Search results for: system reliability optimization
19820 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades
Authors: E. Tandis, E. Assareh
Abstract:
Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employedKeywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine
Procedia PDF Downloads 31619819 Analyzing the Effectiveness of a Bank of Parallel Resistors, as a Burden Compensation Technique for Current Transformer's Burden, Using LabVIEW™ Data Acquisition Tool
Authors: Dilson Subedi
Abstract:
Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However, due to upgradation of electromechanical relays to numerical relays and electromechanical energy meters to digital meters, the connected burden, which defines some of the CT characteristics, has drastically reduced. This has led to the system experiencing high currents damaging the connected relays and meters. Since the protection and metering equipment's are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore, during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and on the reliability of the protection and metering system. This paper shows the effectiveness of a bank of parallel connected resistors, as a burden compensation technique, in compensating the burden of under-burdened CT’s. The response of the CT in the case of failure of one or more resistors at different levels of overcurrent will be captured using the LabVIEWTM data acquisition hardware (DAQ). The analysis is done on the real-time data gathered using LabVIEWTM. Variation of current transformer saturation characteristics with changes in burden will be discussed.Keywords: accuracy limiting factor, burden, burden compensation, current transformer
Procedia PDF Downloads 24519818 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery
Authors: Chun-Lang Chang, Chun-Kai Liu
Abstract:
In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery
Procedia PDF Downloads 32219817 Basic Modal Displacements (BMD) for Optimizing the Buildings Subjected to Earthquakes
Authors: Seyed Sadegh Naseralavi, Mohsen Khatibinia
Abstract:
In structural optimizations through meta-heuristic algorithms, analyses of structures are performed for many times. For this reason, performing the analyses in a time saving way is precious. The importance of the point is more accentuated in time-history analyses which take much time. To this aim, peak picking methods also known as spectrum analyses are generally utilized. However, such methods do not have the required accuracy either done by square root of sum of squares (SRSS) or complete quadratic combination (CQC) rules. The paper presents an efficient technique for evaluating the dynamic responses during the optimization process with high speed and accuracy. In the method, first by using a static equivalent of the earthquake, an initial design is obtained. Then, the displacements in the modal coordinates are achieved. The displacements are herein called basic modal displacements (MBD). For each new design of the structure, the responses can be derived by well scaling each of the MBD along the time and amplitude and superposing them together using the corresponding modal matrices. To illustrate the efficiency of the method, an optimization problems is studied. The results show that the proposed approach is a suitable replacement for the conventional time history and spectrum analyses in such problems.Keywords: basic modal displacements, earthquake, optimization, spectrum
Procedia PDF Downloads 36119816 Design and Optimization of Spoke Rotor Type Brushless Direct Current Motor for Electric Vehicles Using Different Flux Barriers
Authors: Ismail Kurt, Necibe Fusun Oyman Serteller
Abstract:
Today, with the reduction in semiconductor system costs, Brushless Direct Current (BLDC) motors have become widely preferred. Based on rotor architecture, BLDC structures are divided into internal permanent magnet (IPM) and surface permanent magnet (SPM). However, permanent magnet (PM) motors in electric vehicles (EVs) are still predominantly based on interior permanent magnet (IPM) motors, as the rotors do not require sleeves, the PMs are better protected by the rotor cores, and the air-gap lengths can be much smaller. This study discusses the IPM rotor structure in detail, highlighting its higher torque levels, reluctance torque, wide speed range operation, and production advantages. IPM rotor structures are particularly preferred in EVs due to their high-speed capabilities, torque density and field weakening (FW) features. In FW applications, the motor becomes more suitable for operation at torques lower than the rated torque but at speeds above the rated speed. Although V-type and triangular IPM rotor structures are generally preferred in EV applications, the spoke-type rotor structure offers distinct advantages, making it a competitive option for these systems. The flux barriers in the rotor significantly affect motor performance, providing notable benefits in both motor efficiency and cost. This study utilizes ANSYS/Maxwell simulation software to analyze the spoke-type IPM motor and examine its key design parameters. Through analytical and 2D analysis, preliminary motor design and parameter optimization have been carried out. During the parameter optimization phase, torque ripple a common issue, especially for IPM motors has been investigated, along with the associated changes in motor parameters.Keywords: electric vehicle, field weakening, flux barrier, spoke rotor.
Procedia PDF Downloads 819815 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy
Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi
Abstract:
Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA
Procedia PDF Downloads 10119814 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 46519813 Optimal Wheat Straw to Bioethanol Supply Chain Models
Authors: Abdul Halim Abdul Razik, Ali Elkamel, Leonardo Simon
Abstract:
Wheat straw is one of the alternative feedstocks that may be utilized for bioethanol production especially when sustainability criteria are the major concerns. To increase market competitiveness, optimal supply chain plays an important role since wheat straw is a seasonal agricultural residue. In designing the supply chain optimization model, economic profitability of the thermochemical and biochemical conversion routes options were considered. It was found that torrefied pelletization with gasification route to be the most profitable option to produce bioethanol from the lignocellulosic source of wheat straw.Keywords: bio-ethanol, optimization, supply chain, wheat straw
Procedia PDF Downloads 73719812 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes
Authors: Ipek Kivanc, Demet Ozgur-Unluakin
Abstract:
Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes
Procedia PDF Downloads 13419811 The Impact of Data Science on Geography: A Review
Authors: Roberto Machado
Abstract:
We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.Keywords: data science, geography, systematic review, optimization algorithms, supervised learning
Procedia PDF Downloads 2919810 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities
Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat
Abstract:
The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.Keywords: maintenance, complexity, simulation, multi-agent systems, AnyLogic platform
Procedia PDF Downloads 30519809 Modelling and Optimization of Laser Cutting Operations
Authors: Hany Mohamed Abdu, Mohamed Hassan Gadallah, El-Giushi Mokhtar, Yehia Mahmoud Ismail
Abstract:
Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results.Keywords: optimization, laser cutting, robust design, kerf width, Taguchi method, RSM and DOE
Procedia PDF Downloads 62019808 An Integrated Cloud Service of Application Delivery in Virtualized Environments
Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang
Abstract:
Virtualization technologies are experiencing a renewed interest as a way to improve system reliability, and availability, reduce costs, and provide flexibility. This paper presents the development on leverage existing cloud infrastructure and virtualization tools. We adopted some virtualization technologies which improve portability, manageability and compatibility of applications by encapsulating them from the underlying operating system on which they are executed. Given the development of application virtualization, it allows shifting the user’s applications from the traditional PC environment to the virtualized environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenance and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible and web-based application virtualization service represent the next significant step to the mobile workplace, and it lets user executes their applications from virtually anywhere.Keywords: cloud service, application virtualization, virtual machine, elastic environment
Procedia PDF Downloads 28219807 Development of a Software System for Management and Genetic Analysis of Biological Samples for Forensic Laboratories
Authors: Mariana Lima, Rodrigo Silva, Victor Stange, Teodiano Bastos
Abstract:
Due to the high reliability reached by DNA tests, since the 1980s this kind of test has allowed the identification of a growing number of criminal cases, including old cases that were unsolved, now having a chance to be solved with this technology. Currently, the use of genetic profiling databases is a typical method to increase the scope of genetic comparison. Forensic laboratories must process, analyze, and generate genetic profiles of a growing number of samples, which require time and great storage capacity. Therefore, it is essential to develop methodologies capable to organize and minimize the spent time for both biological sample processing and analysis of genetic profiles, using software tools. Thus, the present work aims the development of a software system solution for laboratories of forensics genetics, which allows sample, criminal case and local database management, minimizing the time spent in the workflow and helps to compare genetic profiles. For the development of this software system, all data related to the storage and processing of samples, workflows and requirements that incorporate the system have been considered. The system uses the following software languages: HTML, CSS, and JavaScript in Web technology, with NodeJS platform as server, which has great efficiency in the input and output of data. In addition, the data are stored in a relational database (MySQL), which is free, allowing a better acceptance for users. The software system here developed allows more agility to the workflow and analysis of samples, contributing to the rapid insertion of the genetic profiles in the national database and to increase resolution of crimes. The next step of this research is its validation, in order to operate in accordance with current Brazilian national legislation.Keywords: database, forensic genetics, genetic analysis, sample management, software solution
Procedia PDF Downloads 37019806 High Efficiency Class-F Power Amplifier Design
Authors: Abdalla Mohamed Eblabla
Abstract:
Due to the high increase and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E, and F are the main techniques for realizing power amplifiers. An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements.Keywords: Power Amplifier (PA), gallium nitride (GaN), Agilent’s Advanced Design System (ADS), lumped elements
Procedia PDF Downloads 44119805 Suspended Sediment Sources Fingerprinting in Ashebeka River Catchment, Assela, Central Ethiopia
Authors: Getachew Mekaa, Bezatu Mengisteb, Tena Alamirewc
Abstract:
Ashebeka River is the main source of drinking water supply for Assela City and its surrounding inhabitants. Apart from seasonal water reliability disruption, the cost of treating water downstream of the river has been increasing over time due to increased pollutants and suspended sediments. Therefore, this research aimed to identify geo-location and prioritize suspended sediment sources in the Ashebeka River catchment using sediment fingerprinting. We collected 58 composite soil samples and a river water sample for suspended sediment samples from the outlet, which were then filtered using Whatman filter paper. The samples were quantified for geochemical tracers with multi-element capability, and inductively coupled plasma-optical emission spectrometry (ICP-OES). Tracers with significant p-value and that passed the Kruskal-Wallis (KW) test were analyzed for stepwise discriminant function analysis (DFA). The DFA results revealed tracers with good discrimination were subsequently used for the mixed model analysis. The relative significant sediment source contributions from sub-catchments (km2): 3, 4, 1, and 2 were estimated as 49.31% (8), 26.71% (5), 23.65% (5.6), and 0.33% (28.4) respectively. The findings of this study will help the water utilities to prioritize areas of intervention, and the approach used could be followed for catchment prioritization in water safety plan development. Moreover, the findings of this research shed light on the integration of sediment fingerprinting into water safety plans to ensure the reliability of drinking water supplies.Keywords: disruption of drinking water reliability, ashebeka river catchment, sediment fingerprinting, sediment source contribution, mixed model
Procedia PDF Downloads 2419804 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company
Authors: Iman Atighi, Jalal Soleimannejad, Reza Pourjafarabadi, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increased prices. Therefore, the only way to increase profit will be to reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) and etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GeG) was examined by using of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.Keywords: GeG company, maintainability, maintenance costs, reliability-center-maintenance
Procedia PDF Downloads 22119803 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.Keywords: multi objective optimization, pareto front, composite patch, cracked pipe
Procedia PDF Downloads 31219802 The Importance of Optimization of Halal Tourism: A Study of the Development of Halal Tourism in Indonesia
Authors: Rizqi W. Romadhon, Nur Arifan
Abstract:
Halal Tourism is a part of tourism industry which is based on Islamic Principle and addressed to the Muslim tourist. The potency of halal tourism is very broad to be developed, because the growth of Muslim populations is rapidly increasing. Indonesia is one of the biggest countries with Majority of its population is Muslim, therefore human resources and natural resources have very good potential to be part of the Halal tourism industry. But the fact is Indonesia can not optimize the potential of human resources and natural resources as well as neighboring countries carried out. This paper will discuss the reasons of the importance of developing Halal tourism, and the factors influencing the success of developing halal tourism in Indonesia, and also the optimization strategies which can be adopted by the government so that the Halal tourism industry in Indonesia has a sustainable competitive advantage. The existence of this research is expected to government, tourism agents and others can optimize the potency of Indonesia’s Human resources and natural resources for developing Halal tourism industry in Indonesia.Keywords: halal tourism, Islamic principle, optimization, sustainable competitive advantage
Procedia PDF Downloads 38419801 Exclusive Value Adding by iCenter Analytics on Transient Condition
Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata
Abstract:
During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.Keywords: analytics, diagnostics, monitoring, turbomachinery
Procedia PDF Downloads 7419800 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities
Authors: Tomoaki Hashimoto
Abstract:
Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.Keywords: optimal control, stochastic systems, discrete-time systems, probabilistic constraints
Procedia PDF Downloads 27819799 Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology
Authors: Won Mog Choi, Seong Kyeong Hong, Seok Young Jeong
Abstract:
The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test.Keywords: pipeline, optimization, elastic modulus of soil, response surface methodology
Procedia PDF Downloads 38619798 Spectrum Allocation in Cognitive Radio Using Monarch Butterfly Optimization
Authors: Avantika Vats, Kushal Thakur
Abstract:
This paper displays the point at issue, improvement, and utilization of a Monarch Butterfly Optimization (MBO) rather than a Genetic Algorithm (GA) in cognitive radio for the channel portion. This approach offers a satisfactory approach to get the accessible range of both the users, i.e., primary users (PUs) and secondary users (SUs). The proposed enhancement procedure depends on a nature-inspired metaheuristic algorithm. In MBO, all the monarch butterfly individuals are located in two distinct lands, viz. Southern Canada and the northern USA (land 1), and Mexico (Land 2). The positions of the monarch butterflies are modernizing in two ways. At first, the offsprings are generated (position updating) by the migration operator and can be adjusted by the migration ratio. It is trailed by tuning the positions for different butterflies by the methods for the butterfly adjusting operator. To keep the population unaltered and minimize fitness evaluations, the aggregate of the recently produced butterflies in these two ways stays equivalent to the first population. The outcomes obviously display the capacity of the MBO technique towards finding the upgraded work values on issues regarding the genetic algorithm.Keywords: cognitive radio, channel allocation, monarch butterfly optimization, evolutionary, computation
Procedia PDF Downloads 7319797 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack
Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo
Abstract:
The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications
Procedia PDF Downloads 12319796 Identification of Risks Associated with Process Automation Systems
Authors: J. K. Visser, H. T. Malan
Abstract:
A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.Keywords: distributed control system, identification of risks, information technology, process automation system
Procedia PDF Downloads 13919795 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms
Authors: Abdul Rehman, Bo Liu
Abstract:
Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization
Procedia PDF Downloads 22519794 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation
Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang
Abstract:
With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior
Procedia PDF Downloads 78019793 The Developmental of Ethical Behavior of Nursing Students in Borommarajonani College of Nursing, Suratthani, Thailand
Authors: Ubonrattan Phophatanachai, Phensri Thongphet, Weerawan Kerdtong
Abstract:
The purposes of this study were to compare the ethical behavior regarding responsibility and polite manners of nursing students of Boromarajonani College of Nursing, Suratthani, Thailand before and after providing the activity session of ethical behavior development. The samples consisted of 103 sophomores in the academic year 2006. The tools were tested for reliability and content validity. The reliability of the Ethical Behavior Questionnaire measured by Cronbach’s alpha coefficient was 0.94. Data were analyzed using means, standard deviations, and dependent t-test. The findings were as follows: a) after the activity session, the mean scores of ethical behavior regarding responsibility and polite manners of nursing students increased from middle level to high level; b) mean scores of responsibilities and polite manners after the activity session were significantly higher than those before the session (t =28.36, p < .001; t =23.9, p < .001, respectively).Keywords: development of ethical behavior, nursing students, health, nursing informatics
Procedia PDF Downloads 29519792 A Linear Programming Approach to Assist Roster Construction Under a Salary Cap
Authors: Alex Contarino
Abstract:
Professional sports leagues often have a “free agency” period, during which teams may sign players with expiring contracts.To promote parity, many leagues operate under a salary cap that limits the amount teams can spend on player’s salaries in a given year. Similarly, in fantasy sports leagues, salary cap drafts are a popular method for selecting players. In order to sign a free agent in either setting, teams must bid against one another to buy the player’s services while ensuring the sum of their player’s salaries is below the salary cap. This paper models the bidding process for a free agent as a constrained optimization problem that can be solved using linear programming. The objective is to determine the largest bid that a team should offer the player subject to the constraint that the value of signing the player must exceed the value of using the salary cap elsewhere. Iteratively solving this optimization problem for each available free agent provides teams with an effective framework for maximizing the talent on their rosters. The utility of this approach is demonstrated for team sport roster construction and fantasy sport drafts, using recent data sets from both settings.Keywords: linear programming, optimization, roster management, salary cap
Procedia PDF Downloads 11119791 Endeavor in Management Process by Executive Dashboards: The Case of the Financial Directorship in Brazilian Navy
Authors: R. S. Quintal, J. L. Tesch Santos, M. D. Davis, E. C. de Santana, M. de F. Bandeira dos Santos
Abstract:
The objective is to identify the contributions from the introduction of the computerized system deal within the Accounting Department of Brazilian Navy Financial Directorship and its possible effects on the budgetary and financial harvest of Brazilian Navy. The relevance lies in the fact that the management process is responsible for the continuous improvement of organizational performance through higher levels of quality in their activities. Improvements in organizational processes have direct effects on crops cost, quality, reliability, flexibility and speed. The method of study of this research is the case study. The choice of case study attended, among other demands, a need for greater flexibility to study processes related to a computerized system. The sources of evidence were used literature, documentary and direct observation. Direct observation was made by monitoring the implementation of the computerized system in the Division of Management Analysis. The main findings of the study point to the fact that the computerized system may contribute significantly to the standardization of information. There was improvement of internal processes in the division of management analysis, made possible the consolidation of a standard management and performance analysis that contribute to global homogeneity in the treatment of information essential to the process of decision making. This study has limitations related to the fact the search result be subject exclusively to the case studied, and it is impossible to generalize to other organs of government.Keywords: process management, management control, business intelligence, Brazilian Navy
Procedia PDF Downloads 238