Search results for: somatic hybrid
642 A Hybrid Digital Watermarking Scheme
Authors: Nazish Saleem Abbas, Muhammad Haris Jamil, Hamid Sharif
Abstract:
Digital watermarking is a technique that allows an individual to add and hide secret information, copyright notice, or other verification message inside a digital audio, video, or image. Today, with the advancement of technology, modern healthcare systems manage patients’ diagnostic information in a digital way in many countries. When transmitted between hospitals through the internet, the medical data becomes vulnerable to attacks and requires security and confidentiality. Digital watermarking techniques are used in order to ensure the authenticity, security and management of medical images and related information. This paper proposes a watermarking technique that embeds a watermark in medical images imperceptibly and securely. In this work, digital watermarking on medical images is carried out using the Least Significant Bit (LSB) with the Discrete Cosine Transform (DCT). The proposed methods of embedding and extraction of a watermark in a watermarked image are performed in the frequency domain using LSB by XOR operation. The quality of the watermarked medical image is measured by the Peak signal-to-noise ratio (PSNR). It was observed that the watermarked medical image obtained performing XOR operation between DCT and LSB survived compression attack having a PSNR up to 38.98.Keywords: watermarking, image processing, DCT, LSB, PSNR
Procedia PDF Downloads 47641 Lowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code
Authors: Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare
Abstract:
Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-error-ratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to lower the error floors of LDPC code. The outer code in the proposed concatenation is the LDPC, and the inner code is a high rate array code. This approach applies an interactive hybrid process between the BCJR decoding for the array code and the SPA for the LDPC code together with bit-pinning and bit-flipping techniques. Margulis code of size (2640, 1320) has been used for the simulation and it has been shown that the proposed concatenation and decoding scheme can considerably improve the error floor performance with minimal rate loss.Keywords: concatenated coding, low–density parity–check codes, array code, error floors
Procedia PDF Downloads 356640 Relation between Physical and Mechanical Properties of Concrete Paving Stones Using Neuro-Fuzzy Approach
Authors: Erion Luga, Aksel Seitllari, Kemal Pervanqe
Abstract:
This study investigates the relation between physical and mechanical properties of concrete paving stones using neuro-fuzzy approach. For this purpose 200 samples of concrete paving stones were selected randomly from different sources. The first phase included the determination of physical properties of the samples such as water absorption capacity, porosity and unit weight. After that the indirect tensile strength test and compressive strength test of the samples were performed. İn the second phase, adaptive neuro-fuzzy approach was employed to simulate nonlinear mapping between the above mentioned physical properties and mechanical properties of paving stones. The neuro-fuzzy models uses Sugeno type fuzzy inference system. The models parameters were adapted using hybrid learning algorithm and input space was fuzzyfied by considering grid partitioning. It is concluded based on the observed data and the estimated data through ANFIS models that neuro-fuzzy system exhibits a satisfactory performance.Keywords: paving stones, physical properties, mechanical properties, ANFIS
Procedia PDF Downloads 342639 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.Keywords: decision tree, feature selection, intrusion detection system, support vector machine
Procedia PDF Downloads 265638 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 142637 Modeling User Context Using CEAR Diagram
Authors: Ravindra Dastikop, G. S. Thyagaraju, U. P. Kulkarni
Abstract:
Even though the number of context aware applications is increasing day by day along with the users, till today there is no generic programming paradigm for context aware applications. This situation could be remedied by design and developing the appropriate context modeling and programming paradigm for context aware applications. In this paper, we are proposing the static context model and metrics for validating the expressiveness and understandability of the model. The proposed context modeling is a way of describing a situation of user using context entities , attributes and relationships .The model which is an extended and hybrid version of ER model, ontology model and Graphical model is specifically meant for expressing and understanding the user situation in context aware environment. The model is useful for understanding context aware problems, preparing documentation and designing programs and databases. The model makes use of context entity attributes relationship (CEAR) diagram for representation of association between the context entities and attributes. We have identified a new set of graphical notations for improving the expressiveness and understandability of context from the end user perspective .Keywords: user context, context entity, context entity attributes, situation, sensors, devices, relationships, actors, expressiveness, understandability
Procedia PDF Downloads 344636 Design and Analysis of a Laminated Composite Automotive Drive Shaft
Authors: Hossein Kh. Bisheh, Nan Wu
Abstract:
Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling
Procedia PDF Downloads 232635 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film
Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi
Abstract:
In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy
Procedia PDF Downloads 178634 Machine Learning Methods for Flood Hazard Mapping
Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto
Abstract:
This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia PDF Downloads 178633 Multichannel Scheme under Fairness Environment for Cognitive Radio Networks
Authors: Hans Marquez Ramos, Cesar Hernandez, Ingrid Páez
Abstract:
This paper develops a multiple channel assignment model, which allows to take advantage in most efficient way, spectrum opportunities in cognitive radio networks. Developed scheme allows make several available and frequency adjacent channel assignments, which require a bigger wide band, under an equality environment. The hybrid assignment model it is made by to algorithms, one who makes the ranking and select available frequency channels and the other one in charge of establishing an equality criteria, in order to not restrict spectrum opportunities for all other secondary users who wish to make transmissions. Measurements made were done for average bandwidth, average delay, as well fairness computation for several channel assignment. Reached results were evaluated with experimental spectrum occupational data from GSM frequency band captured. Developed model, shows evidence of improvement in spectrum opportunity use and a wider average transmit bandwidth for each secondary user, maintaining equality criteria in channel assignment.Keywords: bandwidth, fairness, multichannel, secondary users
Procedia PDF Downloads 504632 Anticancer Potentials of Aqueous Tinospora cordifolia and Its Bioactive Polysaccharide, Arabinogalactan on Benzo(a)Pyrene Induced Pulmonary Tumorigenesis: A Study with Relevance to Blood Based Biomarkers
Authors: Vandana Mohan, Ashwani Koul
Abstract:
Aim: To evaluate the potential of Aqueous Tinospora cordifolia stem extract (Aq.Tc) and Arabinogalactan (AG) on pulmonary carcinogenesis and associated tumor markers. Background: Lung cancer is one of the most frequent malignancy with high mortality rate due to limitation of early detection resulting in low cure rates. Current research effort focuses on identifying some blood-based biomarkers like CEA, ctDNA and LDH which may have potential to detect cancer at an early stage, evaluation of therapeutic response and its recurrence. Medicinal plants and their active components have been widely investigated for their anticancer potentials. Aqueous preparation of T. Cordifolia extract is enriched in the polysaccharide fraction i.e., AG when compared with other types of extract. Moreover, reports are available of polysaccharide fraction of T. Cordifolia in in vitro lung cancer models which showed profound anti-metastatic activity against these cell lines. However, not much has been explored about its effect in in vivo lung cancer models and the underlying mechanism involved. Experimental Design: Mice were randomly segregated into six groups. Group I animals served as control. Group II animals were administered with Aq. Tc extract (200 mg/kg b.w.) p.o.on the alternate days. Group III animals were fed with AG (7.5 mg/kg b.w.) p.o. on the alternate days (thrice a week). Group IV animals were installed with Benzo(a)pyrene (50 mg/kg b.w.), i.p. twice within an interval of two weeks. Group V animals received Aq. Tc extract as in group II along with it B(a)P was installed after two weeks of Aq. Tc administration following the same protocol as for group IV. Group VI animals received AG as in group III along with it B(a)P was installed after two weeks of AG administration. Results: Administration of B(a)P to mice resulted in increased tumor incidence, multiplicity and pulmonary somatic index with concomitant increase in serum/plasma markers like CEA, ctDNA, LDH and TNF-α.Aq.Tc and AG supplementation significantly attenuated these alterations at different stages of tumorigenesis thereby showing potent anti-cancer effect in lung cancer. A pronounced decrease in serum/plasma markers were observed in animals treated with Aq.Tc as compared to those fed with AG. Also, extensive hyperproliferation of alveolar epithelium was prominent in B(a)P induced lung tumors. However, treatment of Aq.Tc and AG to lung tumor bearing mice exhibited reduced alveolar damage evident from decreased number of hyperchromatic irregular nuclei. A direct correlation between the concentration of tumor markers and the intensity of lung cancer was observed in animals bearing cancer co-treated with Aq.Tc and AG. Conclusion: These findings substantiate the chemopreventive potential of Aq.Tc and AG against lung tumorigenesis. Interestingly, Aq.Tc was found to be more effective in modulating the cancer as reflected by various observations which may be attributed to the synergism offered by various components of Aq.Tc. Further studies are in progress to understand the underlined mechanism in inhibiting lung tumorigenesis by Aq.Tc and AG.Keywords: Arabinogalactan, Benzo(a)pyrene B(a)P, carcinoembryonic antigen (CEA), circulating tumor DNA (ctDNA), lactate dehydrogenase (LDH), Tinospora cordifolia
Procedia PDF Downloads 185631 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 134630 Origins of Chicago Common Brick: Examining a Masonry Shell Encasing a New Ando Museum
Authors: Daniel Joseph Whittaker
Abstract:
This paper examines the broad array of historic sites from which Chicago common brick has emerged, and the methods this brick has been utilized within and around a new hybrid structure recently completed-and periodically opened to the public, as a private art, architecture, design, and social activism gallery space. Various technical aspects regarding the structural and aesthetic reuse methods of salvaged brick within the interior and exterior of this new Tadao Ando-designed building in Lincoln Park, Chicago, are explored. This paper expands specifically upon the multiple possible origins of Chicago common brick, as well as the extant brick currently composing the surrounding alley which is integral to demarcating the southern site boundary of the old apartment building now gallery. Themes encompassing Chicago’s archeological and architectural history, local resource extraction, and labor practices permeate this paper’s investigation into urban, social and architectural history and building construction technology advancements through time.Keywords: masonry construction, history brickmaking, private museums, Chicago Illinois, Tadao Ando
Procedia PDF Downloads 171629 The Bidirectional Effect between Parental Burnout and the Child’s Internalized and/or Externalized Behaviors
Authors: Aline Woine, Moïra Mikolajczak, Virginie Dardier, Isabelle Roskam
Abstract:
Background information: Becoming a parent is said to be the happiest event one can ever experience in one’s life. This popular (and almost absolute) truth–which no reasonable and decent human being would ever dare question on pain of being singled out as a bad parent–contrasts with the nuances that reality offers. Indeed, while many parents do thrive in their parenting role, some others falter and become progressively overwhelmed by their parenting role, ineluctably caught in a spiral of exhaustion. Parental burnout (henceforth PB) sets in when parental demands (stressors) exceed parental resources. While it is now generally acknowledged that PB affects the parent’s behavior in terms of neglect and violence toward their offspring, little is known about the impact that the syndrome might have on the children’s internalized (anxious and depressive symptoms, somatic complaints, etc.) and/or externalized (irritability, violence, aggressiveness, conduct disorder, oppositional disorder, etc.) behaviors. Furthermore, at the time of writing, to our best knowledge, no research has yet tested the reverse effect, namely, that of the child's internalized and/or externalized behaviors on the onset and/or maintenance of parental burnout symptoms. Goals and hypotheses: The present pioneering research proposes to fill an important gap in the existing literature related to PB by investigating the bidirectional effect between PB and the child’s internalized and/or externalized behaviors. Relying on a cross-lagged longitudinal study with three waves of data collection (4 months apart), our study tests a transactional model with bidirectional and recursive relations between observed variables and at the three waves, as well as autoregressive paths and cross-sectional correlations. Methods: As we write this, wave-two data are being collected via Qualtrics, and we expect a final sample of about 600 participants composed of French-speaking (snowball sample) and English-speaking (Prolific sample) parents. Structural equation modeling is employed using Stata version 17. In order to retain as much statistical power as possible, we use all available data and therefore apply the maximum likelihood with a missing value (mlmv) as the method of estimation to compute the parameter estimates. To limit (in so far is possible) the shared method variance bias in the evaluation of the child’s behavior, the study relies on a multi-informant evaluation approach. Expected results: We expect our three-wave longitudinal study to show that PB symptoms (measured at T1) raise the occurrence/intensity of the child’s externalized and/or internalized behaviors (measured at T2 and T3). We further expect the child’s occurrence/intensity of externalized and/or internalized behaviors (measured at T1) to augment the risk for PB (measured at T2 and T3). Conclusion: Should our hypotheses be confirmed, our results will make an important contribution to the understanding of both PB and children’s behavioral issues, thereby opening interesting theoretical and clinical avenues.Keywords: exhaustion, structural equation modeling, cross-lagged longitudinal study, violence and neglect, child-parent relationship
Procedia PDF Downloads 73628 Influence of Magnetic Bio-Stimulation Effects on Pre-Sown Hybrid Sunflower Seeds Germination, Growth, and on the Percentage of Antioxidant Activities
Authors: Nighat Zia-ud-Den, Shazia Anwer Bukhari
Abstract:
In the present study, sunflower seeds were exposed to magnetic bio-stimulation at different milli Tesla, and their effects were studied. The present study addressed to establish the effectiveness of magnetic bio-stimulation on seed germination, growth, and other dynamics of crop growth. The changes in physiological characters, i.e. the growth parameters of seedlings (biomass, root and shoot length, fresh and dry weight of root shoot leaf and fruit, leaf area, the height of plants, number of leaves, and number of fruits per plant) and antioxidant activities were measured. The parameters related to germination and growth were measured under controlled conditions while they changed significantly compared with that of the control. These changes suggested that magnetic seed stimulator enhanced the inner energy of seeds, which contributed to the acceleration of the growth and development of seedlings. Moreover, pretreatment with a magnetic field was found to be a positive impact on sunflower seeds germination, growth, and other biochemical parameters.Keywords: sunflower seeds, physical priming method, biochemical parameters, antioxidant activities
Procedia PDF Downloads 164627 An Overview on Aluminum Matrix Composites: Liquid State Processing
Authors: S. P. Jordan, G. Christian, S. P. Jeffs
Abstract:
Modern composite materials are increasingly being chosen in replacement of heavier metallic material systems within many engineering fields including aerospace and automotive industries. The increasing push towards satisfying environmental targets are fuelling new material technologies and manufacturing processes. This paper will introduce materials and manufacturing processes using metal matrix composites along with manufacturing processes optimized at Alvant Ltd., based in Basingstoke in the UK which offers modern, cost effective, selectively reinforced composites for light-weighting applications within engineering. An overview and introduction into modern optimized manufacturing methods capable of producing viable replacements for heavier metallic and lower temperature capable polymer composites are offered. A review of the capabilities and future applications of this viable material is discussed to highlight the potential involved in further optimization of old manufacturing techniques, to fully realize the potential to lightweight material using cost-effective methods.Keywords: aluminium matrix composites, light-weighting, hybrid squeeze casting, strategically placed reinforcements
Procedia PDF Downloads 99626 The Transport of Radical Species to Single and Double Strand Breaks in the Liver’s DNA Molecule by a Hybrid Method of Type Monte Carlo - Diffusion Equation
Abstract:
The therapeutic utility of certain Auger emitters such as iodine-125 depends on their position within the cell nucleus . Or diagnostically, and to maintain as low as possible cell damage, it is preferable to have radionuclide localized outside the cell or at least the core. One solution to this problem is to consider markers capable of conveying anticancer drugs to the tumor site regardless of their location within the human body. The objective of this study is to simulate the impact of a complex such as bleomycin on single and double strand breaks in the DNA molecule. Indeed, this simulation consists of the following transactions: - Construction of BLM -Fe- DNA complex. - Simulation of the electron’s transport from the metastable state excitation of Fe 57 by the Monte Carlo method. - Treatment of chemical reactions in the considered environment by the diffusion equation. For physical, physico-chemical and finally chemical steps, the geometry of the complex is considered as a sphere of 50 nm centered on the binding site , and the mathematical method used is called step by step based on Monte Carlo codes.Keywords: concentration, yield, radical species, bleomycin, excitation, DNA
Procedia PDF Downloads 457625 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption
Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed
Abstract:
In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.Keywords: optimization, neural networks, real-time scheduling, low-power consumption
Procedia PDF Downloads 371624 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks
Authors: S. Neelima, P. S. Subramanyam
Abstract:
The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)
Procedia PDF Downloads 436623 Comparison of Methods for Detecting and Quantifying Amplitude Modulation of Wind Farm Noise
Authors: Phuc D. Nguyen, Kristy L. Hansen, Branko Zajamsek
Abstract:
The existence of special characteristics of wind farm noise such as amplitude modulation (AM) contributes significantly to annoyance, which could ultimately result in sleep disturbance and other adverse health effects for residents living near wind farms. In order to detect and quantify this phenomenon, several methods have been developed which can be separated into three types: time-domain, frequency-domain and hybrid methods. However, due to a lack of systematic validation of these methods, it is still difficult to select the best method for identifying AM. Furthermore, previous comparisons between AM methods have been predominantly qualitative or based on synthesised signals, which are not representative of the actual noise. In this study, a comparison between methods for detecting and quantifying AM has been carried out. The results are based on analysis of real noise data which were measured at a wind farm in South Australia. In order to evaluate the performance of these methods in terms of detecting AM, an approach has been developed to select the most successful method of AM detection. This approach uses a receiver operating characteristic (ROC) curve which is based on detection of AM in audio files by experts.Keywords: amplitude modulation, wind farm noise, ROC curve
Procedia PDF Downloads 145622 5G Future Hyper-Dense Networks: An Empirical Study and Standardization Challenges
Authors: W. Hashim, H. Burok, N. Ghazaly, H. Ahmad Nasir, N. Mohamad Anas, A. F. Ismail, K. L. Yau
Abstract:
Future communication networks require devices that are able to work on a single platform but support heterogeneous operations which lead to service diversity and functional flexibility. This paper proposes two cognitive mechanisms termed cognitive hybrid function which is applied in multiple broadband user terminals in order to maintain reliable connectivity and preventing unnecessary interferences. By employing such mechanisms especially for future hyper-dense network, we can observe their performances in terms of optimized speed and power saving efficiency. Results were obtained from several empirical laboratory studies. It was found that selecting reliable network had shown a better optimized speed performance up to 37% improvement as compared without such function. In terms of power adjustment, our evaluation of this mechanism can reduce the power to 5dB while maintaining the same level of throughput at higher power performance. We also discuss the issues impacting future telecommunication standards whenever such devices get in place.Keywords: dense network, intelligent network selection, multiple networks, transmit power adjustment
Procedia PDF Downloads 376621 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network
Procedia PDF Downloads 115620 Body of Dialectics: Exploring a Dynamic-Adaptational Model of Physical Self-Integrity and the Pursuit of Happiness in a Hostile World
Authors: Noam Markovitz
Abstract:
People with physical disabilities constitute a very large and simultaneously a diverse group of general population, as the term physical disabilities is extensive and covers a wide range of disabilities. Therefore, individuals with physical disabilities are often faced with a new, threatening and stressful reality leading possibly to a multi-crisis in their lives due to the great changes they experience in somatic, socio-economic, occupational and psychological level. The current study seeks to advance understanding of the complex adaptation to physical disabilities by expanding the dynamic-adaptational model of the pursuit of happiness in a hostile world with a new conception of physical self-integrity. Physical self-integrity incorporates an objective dimension, namely physical self-functioning (PSF), and a subjective dimension, namely physical self-concept (PSC). Both of these dimensions constitute an experience of wholeness in the individual’s identification with her or his physical body. The model guiding this work is dialectical in nature and depicts two systems in the individual’s sense of happiness: subjective well-being (SWB) and meaning in life (MIL). Both systems serve as self-adaptive agents that moderate the complementary system of the hostile-world scenario (HWS), which integrates one’s perceived threats to one’s integrity. Thus, in situations of increased HWS, the moderation may take a form of joint activity in which SWB and MIL are amplified or a form of compensation in which one system produces a stronger effect while the other system produces a weaker effect. The current study investigated PSC in relations to SWB and MIL through pleasantness and meanings that are physically or metaphorically grounded in one’s body. In parallel, PSC also relates to HWS by activating representations of inappropriateness, deformation and vulnerability. In view of possibly dialectical positions of opposing and complementary forces within the current model, the current field study that aims to explore PSC as appearing in an independent, cross-sectional, design addressing the model’s variables in a focal group of people with physical disabilities. This study delineated the participation of the PSC in the adaptational functions of SWB and MIL vis-à-vis HWS-related life adversities. The findings showed that PSC could fully complement the main variables of the pursuit of happiness in a hostile world model. The assumed dialectics in the form of a stronger relationship between SWB and MIL in the face of physical disabilities was not supported. However, it was found that when HWS increased, PSC and MIL were strongly linked, whereas PSC and SWB were weakly linked. This highlights the compensatory role of MIL. From a conceptual viewpoint, the current investigation may clarify the role of PSC as an adaptational agent of the individual’s positive health in complementary senses of bodily wholeness. Methodologically, the advantage of the current investigation is the application of an integrative, model-based approach within a specially focused design with a particular relevance to PSC. Moreover, from an applicative viewpoint, the current investigation may suggest how an innovative model may be translated to therapeutic interventions used by clinicians, counselors and practitioners in improving wellness and psychological well-being, particularly among people with physical disabilities.Keywords: older adults, physical disabilities, physical self-concept, pursuit of happiness in a hostile-world
Procedia PDF Downloads 150619 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme
Authors: Cavidan Yakupoglu, Kurt Rohloff
Abstract:
In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE
Procedia PDF Downloads 155618 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 57617 Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images
Authors: Enver Kucukkulahli, Pakize Erdogmus, Kemal Polat
Abstract:
The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software.Keywords: image segmentation, clustering, GUI, 2D MRI
Procedia PDF Downloads 377616 Solving Nonconvex Economic Load Dispatch Problem Using Particle Swarm Optimization with Time Varying Acceleration Coefficients
Authors: Alireza Alizadeh, Hossein Ghadimi, Oveis Abedinia, Noradin Ghadimi
Abstract:
A Particle Swarm Optimization with Time Varying Acceleration Coefficients (PSO-TVAC) is proposed to determine optimal economic load dispatch (ELD) problem in this paper. The proposed methodology easily takes care of solving non-convex economic load dispatch problems along with different constraints like transmission losses, dynamic operation constraints and prohibited operating zones. The proposed approach has been implemented on the 3-machines 6-bus, IEEE 5-machines 14-bus, IEEE 6-machines 30-bus systems and 13 thermal units power system. The proposed technique is compared to solve the ELD problem with hybrid approach by using the valve-point effect. The comparison results prove the capability of the proposed method giving significant improvements in the generation cost for the economic load dispatch problem.Keywords: PSO-TVAC, economic load dispatch, non-convex cost function, prohibited operating zone, transmission losses
Procedia PDF Downloads 387615 The Challenges of Scaling Agile to Large-Scale Distributed Development: An Overview of the Agile Factory Model
Authors: Bernard Doherty, Andrew Jelfs, Aveek Dasgupta, Patrick Holden
Abstract:
Many companies have moved to agile and hybrid agile methodologies where portions of the Software Design Life-cycle (SDLC) and Software Test Life-cycle (STLC) can be time boxed in order to enhance delivery speed, quality and to increase flexibility to changes in software requirements. Despite widespread proliferation of agile practices, implementation often fails due to lack of adequate project management support, decreased motivation or fear of increased interaction. Consequently, few organizations effectively adopt agile processes with tailoring often required to integrate agile methodology in large scale environments. This paper provides an overview of the challenges in implementing an innovative large-scale tailored realization of the agile methodology termed the Agile Factory Model (AFM), with the aim of comparing and contrasting issues of specific importance to organizations undertaking large scale agile development. The conclusions demonstrate that agile practices can be effectively translated to a globally distributed development environment.Keywords: agile, agile factory model, globally distributed development, large-scale agile
Procedia PDF Downloads 294614 Optimization of Reinforced Concrete Buildings According to the Algerian Seismic Code
Authors: Nesreddine Djafar Henni, Nassim Djedoui, Rachid Chebili
Abstract:
Recent decades have witnessed significant efforts being made to optimize different types of structures and components. The concept of cost optimization in reinforced concrete structures, which aims at minimizing financial resources while ensuring maximum building safety, comprises multiple materials, and the objective function for their optimal design is derived from the construction cost of the steel as well as concrete that significantly contribute to the overall weight of reinforced concrete (RC) structures. To achieve this objective, this work has been devoted to optimizing the structural design of 3D RC frame buildings which integrates, for the first time, the Algerian regulations. Three different test examples were investigated to assess the efficiency of our work in optimizing RC frame buildings. The hybrid GWOPSO algorithm is used, and 30000 generations are made. The cost of the building is reduced by iteration each time. Concrete and reinforcement bars are used in the building cost. As a result, the cost of a reinforced concrete structure is reduced by 30% compared with the initial design. This result means that the 3D cost-design optimization of the framed structure is successfully achieved.Keywords: optimization, automation, API, Malab, RC structures
Procedia PDF Downloads 49613 The Effectiveness of a Hybrid Diffie-Hellman-RSA-Advanced Encryption Standard Model
Authors: Abdellahi Cheikh
Abstract:
With the emergence of quantum computers with very powerful capabilities, the security of the exchange of shared keys between two interlocutors poses a big problem in terms of the rapid development of technologies such as computing power and computing speed. Therefore, the Diffie-Hellmann (DH) algorithm is more vulnerable than ever. No mechanism guarantees the security of the key exchange, so if an intermediary manages to intercept it, it is easy to intercept. In this regard, several studies have been conducted to improve the security of key exchange between two interlocutors, which has led to interesting results. The modification made on our model Diffie-Hellman-RSA-AES (DRA), which encrypts the information exchanged between two users using the three-encryption algorithms DH, RSA and AES, by using stenographic photos to hide the contents of the p, g and ClesAES values that are sent in an unencrypted state at the level of DRA model to calculate each user's public key. This work includes a comparative study between the DRA model and all existing solutions, as well as the modification made to this model, with an emphasis on the aspect of reliability in terms of security. This study presents a simulation to demonstrate the effectiveness of the modification made to the DRA model. The obtained results show that our model has a security advantage over the existing solution, so we made these changes to reinforce the security of the DRA model.Keywords: Diffie-Hellmann, DRA, RSA, advanced encryption standard
Procedia PDF Downloads 93