Search results for: Extended arithmetic precision.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2267

Search results for: Extended arithmetic precision.

1007 An Advanced YOLOv8 for Vehicle Detection in Intelligent Traffic Management

Authors: A. Degale Desta, Cheng Jian

Abstract:

Background: Vehicle detection accuracy is critical to intelligent transportation systems and autonomous driving. The state-of-the-art object identification technology YOLOv8 has shown significant gains in efficiency and detection accuracy. This study uses the BDD100K dataset, which is renowned for its extensive and varied annotations, to assess how well YOLOv8 performs in vehicle detection. Objectives: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Methods: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Results: The results show that YOLOv8 achieves high mAP, recall, precision, and F1-score values, indicating state-of-the-art performance. This suggests that YOLOv8 can identify cars in complex urban environments with a high degree of accuracy and reliable results in a variety of traffic scenarios. Conclusion: The results indicate that YOLOv8 is a useful tool for enhancing vehicle detection accuracy in intelligent transportation systems, hence advancing urban public safety and security. The model's demonstrated performance shows how well it may be incorporated into autonomous driving applications to improve situational awareness and responsiveness.

Keywords: vehicle detection, YOLOv8, BDD100K, object detection, deep learning

Procedia PDF Downloads 12
1006 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 203
1005 Modeling of CREB Pathway Induced Gene Induction: From Stimulation to Repression

Authors: K. Julia Rose Mary, Victor Arokia Doss

Abstract:

Electrical and chemical stimulations up-regulate phosphorylaion of CREB, a transcriptional factor that induces its target gene production for memory consolidation and Late Long-Term Potentiation (L-LTP) in CA1 region of the hippocampus. L-LTP requires complex interactions among second-messenger signaling cascade molecules such as cAMP, CAMKII, CAMKIV, MAPK, RSK, PKA, all of which converge to phosphorylate CREB which along with CBP induces the transcription of target genes involved in memory consolidation. A differential equation based model for L-LTP representing stimulus-mediated activation of downstream mediators which confirms the steep, supralinear stimulus-response effects of activation and inhibition was used. The same was extended to accommodate the inhibitory effect of the Inducible cAMP Early Repressor (ICER). ICER is the natural inducible CREB antagonist represses CRE-Mediated gene transcription involved in long-term plasticity for learning and memory. After verifying the sensitivity and robustness of the model, we had simulated it with various empirical levels of repressor concentration to analyse their effect on the gene induction. The model appears to predict the regulatory dynamics of repression on the L-LTP and agrees with the experimental values. The flux data obtained in the simulations demonstrate various aspects of equilibrium between the gene induction and repression.

Keywords: CREB, L-LTP, mathematical modeling, simulation

Procedia PDF Downloads 295
1004 Visual Template Detection and Compositional Automatic Regular Expression Generation for Business Invoice Extraction

Authors: Anthony Proschka, Deepak Mishra, Merlyn Ramanan, Zurab Baratashvili

Abstract:

Small and medium-sized businesses receive over 160 billion invoices every year. Since these documents exhibit many subtle differences in layout and text, extracting structured fields such as sender name, amount, and VAT rate from them automatically is an open research question. In this paper, existing work in template-based document extraction is extended, and a system is devised that is able to reliably extract all required fields for up to 70% of all documents in the data set, more than any other previously reported method. The approaches are described for 1) detecting through visual features which template a given document belongs to, 2) automatically generating extraction rules for a given new template by composing regular expressions from multiple components, and 3) computing confidence scores that indicate the accuracy of the automatic extractions. The system can generate templates with as little as one training sample and only requires the ground truth field values instead of detailed annotations such as bounding boxes that are hard to obtain. The system is deployed and used inside a commercial accounting software.

Keywords: data mining, information retrieval, business, feature extraction, layout, business data processing, document handling, end-user trained information extraction, document archiving, scanned business documents, automated document processing, F1-measure, commercial accounting software

Procedia PDF Downloads 131
1003 First Record of Eotragus noyei from the Middle Siwalik Dhok Pathan Formation of Pakistan

Authors: Abdul M. Khan, Hafiza I. Naz, Ayesha Iqbal, Muhammad Akhtar

Abstract:

The fossil remains described in this study have been recovered during fieldwork by the authors from the Dhok Pathan Formation of Middle Siwaliks Pakistan in December, 2015. The sample comprises maxillary and mandibular fragments along with isolated upper and lower teeth. The morphometric analysis of the specimens led us to recognize the sample as belonging to Eotragus noyei, which has been considered as the smallest and the oldest bovid in the Siwaliks. Eotragus noyei is characterized by brachydont teeth, finely rugose enamel, more inclined buccal walls of the molars and small lingual cingula. The inclination of the metaconal area has caused rotation of the metastyle in relation to the antero-posterior tooth axis and thus situated more lingually. The protocone in second upper premolar is well developed and situated posteriorly and also has an anterior lingual constriction. The metaconule in the third upper molar is smaller than the protocone. The dentition in Eotragus noyei is smaller in size as compared to Eotragus sansaniensis and Eotragus lampangensis. In Eotragus noyei the buccal walls in molars are more inclined while in Eotragus sansaniensis they are less inclined. The genus Eotragus has been reported previously in the Lower and Middle Siwaliks of Pakistan; however, the recognition of the present sample as Eotragus noyei has extended the range of this species from Lower to the Middle Siwaliks of Pakistan.

Keywords: Boselaphini, Chakwal, Dhok Pathan, late miocene

Procedia PDF Downloads 293
1002 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 142
1001 A Morphological Thinking Approach for Conceptualising Product-Service Systems Solutions

Authors: Nicolas Haber

Abstract:

The study addresses the conceptual design of Product-Service Systems (PSSs) as a means of innovating solutions with the aim of reducing the environmental load of conventional product based solutions. Functional approaches targeting PSS solutions are developed in instinctive methods within the constraints of the setting in which they are conceived. Adopting morphological matrices in designing PSS concepts allows a thorough understanding of the settings, stakeholders, and functional requirements. Additionally, such a methodology is robust and adaptable to product-oriented, use-oriented and result-oriented systems. The research is based on a functional decomposition of the task in a similar way as in product design; while extended to include service components, providers, and receivers, while assessing the adaptability and homogeneity of the selected components and actors. A use-oriented concept is presented via a practical case study at an agricultural boom-sprayer manufacturer to demonstrate the effectiveness of the morphological approach to justify its viability. Additionally, a life cycle analysis is carried out in order to evaluate the environmental advantages inherited in a PSS solution versus a conventional solution. In light of the applications presented, the morphological approach appears to be a valid and generic tactic to conceiving integrated solutions whilst capturing the interrelations between the actors and elements of an integrated product-service system.

Keywords: conceptual design, design for sustainability, functional decomposition, product-service systems

Procedia PDF Downloads 265
1000 Interval Bilevel Linear Fractional Programming

Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi

Abstract:

The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.

Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients

Procedia PDF Downloads 447
999 Development and Validation of High-Performance Liquid Chromatography Method for the Determination and Pharmacokinetic Study of Linagliptin in Rat Plasma

Authors: Hoda Mahgoub, Abeer Hanafy

Abstract:

Linagliptin (LNG) belongs to dipeptidyl-peptidase-4 (DPP-4) inhibitor class. DPP-4 inhibitors represent a new therapeutic approach for the treatment of type 2 diabetes in adults. The aim of this work was to develop and validate an accurate and reproducible HPLC method for the determination of LNG with high sensitivity in rat plasma. The method involved separation of both LNG and pindolol (internal standard) at ambient temperature on a Zorbax Eclipse XDB C18 column and a mobile phase composed of 75% methanol: 25% formic acid 0.1% pH 4.1 at a flow rate of 1.0 mL.min-1. UV detection was performed at 254nm. The method was validated in compliance with ICH guidelines and found to be linear in the range of 5–1000ng.mL-1. The limit of quantification (LOQ) was found to be 5ng.mL-1 based on 100µL of plasma. The variations for intra- and inter-assay precision were less than 10%, and the accuracy values were ranged between 93.3% and 102.5%. The extraction recovery (R%) was more than 83%. The method involved a single extraction step of a very small plasma volume (100µL). The assay was successfully applied to an in-vivo pharmacokinetic study of LNG in rats that were administered a single oral dose of 10mg.kg-1 LNG. The maximum concentration (Cmax) was found to be 927.5 ± 23.9ng.mL-1. The area under the plasma concentration-time curve (AUC0-72) was 18285.02 ± 605.76h.ng.mL-1. In conclusion, the good accuracy and low LOQ of the bioanalytical HPLC method were suitable for monitoring the full pharmacokinetic profile of LNG in rats. The main advantages of the method were the sensitivity, small sample volume, single-step extraction procedure and the short time of analysis.

Keywords: HPLC, linagliptin, pharmacokinetic study, rat plasma

Procedia PDF Downloads 241
998 The Effect of a 12 Week Rhythmic Movement Intervention on Selected Biomotor Abilities on Academy Rugby Players

Authors: Jocelyn Solomons, Kraak

Abstract:

Rhythmic movement, also referred to as “dance”, involves the execution of different motor skills as well as the integration and sequencing of actions between limbs, timing and spatial precision. The aim of this study was therefore to investigate and compare the effect of a 16-week rhythmic movement intervention on flexibility, dynamic balance, agility, power and local muscular endurance of academy rugby players in the Western Cape, according to positional groups. Players (N ¼ 54) (age 18.66 0.81 years; height 1.76 0.69 cm; weight 76.77 10.69 kg), were randomly divided into a treatment-control [TCA] (n ¼ 28) and a control-treatment [CTB] (n ¼ 26) group. In this crossover experimental design, the interaction effect of the treatment order and the treatment time between the TCA and CTB group, was determined. Results indicated a statistically significant improvement (p < 0.05) in agility2 (p ¼ 0.06), power2 (p ¼ 0.05), local muscular endurance1 (p ¼ 0.01) & 3 (p ¼ 0.01) and dynamic balance (p < 0.01). Likewise, forwards and backs also showed statistically significant improvements (p < 0.05) per positional groups. Therefore, a rhythmic movement intervention has the potential to improve rugby-specific bio-motor skills and furthermore, improve positional specific skills should it be designed with positional groups in mind. Future studies should investigate, not only the effect of rhythmic movement on improving specific rugby bio-motor skills, but the potential of its application as an alternative training method during off- season (or detraining phases) or as a recovery method.

Keywords: agility, dance, dynamic balance, flexibility, local muscular endurance, power, training

Procedia PDF Downloads 62
997 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning

Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene

Abstract:

This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.

Keywords: limit pressure of soil, xgboost, random forest, bearing capacity

Procedia PDF Downloads 25
996 A Power Management System for Indoor Micro-Drones in GPS-Denied Environments

Authors: Yendo Hu, Xu-Yu Wu, Dylan Oh

Abstract:

GPS-Denied drones open the possibility of indoor applications, including dynamic arial surveillance, inspection, safety enforcement, and discovery. Indoor swarming further enhances these applications in accuracy, robustness, operational time, and coverage. For micro-drones, power management becomes a critical issue, given the battery payload restriction. This paper proposes an application enabling battery replacement solution that extends the micro-drone active phase without human intervention. First, a framework to quantify the effectiveness of a power management solution for a drone fleet is proposed. The operation-to-non-operation ratio, ONR, gives one a quantitative benchmark to measure the effectiveness of a power management solution. Second, a survey was carried out to evaluate the ONR performance for the various solutions. Third, through analysis, this paper proposes a solution tailored to the indoor micro-drone, suitable for swarming applications. The proposed automated battery replacement solution, along with a modified micro-drone architecture, was implemented along with the associated micro-drone. Fourth, the system was tested and compared with the various solutions within the industry. Results show that the proposed solution achieves an ONR value of 31, which is a 1-fold improvement of the best alternative option. The cost analysis shows a manufacturing cost of $25, which makes this approach viable for cost-sensitive markets (e.g., consumer). Further challenges remain in the area of drone design for automated battery replacement, landing pad/drone production, high-precision landing control, and ONR improvements.

Keywords: micro-drone, battery swap, battery replacement, battery recharge, landing pad, power management

Procedia PDF Downloads 122
995 The Behavior of Ordinary and Encased Stone Columns in Soft Clay Soil of Egypt: A Finite Element Study

Authors: Mahmoud F. Awad-Allah, Mohammed Rabeih, Eman Abdel Baseer

Abstract:

Soft to very soft soil deposits are widely speared in some areas of Egypt such as East Port Said, Damietta, Kafr El-Sheik, Alexandria, etc. The construction projects in these areas have faced the challenge of the presence of extended deep layers of soft and very soft clays which reach to depths of 40 to 60 m from the ground level. Stone columns are commonly used to support structures overlying soft ground soils and surcharged by embankment type loading. Therefore, this paper introduces a wide comparison numerical study between the ordinary stone columns (OSC) versus the geosynthetic encased stone columns (ESC) installed in soft clay soil deposit using finite element method (FEM). Parametric study of an embankment on soft soils reinforced with stone columns is performed using commercial computer program based on the finite element technique (PLAXIS 2D). The investigation will present the influence of the following parameters: diameter of stone columns, stiffness of geosynthetic encasement, embedded depth of stone column from ground level, and the length encasement of the stone column on the consolidation time, vertical settlement, and lateral displacement of soft clay soil formations.

Keywords: finite element method, geosynthetic, lateral displacement, settlement, soft clay

Procedia PDF Downloads 212
994 Empirical Evidence on the Need for Harmonization of Audit Criteria for Small Enterprises in India

Authors: Satinder Bhatia

Abstract:

Limited Liability Partnerships (LLPs) was a concept introduced in India in 2009. Ever since then, there has been a fierce growth in the number of organizations registered as LLPs outpacing the number of registrations as private companies. Among other benefits extended to LLPs, the audit being mandated only for LLPs having a turnover of at least Rs 40 lakhs or capital contribution of Rs 25 lakhs, has been a major attraction. This has resulted in only about 10 per cent of LLPs coming under mandatory audit. Even for such companies, the accounting standards to be followed in the preparation of financial statements have not been specified. The Revised Indian Accounting Standards (Revised IndAS) which are aligned with IFRS to a great extent, may apply to LLPs only under limited conditions. Thus, the veracity of even the audited financial statements of LLPs can be questioned. If in future, these LLPs would like to list on a stock exchange to raise capital, there can be serious hurdles if investors do not find the financial statements to be reliable and consistent. LLPs are generally governed by country-specific rules in the area of accounts and audit. Thus, such rules vary across UK, EU and the USA. Some countries have adopted the IFRS for SMEs and since LLPs can be referred to as SMEs; they would come under the ambit of these IFRS provisions. Besides, as the scope of audit widens to cover qualitative information in addition to quantitative data, audit of LLPs has now acquired a new meaning and a new urgency as demands for at least limited purpose audits are arising from different stakeholders including lenders, suppliers, customers and joint venture partners.

Keywords: audit disclosures, audit quality, guidance for SMEs, non-audit services

Procedia PDF Downloads 156
993 Ground Motion Modelling in Bangladesh Using Stochastic Method

Authors: Mizan Ahmed, Srikanth Venkatesan

Abstract:

Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.

Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard

Procedia PDF Downloads 249
992 The Developing of Knowledge-Based System for the Medical Treatment with Herbs

Authors: Rujijan Vichivanives

Abstract:

This research aims to create a knowledge-based system as a database for self-healthcare analysis, diagnosis of simple illnesses, and the use of Thai herbs instead of modern medicine by using principles of Thai traditional medication theory. These were disseminated by website network programs within Suan Sunandha Rajabhat University. The population used in this study was divided into two groups: the first group consisted of four experts of Thai traditional medication and the second group was 300 website users. The methods used for collecting data were paper questionnaires and poll questionnaires on the website. The statistics used for analyzing data was at an average level. The results were divided into three parts: the first part was the development of a knowledge-based system and the second part was applied programs on website. Both parts could be fulfilled and achieved according to the set goal. The third part was the evaluation of the study: The evaluation of the viewpoints of the experts towards website designs were evaluated at a good level of 4.20. The satisfaction evaluation of the users was found at a good level of average satisfactory level at 4.24. It was found that the young population of those under the age of 16 had less cares about their health than the population of other teenagers, working age adults and those of older age. The research findings should be extended in order to encourage the lifestyle modifications to people of all ages by using the self-healthcare principles.

Keywords: developing, herbs, knowledge-based system, medical treatment

Procedia PDF Downloads 333
991 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 79
990 Spatio-Temporal Variation of Gaseous Pollutants and the Contribution of Particulate Matters in Chao Phraya River Basin, Thailand

Authors: Samart Porncharoen, Nisa Pakvilai

Abstract:

The elevated levels of air pollutants in regional atmospheric environments is a significant problem that affects human health in Thailand, particularly in the Chao Phraya River Basin. Of concern are issues surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the river. Therefore, the spatio-temporal study of air pollution in this real environment can gain more accurate air quality data for making formalized environmental policy in river basins. In order to inform such a policy, a study was conducted over a period of January –December, 2015 to continually collect measurements of various pollutants in both urban and regional locations in the Chao Phraya River Basin. This study investigated the air pollutants in many diverse environments along the Chao Phraya River Basin, Thailand in 2015. Multivariate Analysis Techniques such as Principle Component Analysis (PCA) and Path analysis were utilised to classify air pollution in the surveyed location. Measurements were collected in both urban and rural areas to see if significant differences existed between the two locations in terms of air pollution levels. The meteorological parameters of various particulates were collected continually from a Thai pollution control department monitoring station over a period of January –December, 2015. Of interest to this study were the readings of SO2, CO, NOx, O3, and PM10. Results showed a daily arithmetic mean concentration of SO2, CO, NOx, O3, PM10 reading at 3±1 ppb, 0.5± 0.5 ppm, 30±21 ppb, 19±16 ppb, and 40±20 ug/m3 in urban locations (Bangkok). During the same time period, the readings for the same measurements in rural areas, Ayutthaya (were 1±0.5 ppb, 0.1± 0.05 ppm, 25±17 ppb, 30±21 ppb, and 35±10 ug/m3respectively. This show that Bangkok were located in highly polluted environments that are dominated source emitted from vehicles. Further, results were analysed to ascertain if significant seasonal variation existed in the measurements. It was found that levels of both gaseous pollutants and particle matter in dry season were higher than the wet season. More broadly, the results show that levels of pollutants were measured highest in locations along the Chao Phraya. River Basin known to have a large number of vehicles and biomass burning. This correlation suggests that the principle pollutants were from these anthropogenic sources. This study contributes to the body of knowledge surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the Chao Phraya River Basin. Further, this study is one of the first to utilise continuous mobile monitoring along a river in order to gain accurate measurements during a data collection period. Overall, the results of this study can be used for making formalized environmental policy in river basins in order to reduce the physical effects on human health.

Keywords: air pollution, Chao Phraya river basin, meteorology, seasonal variation, principal component analysis

Procedia PDF Downloads 286
989 Extended Shelf Life of Chicken Meat Using Carboxymethyl Cellulose Coated Polypropylene Films Containing Zataria multiflora Essential Oil

Authors: Z. Honarvar, M. Farhoodi, M. R. Khani, S. Shojaee-Aliabadi

Abstract:

The purpose of the present study was to evaluate carboxymethyl cellulose (CMC) coated polypropylene (PP) films containing Zataria multiflora (ZEO) essential oils (4%) as an antimicrobial packaging for chicken breast stored at 4 °C. To increase PP film hydrophilicity, it was treated by atmospheric cold plasma prior to coating by CMC. Then, different films including PP, PP/CMC, PP/CMC containing 4% of ZEO were used for the chicken meat packaging in vapor phase. Total viable count and pseudomonads population and oxidative (TBA) changes of the chicken breast were analyzed during shelf life. Results showed that the shelf life of chicken meat kept in films containing ZEO improved from three to nine days compared to the control sample without any direct contact with the film. Study of oxygen barrier properties of bilayer film without essential oils (0.096 cm3 μm/m2 d kPa) in comparison with PP film (416 cm3 μm/m2 d kPa) shows that coating of PP with CMC significantly reduces oxygen permeation of the obtained packaging (P<0.05), which reduced aerobic bacteria growth. Chemical composition of ZEO was also evaluated by gas chromatography–mass spectrometry (GC–MS), and this shows that thymol was the main antimicrobial and antioxidant component of the essential oil. The results revealed that PP/CMC containing ZEO has good potential for application as active food packaging in indirect contact which would also improve sensory properties of product.

Keywords: shelf life, chicken breast, polypropylene, carboxymethyl cellulose, essential oil

Procedia PDF Downloads 238
988 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats

Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.

Keywords: MDA, TBA, ciprofloxacin, HPLC-UV

Procedia PDF Downloads 325
987 Urban Networks as Model of Sustainable Design

Authors: Agryzkov Taras, Oliver Jose L., Tortosa Leandro, Vicent Jose

Abstract:

This paper aims to demonstrate how the consideration of cities as a special kind of complex network, called urban network, may lead to the use of design tools coming from network theories which, in fact, results in a quite sustainable approach. There is no doubt that the irruption in contemporary thought of Gaia as an essential political agent proposes a narrative that has been extended to the field of creative processes in which, of course, the activity of Urban Design is found. The rationalist paradigm is put in crisis, and from the so-called sciences of complexity, its way of describing reality and of intervening in it is questioned. Thus, a new way of understanding reality surges, which has to do with a redefinition of the human being's own place in what is now understood as a delicate and complex network. In this sense, we know that in these systems of connected and interdependent elements, the influences generated by them originate emergent properties and behaviors for the whole that, individually studied, would not make sense. We believe that the design of cities cannot remain oblivious to these principles, and therefore this research aims to demonstrate the potential that they have for decision-making in the urban environment. Thus, we will see an example of action in the field of public mobility, another example in the design of commercial areas, and a third example in the field of redensification of sprawl areas, in which different aspects of network theory have been applied to change the urban design. We think that even though these actions have been developed in European cities, and more specifically in the Mediterranean area in Spain, the reflections and tools could have a broader scope of action.

Keywords: graphs, complexity sciences, urban networks, urban design

Procedia PDF Downloads 156
986 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 56
985 Defining Death and Dying in Relation to Information Technology and Advances in Biomedicine

Authors: Evangelos Koumparoudis

Abstract:

The definition of death is a deep philosophical question, and no single meaning can be ascribed to it. This essay focuses on the ontological, epistemological, and ethical aspects of death and dying in view of technological progress in information technology and biomedicine. It starts with the ad hoc 1968 Harvard committee that proposed that the criterion for the definition of death be irreversible coma and then refers to the debate over the whole brain death formula, emphasizing the integrated function of the organism and higher brain formula, taking consciousness and personality as essential human characteristics. It follows with the contribution of information technology in personalized and precision medicine and anti-aging measures aimed at life prolongation. It also touches on the possibility of the creation of human-machine hybrids and how this raises ontological and ethical issues that concern the “cyborgization” of human beings and the conception of the organism and personhood based on a post/transhumanist essence, and, furthermore, if sentient AI capable of autonomous decision-making that might even surpass human intelligence (singularity, superintelligence) deserves moral or legal personhood. Finally, there is the question as to whether death and dying should be redefined at a transcendent level, which is reinforced by already-existing technologies of “virtual after-” life and the possibility of uploading human minds. In the last section, I refer to the current (and future) applications of nanomedicine in diagnostics, therapeutics, implants, and tissue engineering as well as the aspiration to “immortality” by cryonics. The definition of death is reformulated since age and disease elimination may be realized, and the criterion of irreversibility may be challenged.

Keywords: death, posthumanism, infomedicine, nanomedicine, cryonics

Procedia PDF Downloads 73
984 Resilient Manufacturing in Times of Mass Customisation: Using Augmented Reality to Improve Training and Operating Practices of EV’s Battery Assembly

Authors: Lorena Caires Moreira, Marcos Kauffman

Abstract:

This paper outlines the results of experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance of highly customized and high-risk manual operations. The focus is on operators’ training capabilities and the aim is to test if such technologies can support achieving higher levels of knowledge retention and accuracy of task execution to improve health and safety (H and S) levels. The proposed solution is tested and validated using a real-world case study of electric vehicles’ battery module assembly. The experimental results revealed that the proposed AR method improved the training practices by increasing the knowledge retention levels from 40% to 84% and improved the accuracy of task execution from 20% to 71%, compared to the traditional paper-based method. The results of this research can be used as a demonstration of how emerging technologies are advancing the choice of manual, hybrid, or fully automated processes by promoting the connected worker (Industry 5.0) and supporting manufacturing in becoming more resilient in times of constant market changes.

Keywords: augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly, industry 5.0, smart training, battery assembly

Procedia PDF Downloads 128
983 Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method

Authors: S. A. A. Nabeela Nasreen, S. Sundarrajan, S. A. Syed Nizar, Seeram Ramakrishna

Abstract:

Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture.

Keywords: metal oxide, membrane, pervaporation, solvothermal, ZIF

Procedia PDF Downloads 197
982 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 48
981 Extended Literature Review on Sustainable Energy by Using Multi-Criteria Decision Making Techniques

Authors: Koray Altintas, Ozalp Vayvay

Abstract:

Increased global issues such as depletion of sources, environmental problems and social inequality triggered public awareness towards finding sustainable solutions in order to ensure the well-being of the current as well as future generations. Since energy plays a significant role in improved social and economic well-being and is imperative on both industrial and commercial wealth creation, it is a must to develop a standardized set of metrics which makes it possible to indicate the present condition relative to conditions in the past and to develop any perspective which is required to frame actions for the future. This is not an easy task by considering the complexity of the issue which requires integrating economic, environmental and social aspects of sustainable energy. Multi-criteria decision making (MCDM) can be considered as a form of integrated sustainability evaluation and a decision support approach that can be used to solve complex problems featuring; conflicting objectives, different forms of data and information, multi-interests and perspectives. On that matter, MCDM methods are useful for providing solutions to complex energy management problems. The aim of this study is to review MCDM approaches that can be used for examining sustainable energy management. This study presents an insight into MCDM techniques and methods that can be useful for engineers, researchers and policy makers working in the energy sector.

Keywords: sustainable energy, sustainability criteria, multi-criteria decision making, sustainability dimensions

Procedia PDF Downloads 333
980 Communication Policies of Turkey Related to European Union

Authors: Muhammet Erbay

Abstract:

The phenomenon of communication that has been studied by different disciplines has social, political and economical aspects. The scope of communication has extended from a traditional content to the modern world which is under the control of mass media. Nowadays, thanks to globalization and technological facilities, many companies, public or international institutions take advantage of new communication technologies and overhaul their policies. European Union (EU) is one of the effective institutions in this sphere. It aims to harmonize the communication infrastructure and policies of member countries which have gone through the process of political unification. It is a significant problem for the unification of EU to have legal restrictions or critical differences in communication facilities among countries while technology stands at the center of economic and social life. Therefore, EU institutions place a particular importance to their communication policies. Besides, communication processes have a vital importance in creating a European public opinion in the process of political integration. Based on the evaluation above, the aim of this paper is to analyze the cohesion process of Turkey that tries to take an active role in EU communication policies and has on-going negotiations. This article does not only confine itself to the technical details of communication policies but also aims to evaluate socio-political dimension of the process. Therefore, a corporate review has been featured in the study and Turkey's compliance process in communication policies on European Union has been evaluated by the means of deduction method. Some problematic areas have been identified in compliance process on communication policies such as human rights and minority rights, whereas compliance process on communication infrastructure and technology proceeds effectively.

Keywords: communication policies, European Union, integration, Turkey

Procedia PDF Downloads 412
979 Increasing Efficiency, Performance and Safety of Aircraft during Takeoff and Landing by Interpreting Electromagnetism

Authors: Sambit Supriya Dash

Abstract:

Aerospace Industry has evolved over the last century and is growing by approaching towards, more fuel efficient, cheaper, simpler, convenient and safer ways of flight stages. In this paper, the accident records of aircrafts are studied and found about 71% of accidents caused on runways during Takeoff and Landing. By introducing the concept of interpreting electromagnetism, the cause of bounced touchdown and flare failure such as landing impact loads and instability could be eliminated. During Takeoff, the rate of fuel consumption is observed to be maximum. By applying concept of interpreting electromagnetism, a remarkable rate of fuel consumption is reduced, which can be used in case of emergency due to lack of fuel or in case of extended flight. A complete setup of the concept, its effects and characteristics are studied and provided with references of few popular aircrafts. By embedding series of strong and controlled electromagnets below the runway along and aside the centre line and fixed in the line of acting force through wing-fuselage aerodynamic centre. By the essence of its strength controllable nature, it can contribute to performance and fuel efficiency for aircraft. This ensures a perfect Takeoff with less fuel consumption followed by safe cruise stage, which in turn ensures a short and safe landing, eliminating the till known failures, due to bounced touchdowns and flare failure.

Keywords: efficiency, elctromagnetism, performance, reduced fuel consumption, safety

Procedia PDF Downloads 232
978 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence

Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno

Abstract:

Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.

Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index

Procedia PDF Downloads 169