Search results for: steel surface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7965

Search results for: steel surface

6735 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.

Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history

Procedia PDF Downloads 185
6734 The Friction and Wear Behaviour of Ti2AlC MAX Phase

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of Ti2AlC were investigated. In order to modify the surface properties of Ti2AlC, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti2AlC. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti2AlC from 6 GPa to 13GPa. In the pin-on-disc test, it was found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti2AlC/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti2AlC under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti2AlC.

Keywords: MAX phase, wear, hardness, boronizing

Procedia PDF Downloads 309
6733 Relative Intensity Noise of Vertical-Cavity Surface-Emitting Lasers Subject to Variable Polarization-Optical Feedback

Authors: Salam Nazhan Ahmed

Abstract:

Influence of variable polarization angle (θp) of optical feedback on the Relative Intensity Noise (RIN) of a Vertical-Cavity Surface-Emitting Laser (VCSEL) has been experimentally investigated. The RIN is a minimum at θp = 0° for the dominant polarization mode (XP), and at θp = 90° for the suppressed polarization mode (YP) of VCSEL. Furthermore, the RIN of the XP mode increases rapidly with increasing θp, while for the YP mode, it increases slightly to θp = 45° and decreases for angles greater than 45°.

Keywords: lasers, vertical-cavity surface-emitting lasers, optical switching, optical polarization feedback, relative intensity noise

Procedia PDF Downloads 390
6732 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections

Authors: S. Fominow, C. Dobert

Abstract:

The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.

Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis

Procedia PDF Downloads 156
6731 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Authors: Joseph Chen, N. Hundal

Abstract:

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Keywords: surface roughness, Taguchi parameter design, turning center, turn-milling operations, vertical machining center

Procedia PDF Downloads 330
6730 Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition

Authors: Siri Marthe Arbo, Afaf Saai, Sture Sørli, Mette Nedreberg

Abstract:

This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels.

Keywords: duplex stainless steel, laser metal deposition, process optimization, microstructure, mechanical properties

Procedia PDF Downloads 218
6729 Effect of Fiber Types and Elevated Temperatures on the Bond Characteristic of Fiber Reinforced Concretes

Authors: Erdoğan Özbay, Hakan T. Türker, Müzeyyen Balçıkanlı, Mohamed Lachemi

Abstract:

In this paper, the effects of fiber types and elevated temperatures on compressive strength, modulus of rapture and the bond characteristics of fiber reinforced concretes (FRC) are presented. By using the three different types of fibers (steel fiber-SF, polypropylene-PPF and polyvinyl alcohol-PVA), FRC specimens were produced and exposed to elevated temperatures up to 800 ºC for 1.5 hours. In addition, a plain concrete (without fiber) was produced and used as a control. Test results obtained showed that the steel fiber reinforced concrete (SFRC) had the highest compressive strength, modulus of rapture and bond stress values at room temperatures, the residual bond, flexural and compressive strengths of both FRC and plain concrete dropped sharply after exposure to high temperatures. The results also indicated that the reduction of bond, flexural and compressive strengths with increasing the exposed temperature was relatively less for SFRC than for plain, and FRC with PPF and PVA.

Keywords: bond stress, compressive strength, elevated temperatures, fiber reinforced concrete, modulus of rapture

Procedia PDF Downloads 422
6728 Microjetting from a Grooved Metal Surface under Decaying Shocks

Authors: Jian-Li Shao

Abstract:

Using Molecular Dynamic (MD) simulations, we simulated the microjet from the metal surface under decaying shock loading. The microjetting processes under release melting conditions are presented in detail, and some properties on the microjet mass and velocity are revealed. The phased increase of microjet mass with shock pressure is found. For all cases, the ratio of the maximal jetting velocity to the surface velocity approximately keeps a constant for liquid state. In addition, the temperature of the microjet can be always above the melting point. When introducing slow decaying profiles, the microjet mass begins to increase with the decay rate, which is dominated by the deformation of the bubble during pull-back. When the decay rate becomes fast enough, the microspall occurs as expected, meanwhile, the microjet appears to reduce because of the shock energy reduction.

Keywords: microjetting, shock, metal, molecular dynamics

Procedia PDF Downloads 211
6727 2D Surface Flow Model in The Biebrza Floodplain

Authors: Dorota Miroslaw-Swiatek, Mateusz Grygoruk, Sylwia Szporak

Abstract:

We applied a two-dimensional surface water flow model with irregular wet boundaries. In this model, flow equations are in the form of a 2-D, non-linear diffusion equations which allows to account spatial variations in flow resistance and topography. Calculation domain to simulate the flow pattern in the floodplain is congruent with a Digital Elevation Model (DEM) grid. The rate and direction of sheet flow in wetlands is affected by vegetation type and density, therefore the developed model take into account spatial distribution vegetation resistance to the water flow. The model was tested in a part of the Biebrza Valley, of an outstanding heterogeneity in the elevation and flow resistance distributions due to various ecohydrological conditions and management measures. In our approach we used the highest-possible quality of the DEM in order to obtain hydraulic slopes and vegetation distribution parameters for the modelling. The DEM was created from the cloud of points measured in the LiDAR technology. The LiDAR reflects both the land surface as well as all objects on top of it such as vegetation. Depending on the density of vegetation cover the ability of laser penetration is variable. Therefore to obtain accurate land surface model the “vegetation effect” was corrected using data collected in the field (mostly the vegetation height) and satellite imagery such as Ikonos (to distinguish different vegetation types of the floodplain and represent them spatially). Model simulation was performed for the spring thaw flood in 2009.

Keywords: floodplain flow, Biebrza valley, model simulation, 2D surface flow model

Procedia PDF Downloads 499
6726 Simulation of Binary Nitride Inclusions Effect on Tensile Properties of Steel

Authors: Ali Dalirbod, Peyman Ahmadian

Abstract:

Inclusions are unavoidable part of all steels. Non-metallic inclusions have significant effects on mechanical properties of steel. The effects of inclusion on stress concentration around the matrix/inclusion have been extensively studied. The results relating to single inclusion behavior, describe properly the behavior of stress but not the elongation drop. The raised stress in inclusion/matrix results in crack initiation. The influence of binary inclusions on stress concentration around matrix is a major aim of this work which is representative of the simple pattern distribution of non-metallic inclusions. Stress concentration around inclusions in this case depends on parameters like distance between two inclusions (d), angle between centrally linking line of two inclusions, load axis (φ), and rotational angle of inclusion (θ). FEM analysis was applied to investigate the highest and lowest ductility versus varying parameters above. The simulation results show that there is a critical distance between two cubic inclusions in which bigger than the threshold, the stress, and strain field in matrix/inclusions interface converts into individual fields around each inclusion.

Keywords: nitride inclusion, simulation, tensile properties, inclusion-matrix interface

Procedia PDF Downloads 317
6725 Bulk Modification of Poly(Dimethylsiloxane) for Biomedical Applications

Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta

Abstract:

In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly matured stage. These advances encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations, and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is by far the most preferred material in the fabrication of microfluidic devices. This can be attributed its favorable properties, including: (1) simple fabrication by replica molding, (2) good mechanical properties, (3) excellent optical transparency from 240 to 1100 nm, (4) biocompatibility and non-toxicity, and (5) high gas permeability. However, high hydrophobicity (water contact angle ~108°±7°) of PDMS often limits its applications where solutions containing biological samples are concerned. In our study, we created a simple, easy method for modifying the surface chemistry of PDMS microfluidic devices through the addition of surface-segregating additives during manufacture. In this method, a surface segregating copolymer is added to precursors for silicone and the desired device is manufactured following the usual methods. When the device surface is in contact with an aqueous solution, the copolymer self-organizes to expose its hydrophilic segments to the surface, making the surface of the silicone device more hydrophilic. This can lead to several improved performance criteria including lower fouling, lower non-specific adsorption, and better wettability. Specifically, this approach is expected to be useful for the manufacture of microfluidic devices. It is also likely to be useful for manufacturing silicone tubing and other materials, biomaterial applications, and surface coatings.

Keywords: microfluidics, non-specific protein adsorption, PDMS, PEG, copolymer

Procedia PDF Downloads 267
6724 Nanoparticles Using in Chiral Analysis with Different Methods of Separation

Authors: Bounoua Nadia, Rebizi Mohamed Nadjib

Abstract:

Chiral molecules in relation to particular biological roles are stereoselective. Enantiomers differ significantly in their biochemical responses in a biological environment. Despite the current advancement in drug discovery and pharmaceutical biotechnology, the chiral separation of some racemic mixtures continues to be one of the greatest challenges because the available techniques are too costly and time-consuming for the assessment of therapeutic drugs in the early stages of development worldwide. Various nanoparticles became one of the most investigated and explored nanotechnology-derived nanostructures, especially in chirality, where several studies are reported to improve the enantiomeric separation of different racemic mixtures. The production of surface-modified nanoparticles has contributed to these limitations in terms of sensitivity, accuracy, and enantioselectivity that can be optimized and therefore makes these surface-modified nanoparticles convenient for enantiomeric identification and separation.

Keywords: chirality, enantiomeric recognition, selectors, analysis, surface-modified nanoparticles

Procedia PDF Downloads 95
6723 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).

Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design

Procedia PDF Downloads 224
6722 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite

Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed

Abstract:

Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.

Keywords: carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites

Procedia PDF Downloads 407
6721 Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment

Authors: Jae-Ho Jang, Jung-Soo Kim, Byung-Jun Kim, Dae-Geun Nam, Uoo-Chang Jung, Yoon-Suk Choi

Abstract:

Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength.

Keywords: double austenitizing, Ductile Brittle transition temperature, grain refinement, heat treatment, low alloy steel, low-temperature toughness

Procedia PDF Downloads 511
6720 Contribution to the Evaluation of Uncertainties of Measurement to the Data Processing Sequences of a Cmm

Authors: Hassina Gheribi, Salim Boukebbab

Abstract:

The measurement of the parts manufactured on CMM (coordinate measuring machine) is based on the association of a surface of perfect geometry to the group of dots palpated via a mathematical calculation of the distances between the palpated points and itself surfaces. Surfaces not being never perfect, they are measured by a number of points higher than the minimal number necessary to define them mathematically. However, the central problems of three-dimensional metrology are the estimate of, the orientation parameters, location and intrinsic of this surface. Including the numerical uncertainties attached to these parameters help the metrologist to make decisions to be able to declare the conformity of the part to specifications fixed on the design drawing. During this paper, we will present a data-processing model in Visual Basic-6 which makes it possible automatically to determine the whole of these parameters, and their uncertainties.

Keywords: coordinate measuring machines (CMM), associated surface, uncertainties of measurement, acquisition and modeling

Procedia PDF Downloads 328
6719 Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process

Authors: Masoud Gholam Ale Mohammad, Mojtaba Hafezi Birgani

Abstract:

An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.

Keywords: single and double bubbles, electric field, boiling, rising

Procedia PDF Downloads 227
6718 New Techniques to Decrease the Interfacial Stress in Steel Beams Strengthened With FRP Laminates

Authors: A. S. Bouchikhi, A. Megueni, S. Habibi

Abstract:

One major problem when using bonded Fiber Reinforced Polymer is the presence of high inter facial stresses near the end of the composite laminate which might govern the failure of the strengthening schedule. It is known that the decrease of FRP plate thickness and the fitness of adhesive reduce the stress concentration at plate ends. Another way is to use a plate with a non uniform section or tapered ends and softer adhesive at the edges. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJ) and tapering plate on the inter facial stress distribution in the adhesive layer, this paper presents the results of a study of application of two adhesives with different stiffnesses (bi-adhesive) along the joint strength length between the CFRP-strengthened steel beam for tapered and untapered plate on the distribution of inter facial stresses. A stiff adhesive was applied in the middle portion of the joint strength, while a low modulus adhesive was applied towards the edges prone to stress concentrations.

Keywords: FRP, mixed adhesive joints, stresses, tapered plate, retrofitted beams bonded

Procedia PDF Downloads 498
6717 The Automated Soil Erosion Monitoring System (ASEMS)

Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos

Abstract:

The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of an innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholder's and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.

Keywords: soil management, climate change, new technologies, conservation practices

Procedia PDF Downloads 346
6716 Wear Progress and -Mechanisms in Torpedo Ladles in Steel Industry

Authors: Mattahias Maj, Fabio Tatzgern, Karl Adam, Damir Kahrimanovic, Markus Varga

Abstract:

Torpedo ladles are necessary transport carriages in steel production to move the molten crude iron from the blast furnace to the steel refining plant. This requires the ladles to be high temperature resistant and insulate well to preserve the temperature and hold the risk of solidification at bay. Therefore, the involved refractories lining the inside of the torpedo ladles are chosen mostly according to their thermal properties, although wear of the materials by the liquid iron is also of major importance. In this work, we combined investigations of the thermal behaviour with wear studies of the lining over the whole lifetime of a torpedo ladle. Additional numerical simulations enabled a detailed model of the mechanical loads and temperature propagation at the various stations (heating, filling, emptying, cooling). The core of the investigation were detailed 3D measurements of the ladle’s cavity and thereby quantitative information of the wear progress at different time intervals during the lifetime of the ladles. The measurements allowed for a separation of different wear zones according to severity, namely the “splash zone” where the melt directly hits the ladle, the “melt zone” where during transport always liquid melt is present, and the “slag zone”, where the slag floats on the melt causing the most severe wear loss. Numerical simulations of the filling process were taken to calculate stress levels and temperature gradients, which led to the different onset of wear on those zones. Thermal imaging and punctual temperature measurements allowed for a study of the thermal consequences entailed by the wear onset. Additional “classical” damage analysis of the worn refractories complete the investigation. Thereby the wear mechanisms leading to the substantial wear loss were disclosed.

Keywords: high temperature, tribology, liquid-solid interaction, refractories, thermography

Procedia PDF Downloads 226
6715 Wettability Behavior of Organic Silane Molecules with Different Alkyl-Chain Length Coated Si Surface

Authors: Takahiro Ishizaki, Shutaro Hisada, Oi Lun Li

Abstract:

Control of surface wettability is very important in various industrial fields. Thus, contact angle hysteresis which is defined as the difference between advancing and receding water contact angles has been paid attention because the surface having low contact angle hysteresis can control wetting behavior of water droplet. Self-assembled monolayer (SAM) formed using organic silane molecules has been used to control surface wettability, in particular, static contact angles, however, the effect of alkyl-chain length in organic silane molecules on the contact angle hysteresis has not yet clarified. In this study, we aimed to investigate the effect of alkyl-chain length (C1-C18) in organic silane molecules on the contact angle hysteresis. SAMs were formed on Si wafer by thermal CVD method using silane coupling agents having different alkyl-chain length. The static water contact angles increased with an increase in the alkyl-chain length. On the other hand, although the water contact angle hysteresis tended to decrease with an increase in the alkyl-chain length, in case of the alkyl-chain length of more than C16 the contact angle hysteresis increased. This could be due to the decrease in the molecular mobility because of the increase in the molecular packing density in chemisorbed silane molecules.

Keywords: alkyl-chain length, self-assembled monolayer, silane coupling agent, surface wettability

Procedia PDF Downloads 392
6714 Altering Surface Properties of Magnetic Nanoparticles with Single-Step Surface Modification with Various Surface Active Agents

Authors: Krupali Mehta, Sandip Bhatt, Umesh Trivedi, Bhavesh Bharatiya, Mukesh Ranjan, Atindra D. Shukla

Abstract:

Owing to the dominating surface forces and large-scale surface interactions, the nano-scale particles face difficulties in getting suspended in various media. Magnetic nanoparticles of iron oxide offer a great deal of promise due to their ease of preparation, reasonable magnetic properties, low cost and environmental compatibility. We intend to modify the surface of magnetic Fe₂O₃ nanoparticles with selected surface modifying agents using simple and effective single-step chemical reactions in order to enhance dispersibility of magnetic nanoparticles in non-polar media. Magnetic particles were prepared by hydrolysis of Fe²⁺/Fe³⁺ chlorides and their subsequent oxidation in aqueous medium. The dried particles were then treated with Octadecyl quaternary ammonium silane (Terrasil™), stearic acid and gallic acid ester of stearyl alcohol in ethanol separately to yield S-2 to S-4 respectively. The untreated Fe₂O₃ was designated as S-1. The surface modified nanoparticles were then analysed with Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Gravimetric Analysis (TGA) and Scanning Electron Microscopy and Energy dispersive X-Ray analysis (SEM-EDAX). Characterization reveals the particle size averaging 20-50 nm with and without modification. However, the crystallite size in all cases remained ~7.0 nm with the diffractogram matching to Fe₂O₃ crystal structure. FT-IR suggested the presence of surfactants on nanoparticles’ surface, also confirmed by SEM-EDAX where mapping of elements proved their presence. TGA indicated the weight losses in S-2 to S-4 at 300°C onwards suggesting the presence of organic moiety. Hydrophobic character of modified surfaces was confirmed with contact angle analysis, all modified nanoparticles showed super hydrophobic behaviour with average contact angles ~129° for S-2, ~139.5° for S-3 and ~151° for S-4. This indicated that surface modified particles are super hydrophobic and they are easily dispersible in non-polar media. These modified particles could be ideal candidates to be suspended in oil-based fluids, polymer matrices, etc. We are pursuing elaborate suspension/sedimentation studies of these particles in various oils to establish this conjecture.

Keywords: iron nanoparticles, modification, hydrophobic, dispersion

Procedia PDF Downloads 141
6713 Hydro Geochemistry and Water Quality in a River Affected by Lead Mining in Southern Spain

Authors: Rosendo Mendoza, María Carmen Hidalgo, María José Campos-Suñol, Julián Martínez, Javier Rey

Abstract:

The impact of mining environmental liabilities and mine drainage on surface water quality has been investigated in the hydrographic basin of the La Carolina mining district (southern Spain). This abandoned mining district is characterized by the existence of important mineralizations of sulfoantimonides of Pb - Ag, and sulfides of Cu - Fe. All surface waters reach the main river of this mining area, the Grande River, which ends its course in the Rumblar reservoir. This waterbody is intended to supply 89,000 inhabitants, as well as irrigation and livestock. Therefore, the analysis and control of the metal(loid) concentration that exists in these surface waters is an important issue because of the potential pollution derived from metallic mining. A hydrogeochemical campaign consisting of 20 water sampling points was carried out in the hydrographic network of the Grande River, as well as two sampling points in the Rumbler reservoir and at the main tailings impoundment draining to the river. Although acid mine drainage (pH below 4) is discharged into the Grande river from some mine adits, the pH values in the river water are always neutral or slightly alkaline. This is mainly the result of a dilution process of the small volumes of mine waters by net alkaline waters of the river. However, during the dry season, the surface waters present high mineralization due to a constant discharge from the abandoned flooded mines and a decrease in the contribution of surface runoff. The concentrations of dissolved Cd and Pb in the water reach values of 2 and 81 µg/l, respectively, exceeding the limit established by the Environmental Quality Standard for surface water. In addition, the concentrations of dissolved As, Cu, and Pb in the waters of the Rumblar reservoir reached values of 10, 20, and 11 µg/l, respectively. These values are higher than the maximum allowable concentration for human consumption, a circumstance that is especially alarming.

Keywords: environmental quality, hydrogeochemistry, metal mining, surface water

Procedia PDF Downloads 145
6712 Modeling and Simulation of Pad Surface Topography by Diamond Dressing in Chemical-Mechanical Polishing Process

Authors: A.Chen Chao-Chang, Phong Pham-Quoc

Abstract:

Chemical-mechanical polishing (CMP) process has been widely applied on fabricating integrated circuits (IC) with a soft polishing pad combined with slurry composed of micron or nano-scaled abrasives for generating chemical reaction to remove substrate or film materials from wafer. During CMP process, pad uniformity usually works as a datum surface of wafer planarization and pad asperities can dominate the microscopic pad-slurry-wafer interaction. However, pad topography can be changed by related mechanism factors of CMP and it needs to be re-conditioned or dressed by a diamond dresser of well-distributed diamond grits on a disc surface. It is still very complicated to analyze and understand kinematic of diamond dressing process under the effects of input variables including oscillatory of diamond dresser and rotation speed ratio between the pad and the diamond dresser. This paper has developed a generic geometric model to clarify the kinematic modeling of diamond dressing processes such as dresser/pad motion, pad cutting locus, the relative velocity of the diamond abrasive grits on pad surface, and overlap of cutting for prediction of pad surface topography. Simulation results focus on comparing and analysis kinematics of the diamond dressing on certain CMP tools. Results have shown the significant parameters for diamond dressing process and also discussed. Future study can apply on diamond dresser design and experimental verification of pad dressing process.

Keywords: kinematic modeling, diamond dresser, pad cutting locus, CMP

Procedia PDF Downloads 256
6711 Physico-Chemical and Heavy Metals Analysis of Contaminated Ndawuse River in North Central of Nigeria

Authors: Abimbola Motunrayo Enitan, Ibironke Titilayo Enitan, John Odiyo

Abstract:

The study assessed quality of surface water across Ndawuse River Phase 1, District of the Federal Capital Territory (FCT), Abuja, Nigeria based on physico-chemical variables that are linked to agrochemical and eutrophication, as well as heavy metals concentrations. In total, sixteen surface water samples were obtained from five locations along the river. The results were compared with the standard limits set by both World Health Organization and Federal Environmental Protection Agency for drinking water. The results obtained indicated that BOD5, turbidity, 0.014-3.511 mg Fe/L and 0.078-0.14 mg Cr/L were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on these receiving water bodies primarily as their source of water. Therefore, there is a need for strict enforcement of environmental laws considering the physico-chemical analysis.

Keywords: Abuja, heavy metals, human exposure risk, Ndawuse River, Nigeria, surface water

Procedia PDF Downloads 267
6710 Earthquake Retrofitting Methods of Steel and Concrete Structures and Investigating Strategies to Deal With Destructive Earthquakes

Authors: Ehsan Sadie

Abstract:

Today, after devastating earthquakes and many deaths due to the destruction of residential buildings, the scientific community has attracted the attention of the existing structures to strengthen and standardize construction. Due to the fact that the existing buildings are sometimes constructed without sufficient knowledge of the correct design, and even the buildings built according to the old standards today need to be reinforced due to changes in some provisions of the regulations. The location of some countries in the seismic zone has always caused a lot of human and economic damage throughout history, and attention to the strengthening of buildings, important facilities, and vital arteries is the result of this situation. Engineers' efforts to design earthquake-resistant buildings began when decades had passed since the development of design criteria and ensuring the safety of buildings against loads. New methods, mass reduction, reducing the weight of the building, use of moving structures to deal with earthquakes, as well as the use of new technologies in this field, including the use of dampers, composites in the reinforcement of structures are discussed, and appropriate solutions have been provided in each of the fields.

Keywords: brace, concrete structure, damper, earthquake, FRP reinforcement, lightweight material, retrofitting, seismic isolator, shear wall, steel structure

Procedia PDF Downloads 74
6709 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams

Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi

Abstract:

Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.

Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model

Procedia PDF Downloads 257
6708 Carboxymethyl Cellulose Coating onto Polypropylene Film Using Cold Atmospheric Plasma Treatment as Food Packaging

Authors: Z. Honarvar, M. Farhoodi, M. R. Khani, S. Shojaee-Aliabadi

Abstract:

Recently, edible films and coating have attracted much attention in food industry due to their environmentally friendly nature and safety in direct contact with food. However edible films have relatively weak mechanical properties and high water vapor permeability. Therefore, the aim of the study was to develop bilayer carboxymethyl cellulose (CMC) coated polypropylene (PP) films to increase mechanical properties and water vapor resistance of each pure CMC or PP films. To modify the surface properties of PE for better attachment of CMC coating layer to PP the atmospheric cold plasma treatment was used. Then the PP surface changes were evaluated by contact angle, AFM, and ATR-FTIR. Furthermore, the physical, mechanical, optical and microstructure characteristics of plasma-treated and untreated films were analyzed. ATR-FTIR results showed that plasma treatment created oxygen-containing groups on PP surface leading to an increase in hydrophilic properties of PP surface. Moreover, a decrease in water contact angle (from 88.92° to 52.15°) and an increase of roughness were observed on PP film surface indicating good adhesion between hydrophilic CMC and hydrophobic PP. Furthermore, plasma pre-treatment improved the tensile strength of CMC coated-PP films from 58.19 to 61.82. Water vapor permeability of plasma treated bilayer film was lower in comparison with untreated film. Therefore, cold plasma treatment has potential to improve attachment of CMC coating to PP layer, leading to enhanced water barrier and mechanical properties of CMC coated polypropylene as food packaging in which also CMC is in contact with food.

Keywords: carboxymethyl cellulose film, cold plasma, Polypropylene, surface properties

Procedia PDF Downloads 283
6707 Surface and Drinking Water Quality Monitoring of Thomas Reservoir, Kano State, Nigeria

Authors: G. A. Adamu, M. S. Sallau, S. O. Idris, E. B. Agbaji

Abstract:

Drinking water is supplied to Danbatta, Makoda and some parts of Minjibir local government areas of Kano State from the surface water of Thomas Reservoir. The present land use in the catchment area of the reservoir indicates high agricultural activities, fishing, as well as domestic and small scale industrial activities. To study and monitor the quality of surface and drinking water of the area, water samples were collected from the reservoir, treated water at the treatment plant and potable water at the consumer end in three seasons November - February (cold season), March - June (dry season) and July - September (rainy season). The samples were analyzed for physical and chemical parameters, pH, temperature, total dissolved solids (TDS), conductivity, turbidity, total hardness, suspended solids, total solids, colour, dissolved oxygen (DO), biological oxygen demand (BOD), chloride ion (Cl-) nitrite (NO2-), nitrate (NO3-), chemical oxygen demand (COD) and phosphate (PO43-). The higher values obtained in some parameters with respect to the acceptable standard set by World Health Organization (WHO) and Nigerian Industrial Standards (NIS) indicate the pollution of both the surface and drinking water. These pollutants were observed to have a negative impact on water quality in terms of eutrophication, largely due to anthropogenic activities in the watershed.

Keywords: surface water, drinking water, water quality, pollution, Thomas reservoir, Kano

Procedia PDF Downloads 295
6706 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well

Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao

Abstract:

When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.

Keywords: air compression, foaming agents, gas well, liquid loading

Procedia PDF Downloads 135