ratio of CO2 increases, the power spectral density is lower, the size of attractor and cellular flame become larger because the decrease of hydrogen replaced by CO2 affects the diffusive-thermal instability. Moreover, the flow rate mixtures increases, the power spectral density increases, the size of reconstructed attractor and cell size become smaller due to decreasing of instability. The results show that the variation of CO2 and mixture flow rate affects the instability of cellular premixed flames on flat burner.

Keywords: instability, H2-O2-CO2 combustion, flat burner, diffusive-thermal instability

Procedia PDF Downloads 363
20924 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning

Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel

Abstract:

Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.

Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection

Procedia PDF Downloads 45
20923 An Investigation of the Use of Visible Spectrophotometric Analysis of Lead in an Herbal Tea Supplement

Authors: Salve Alessandria Alcantara, John Armand E. Aquino, Ma. Veronica Aranda, Nikki Francine Balde, Angeli Therese F. Cruz, Elise Danielle Garcia, Antonie Kyna Lim, Divina Gracia Lucero, Nikolai Thadeus Mappatao, Maylan N. Ocat, Jamille Dyanne L. Pajarillo, Jane Mierial A. Pesigan, Grace Kristin Viva, Jasmine Arielle C. Yap, Kathleen Michelle T. Yu, Joanna J. Orejola, Joanna V. Toralba

Abstract:

Lead is a neurotoxic metallic element that is slowly accumulated in bones and tissues especially if present in products taken in a regular basis such as herbal tea supplements. Although sensitive analytical instruments are already available, the USP limit test for lead is still widely used. However, because of its serious shortcomings, Lang Lang and his colleagues developed a spectrophotometric method for determination of lead in all types of samples. This method was the one adapted in this study. The actual procedure performed was divided into three parts: digestion, extraction and analysis. For digestion, HNO3 and CH3COOH were used. Afterwards, masking agents, 0.003% and 0.001% dithizone in CHCl3 were added and used for the extraction. For the analysis, standard addition method and colorimetry were performed. This was done in triplicates under two conditions. The 1st condition, using 25µg/mL of standard, resulted to very low absorbances with an r2 of 0.551. This led to the use of a higher concentration, 1mg/mL, for condition 2. Precipitation of lead cyanide was observed and the absorbance readings were relatively higher but between 0.15-0.25, resulting to a very low r2 of 0.429. LOQ and LOD were not computed due to the limitations of the Milton-Roy Spectrophotometer. The method performed has a shorter digestion time, and used less but more accessible reagents. However, the optimum ratio of dithizone-lead complex must be observed in order to obtain reliable results while exploring other concentration of standards.

Keywords: herbal tea supplement, lead-dithizone complex, standard addition, visible spectroscopy

Procedia PDF Downloads 389
20922 Modified Ninhydrin Reagent for the Detection of Amino Acids on TLC Paper

Authors: H. Elgubbi, A. Mlitan, A. Alzridy

Abstract:

Ninhydrin is the most well known spray reagent for identification of amino acids. Spring with Ninhydrin as a non-specific reagent is well-known and widely used for its remarkable high sensitivity. Using Ninhydrin reagent alone to detect amino acid on thin layer chromatography (TLA) paper is not advisable due to its lower sensitivity. A new spray reagent, Stannus chloride solution (Sn CL2) has been used to detect amino acids on filtter paper (witman 14) and TLC paper, silica Gel, 60 F254 TLC Aluminium Sheet 20x20cm Merck- Germany. Also, modified TLC pre-staining method was used, which only consisted of 3 steps: spotting, separating and color. The improved method was rapid and inexpensive and the results obtained were clear and reliable. In addition, it is suitable for screening different amino acid.

Keywords: amino acid, ninhydrin, modified ninhydrin reagent, stannus chloride reagent, thin-layer chromatography (TLC), TLC pre-staining

Procedia PDF Downloads 417
20921 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm

Authors: El Harraj Abdeslam, Raissouni Naoufal

Abstract:

The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.

Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes

Procedia PDF Downloads 260
20920 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 81
20919 Acrylamide Concentration in Cakes with Different Caloric Sweeteners

Authors: L. García, N. Cobas, M. López

Abstract:

Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar.

Keywords: beet sugar, cane sugar, panela, yogurt cake

Procedia PDF Downloads 67
20918 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 94
20917 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 195
20916 Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.

Keywords: Visible Light Communication (VLC), Multiple-input and multiple-output (MIMO), Red-Green-Blue (RGB), Hadamard coding scheme

Procedia PDF Downloads 421
20915 Urea and Starch Detection on a Paper-Based Microfluidic Device Enabled on a Smartphone

Authors: Shashank Kumar, Mansi Chandra, Ujjawal Singh, Parth Gupta, Rishi Ram, Arnab Sarkar

Abstract:

Milk is one of the basic and primary sources of food and energy as we start consuming milk from birth. Hence, milk quality and purity and checking the concentration of its constituents become necessary steps. Considering the importance of the purity of milk for human health, the following study has been carried out to simultaneously detect and quantify the different adulterants like urea and starch in milk with the help of a paper-based microfluidic device integrated with a smartphone. The detection of the concentration of urea and starch is based on the principle of colorimetry. In contrast, the fluid flow in the device is based on the capillary action of porous media. The microfluidic channel proposed in the study is equipped with a specialized detection zone, and it employs a colorimetric indicator undergoing a visible color change when the milk gets in touch or reacts with a set of reagents which confirms the presence of different adulterants in the milk. In our proposed work, we have used iodine to detect the percentage of starch in the milk, whereas, in the case of urea, we have used the p-DMAB. A direct correlation has been found between the color change intensity and the concentration of adulterants. A calibration curve was constructed to find color intensity and subsequent starch and urea concentration. The device has low-cost production and easy disposability, which make it highly suitable for widespread adoption, especially in resource-constrained settings. Moreover, a smartphone application has been developed to detect, capture, and analyze the change in color intensity due to the presence of adulterants in the milk. The low-cost nature of the smartphone-integrated paper-based sensor, coupled with its integration with smartphones, makes it an attractive solution for widespread use. They are affordable, simple to use, and do not require specialized training, making them ideal tools for regulatory bodies and concerned consumers.

Keywords: paper based microfluidic device, milk adulteration, urea detection, starch detection, smartphone application

Procedia PDF Downloads 69
20914 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 81
20913 High-Resolution ECG Automated Analysis and Diagnosis

Authors: Ayad Dalloo, Sulaf Dalloo

Abstract:

Electrocardiogram (ECG) recording is prone to complications, on analysis by physicians, due to noise and artifacts, thus creating ambiguity leading to possible error of diagnosis. Such drawbacks may be overcome with the advent of high resolution Methods, such as Discrete Wavelet Analysis and Digital Signal Processing (DSP) techniques. This ECG signal analysis is implemented in three stages: ECG preprocessing, features extraction and classification with the aim of realizing high resolution ECG diagnosis and improved detection of abnormal conditions in the heart. The preprocessing stage involves removing spurious artifacts (noise), due to such factors as muscle contraction, motion, respiration, etc. ECG features are extracted by applying DSP and suggested sloping method techniques. These measured features represent peak amplitude values and intervals of P, Q, R, S, R’, and T waves on ECG, and other features such as ST elevation, QRS width, heart rate, electrical axis, QR and QT intervals. The classification is preformed using these extracted features and the criteria for cardiovascular diseases. The ECG diagnostic system is successfully applied to 12-lead ECG recordings for 12 cases. The system is provided with information to enable it diagnoses 15 different diseases. Physician’s and computer’s diagnoses are compared with 90% agreement, with respect to physician diagnosis, and the time taken for diagnosis is 2 seconds. All of these operations are programmed in Matlab environment.

Keywords: ECG diagnostic system, QRS detection, ECG baseline removal, cardiovascular diseases

Procedia PDF Downloads 298
20912 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System

Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya

Abstract:

The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.

Keywords: earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector

Procedia PDF Downloads 178
20911 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip

Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari

Abstract:

The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.

Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation

Procedia PDF Downloads 145
20910 An Image Processing Scheme for Skin Fungal Disease Identification

Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya

Abstract:

Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.

Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification

Procedia PDF Downloads 233
20909 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses

Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi

Abstract:

Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.

Keywords: fire detector, rack, response characteristic, warehouse

Procedia PDF Downloads 747
20908 Developing a Set of Primers Targeting Chondroitin Ac Lyase Gene for Specific and Sensitive Detection of Flavobacterium Columnare, a Causative Agent of Freshwater Columnaris

Authors: Mahmoud Mabrok, Channarong Rodkhum

Abstract:

Flavobacterium columanre is one of the devastating pathogen that causes noticeable economic losses in freshwater cultured fish. Like other filamentous bacteria, F. columanre tends to aggregate and fluctuate to all kind of media, thus revealing obstacles in recognition of its colonies. Since the molecular typing is the only fundamental tool for rapid and precise detection of this pathgen. The present study developed a species-specific PCR assay based on cslA unique gene of F. columnare. The cslA gene sequences of 13 F. columnare, strains retrieved from gene bank database, were aligned to identify a conserved homologous segment prior to primers design. The new primers yielded amplicons of 287 bp from F. columnare strains but not from relevant or other pathogens, unlike to other published set that showed no specificity and cross-reactivity with F. indicum. The primers were sensitive and detected as few as 7 CFUs of bacteria and 3 pg of gDNA template. The sensitivity was reduced ten times when using tissue samples. These primers precisely defined all field isolates in a double-blind study, proposing their applicable use for field detection.

Keywords: Columnaris infection, cslA gene, Flavobacterium columnare, PCR

Procedia PDF Downloads 129
20907 Metamorphic Computer Virus Classification Using Hidden Markov Model

Authors: Babak Bashari Rad

Abstract:

A metamorphic computer virus uses different code transformation techniques to mutate its body in duplicated instances. Characteristics and function of new instances are mostly similar to their parents, but they cannot be easily detected by the majority of antivirus in market, as they depend on string signature-based detection techniques. The purpose of this research is to propose a Hidden Markov Model for classification of metamorphic viruses in executable files. In the proposed solution, portable executable files are inspected to extract the instructions opcodes needed for the examination of code. A Hidden Markov Model trained on portable executable files is employed to classify the metamorphic viruses of the same family. The proposed model is able to generate and recognize common statistical features of mutated code. The model has been evaluated by examining the model on a test data set. The performance of the model has been practically tested and evaluated based on False Positive Rate, Detection Rate and Overall Accuracy. The result showed an acceptable performance with high average of 99.7% Detection Rate.

Keywords: malware classification, computer virus classification, metamorphic virus, metamorphic malware, Hidden Markov Model

Procedia PDF Downloads 316
20906 Digital Image Forensics: Discovering the History of Digital Images

Authors: Gurinder Singh, Kulbir Singh

Abstract:

Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.

Keywords: Computer Forensics, Multimedia Forensics, Image Ballistics, Camera Source Identification, Forgery Detection

Procedia PDF Downloads 251
20905 Urban Change Detection and Pattern Analysis Using Satellite Data

Authors: Shivani Jha, Klaus Baier, Rafiq Azzam, Ramakar Jha

Abstract:

In India, generally people migrate from rural area to the urban area for better infra-structural facilities, high standard of living, good job opportunities and advanced transport/communication availability. In fact, unplanned urban development due to migration of people causes seriou damage to the land use, water pollution and available water resources. In the present work, an attempt has been made to use satellite data of different years for urban change detection of Chennai metropolitan city along with pattern analysis to generate future scenario of urban development using buffer zoning in GIS environment. In the analysis, SRTM (30m) elevation data and IRS-1C satellite data for the years 1990, 2000, and 2014, are used. The flow accumulation, aspect, flow direction and slope maps developed using SRTM 30 m data are very useful for finding suitable urban locations for industrial setup and urban settlements. Normalized difference vegetation index (NDVI) and Principal Component Analysis (PCA) have been used in ERDAS imagine software for change detection in land use of Chennai metropolitan city. It has been observed that the urban area has increased exponentially in Chennai metropolitan city with significant decrease in agriculture and barren lands. However, the water bodies located in the study regions are protected and being used as freshwater for drinking purposes. Using buffer zone analysis in GIS environment, it has been observed that the development has taken place in south west direction significantly and will do so in future.

Keywords: urban change, satellite data, the Chennai metropolis, change detection

Procedia PDF Downloads 410
20904 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 165
20903 Hate Speech Detection Using Machine Learning: A Survey

Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile

Abstract:

Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.

Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection

Procedia PDF Downloads 180
20902 Evaluation of Osteoprotegrin (OPG) and Tumor Necrosis Factor A (TNF-A) Changes in Synovial Fluid and Serum in Dogs with Osteoarthritis; An Experimental Study

Authors: Behrooz Nikahval, Mohammad Saeed Ahrari-Khafi, Sakineh Behroozpoor, Saeed Nazifi

Abstract:

Osteoarthritis (OA) is a progressive and degenerative condition of the articular cartilage and other joints’ structures. It is essential to diagnose this condition as early as possible. The present research was performed to measure the Osteoprotegrin (OPG) and Tumor Necrosis Factor α (TNF-α) in synovial fluid and blood serum of dogs with surgically transected cruciate ligament as a model of OA, to evaluate if measuring of these parameters can be used as a way of early diagnosis of OA. In the present study, four mature, clinically healthy dogs were selected to investigate the effect of experimental OA, on OPG and TNF-α as a way of early detection of OA. OPG and TNF-α were measured in synovial fluid and blood serum on days 0, 14, 28, 90 and 180 after surgical transaction of cranial cruciate ligament in one stifle joint. Statistical analysis of the results showed that there was a significant increase in TNF-α in both synovial fluid and blood serum. OPG showed a decrease two weeks after OA induction. However, it fluctuated afterward. In conclusion, TNF-α could be used in both synovial fluid and blood serum as a way of early detection of OA; however, further research still needs to be conducted on OPG values in OA detection.

Keywords: osteoarthritis, osteoprotegrin, tumor necrosis factor α, synovial fluid, serum, dog

Procedia PDF Downloads 319
20901 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach

Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi

Abstract:

Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.

Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial Information Science, remote sensing, surface elevation changes,

Procedia PDF Downloads 267
20900 Investigation of Suspected Viral Hepatitis Outbreaks in North India

Authors: Mini P. Singh, Manasi Majumdar, Kapil Goyal, Pvm Lakshmi, Deepak Bhatia, Radha Kanta Ratho

Abstract:

India is endemic for Hepatitis E virus and frequent water borne outbreaks are reported. The conventional diagnosis rests on the detection of serum anti-HEV IgM antibodies which may take 7-10 days to develop. Early diagnosis in such a situation is desirable for the initiation of prompt control measures. The present study compared three diagnostic methods in 60 samples collected during two suspected HEV outbreaks in the vicinity of Chandigarh, India. The anti-HEV IgM, HEV antigen and HEV-RNA could be detected in serum samples of 52 (86.66%), 16 (26.66%) and 18 (30%) patients respectively. The suitability of saliva samples for antibody detection was also evaluated in 21 paired serum- saliva samples. A total of 15 serum samples showed the presence of anti HEV IgM antibodies, out of which 10 (10/15; 66.6%) were also positive for these antibodies in saliva samples (χ2 = 7.636, p < 0.0057), thus showing a concordance of 76.91%. The positivity of reverse transcriptase PCR and HEV antigen detection was 100% within one week of illness which declined to 5-10% thereafter. The outbreak was attributed to HEV Genotype 1, Subtype 1a and the clinical and environmental strains clustered together. HEV antigen and RNA were found to be an early diagnostic marker with 96.66% concordance. The results indicate that the saliva samples can be used as an alternative to serum samples in an outbreak situation.

Keywords: HEV-antigen, outbreak, phylogenetic analysis, saliva

Procedia PDF Downloads 420
20899 Grid Pattern Recognition and Suppression in Computed Radiographic Images

Authors: Igor Belykh

Abstract:

Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when a digital image is resized on a diagnostic monitor. In this paper, we propose an automated grid artifacts detection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.

Keywords: grid, computed radiography, pattern recognition, image processing, filtering

Procedia PDF Downloads 284