Search results for: solar water heating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10445

Search results for: solar water heating

9215 Computational Study on the Crystal Structure, Electronic and Optical Properties of Perovskites a2bx6 for Photovoltaic Applications

Authors: Harmel Meriem

Abstract:

The optoelectronic properties and high power conversion efficiency make lead halide perovskites ideal material for solar cell applications. However, the toxic nature of lead and the instability of organic cation are the two key challenges in the emerging perovskite solar cells. To overcome these challenges, we present our study about finding potential alternatives to lead in the form of A2BX6 perovskite using the first principles DFT-based calculations. The highly accurate modified Becke Johnson (mBJ) and hybrid functional (HSE06) have been used to investigate the Main Document Click here to view linked References to optoelectronic and thermoelectric properties of A2PdBr6 (A = K, Rb, and Cs) perovskite. The results indicate that different A-cations in A2PdBr6 can significantly alter their electronic and optical properties. Calculated band structures indicate semiconducting nature, with band gap values of 1.84, 1.53, and 1.54 eV for K2PdBr6, Rb2PdBr6, and Cs2PdBr6, respectively. We find strong optical absorption in the visible region with small effective masses for A2PdBr6. The ideal band gap and optimum light absorption suggest Rb2PdBr6 and Cs2PdBr6 potential candidates for the light absorption layer in perovskite solar cells. Additionally.

Keywords: soler cell, double perovskite, optoelectronic properties, ab-inotio study

Procedia PDF Downloads 120
9214 The Fishery and Electricity Symbiosis Environment and Social Inspection in Taiwan: The Kaohsiung City Example

Authors: Bing-Shun Huang, Hung-Ju Chiu, Wen-Kai Hsieh, Hsiu-Chuan Lin, Ming-Lung Hung

Abstract:

Taiwan's solar photovoltaic target in 2025 is 20 GW, of which the fish-electricity symbiosis target is 4 GW. In the future, many solar photovoltaic installations may cause local environmental or social impacts. Therefore, the Taiwan government inspects the fish-electricity symbiosis to reduce the impact of solar photovoltaics on the local environment or society. This stuy takes the symbiosis of fishery and electricity in Kaohsiung City as an example to explore Taiwan's environmental and social inspection practices. It mainly analyzes the two aspects of environmental ecology and social economy. The results show that the environmental inspection is mainly through site surveys, ecological information mapping, on-site interviews, and public consultation meetings. Social inspection mainly includes document analysis, on-site interviews, site surveys, expert discussions, and public consultations to identify possible local problems. Although the government had recognized the local issues, the future status may also change. It is recommended that future photoelectric companies should reconfirm the current situation of development sites when applying for the installation and propose countermeasures to solve the problem.

Keywords: taiwan, fish-electricity symbiosis, environment, society, inspection

Procedia PDF Downloads 201
9213 Approved Cyclic Treatment System of Grey Water

Authors: Hanen Filali, Mohamed Hachicha

Abstract:

Treated grey water (TGW) reuse emerged as an alternative resource to meet the growing demand for water for agricultural irrigation and reduce the pressure on limited existing fresh water. However, this reuse needs adapted management in order to avoid environmental and health risks. In this work, the treatment of grey water (GW) was studied from a cyclic treatment system that we designed and implemented in the greenhouse of National Research Institute for Rural Engineering, Water and Forests (INRGREF). This system is composed of three levels for treatment (TGW 1, TGW 2, and TGW 3). Each level includes a sandy soil box. The use of grey water was moderated depending on the chemical and microbiological quality obtained. Different samples of soils and treated grey water were performed and analyzed for 14 irrigation cycles. TGW through cyclic treatment showed physicochemical parameters like pH, electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD5) in the range of 7,35-7,91, 1,69-5,03 dS/m, 102,6-54,2 mgO2/l, and 31,33-15,74 mgO2/l, respectively. Results showed a reduction in the pollutant load with a significant effect on the three treatment levels; however, an increase in salinity was observed during all irrigation cycles. Microbiological results showed good grey water treatment with low health risk on irrigated soil. Treated water quality was below permissible Tunisian standards (NT106.03), and treated water is suitable for non-potable options.

Keywords: treated grey water, irrigation, cyclic treatment, soils, physico-chemical parameters, microbiological parameters

Procedia PDF Downloads 91
9212 A Case Study on the Drivers of Household Water Consumption for Different Socio-Economic Classes in Selected Communities of Metro Manila, Philippines

Authors: Maria Anjelica P. Ancheta, Roberto S. Soriano, Erickson L. Llaguno

Abstract:

The main purpose of this study is to examine whether there is a significant relationship between socio-economic class and household water supply demand, through determining or verifying the factors governing water use consumption patterns of households from a sampling from different socio-economic classes in Metro Manila, the national capital region of the Philippines. This study is also an opportunity to augment the lack of local academic literature due to the very few publications on urban household water demand after 1999. In over 600 Metro Manila households, a rapid survey was conducted on their average monthly water consumption and habits on household water usage. The questions in the rapid survey were based on an extensive review of literature on urban household water demand. Sample households were divided into socio-economic classes A-B and C-D. Cluster analysis, dummy coding and outlier tests were done to prepare the data for regression analysis. Subsequently, backward stepwise regression analysis was used in order to determine different statistical models to describe the determinants of water consumption. The key finding of this study is that the socio-economic class of a household in Metro Manila is a significant factor in water consumption. A-B households consume more water in contrast to C-D families based on the mean average water consumption for A-B and C-D households are 36.75 m3 and 18.92 m3, respectively. The most significant proxy factors of socio-economic class that were related to household water consumption were examined in order to suggest improvements in policy formulation and household water demand management.

Keywords: household water uses, socio-economic classes, urban planning, urban water demand management

Procedia PDF Downloads 293
9211 Clay Develop Plasticity With Water

Authors: Boualla Nabila

Abstract:

The problems created by the water in Civil Engineering are sometimes neglected or often badly posed when they are not completely ignored, and yet they are fundamental as regards both the conditions of execution of the worksites and the stability. Several damages were caused by the infiltration of water in the soils, in particular in clay regions which can swell under the effect of an increase in their water content as in the case of the Oued Tlelat clay which is made up of yellow-colored marly clays and red-colored El Maleh area. This study was carried out on soil from a site, located near the city of Oran and the city of Ain Tmouchent (northern Algeria) where we encounter many problems of cracking of buildings and bottom uplift of excavations. The study consists first of all in determining the mechanical and physical characteristics of the clay, namely the parameters of sheer, simple compression, and that of the odometer. Then the study focused on a comparison of the influence of water type on the mechanical and physical properties of swelling clay soil.

Keywords: clay, water, liquidity limit, plastic limit

Procedia PDF Downloads 99
9210 Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant

Authors: Cigdem Safak Saglam

Abstract:

Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant.

Keywords: thermal power plant, lignite coal, pretreatment, demineralization, electrodialysis, recycling, ash dampening

Procedia PDF Downloads 478
9209 Thermoluminescence Study of Cu Doped Lithium Tetra Borate Samples Synthesized by Water/Solution Assisted Method

Authors: Swarnapriya Thiyagarajan, Modesto Antonio Sosa Aquino, Miguel Vallejo Hernandez, Senthilkumar Kalaiselvan Dhivyaraj, Jayaramakrishnan Velusamy

Abstract:

In this paper the lithium tetra borate (Li2B4O7) was prepared by used water/solution assisted synthesis method. Once finished the synthesization, Copper (Cu) were used to doping material with Li2B4O7 in order to enhance its thermo luminescent properties. The heating temperature parameters were 750°C for 2 hr and 150°C for 2hr. The samples produced by water assisted method were doped at different doping percentage (0.02%, 0.04%, 0.06%, 0.08%, 0.12%, 0.5%, 0.1%, and 1%) of Cu.The characteristics and identification of Li2B4O7 (undoped and doped) were determined in four tests. They are X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Ultra violet visible spectroscopy (UV Vis). As it is evidence from the XRD and SEM results the obtained Li2B4O7 and Li2B4O7 doping with Cu was confirmed and also confirmed the chemical compositition and their morphologies. The obtained lithium tetraborate XRD pattern result was verified with the reference data of lithium tetraborate with tetragonal structure from JCPDS. The glow curves of Li2B4O7 and Li2B4O7 : Cu were obtained by thermo luminescence (TLD) reader (Harshaw 3500). The pellets were irradiated with different kind of dose (58mGy, 100mGy, 500mGy, and 945mGy) by using an X-ray source. Finally this energy response was also compared with TLD100. The order of kinetics (b), frequency factor (S) and activation energy (E) or the trapping parameters were calculated using peak shape method. Especially Li2B4O7: Cu (0.1%) presents good glow curve in all kind of doses. The experimental results showed that this Li2B4O7: Cu could have good potential applications in radiation dosimetry. The main purpose of this paper is to determine the effect of synthesis on the TL properties of doped lithium tetra borate Li2B4O7.

Keywords: dosimetry, irradiation, lithium tetraborate, thermoluminescence

Procedia PDF Downloads 274
9208 Adverse Impacts of Poor Wastewater Management Practices on Water Quality in Gebeng Industrial Area, Pahang, Malaysia

Authors: I. M. Sujaul, M. A. Sobahan, A. A. Edriyana, F. M. Yahaya, R. M. Yunus

Abstract:

This study was carried out to investigate the adverse effect of industrial waste water on surface water quality in Gebeng industrial estate, Pahang, Malaysia. Surface water was collected from 6 sampling stations. Physico-chemical parameters were characterized based on in-situ and ex-situ analysis according to standard methods by American Public Health Association (APHA). Selected heavy metals were determined by using Inductively Coupled Plasma Mass Spectrometry (ICP MS). The result reveled that the concentration of heavy metals such as Pb, Cu, Cd, Cr and Hg were high in samples. The result showed that the value of Pb and Hg were higher in the wet season in comparison to dry season. According to Malaysia National Water Quality Standard (NWQS) and Water Quality Index (WQI) all the sampling station were categorized as class IV (highly polluted). The present study reveled that the adverse effects of careless disposal of wastes and directly discharge of effluents affected on surface water quality. Therefore, the authorities should implement the laws to ensure the proper practices of waste water management for environmental sustainability around the study area.

Keywords: water, heavy metals, water quality index, Gebeng

Procedia PDF Downloads 373
9207 X-Ray Analysis and Grain Size of CuInx Ga1-X Se2 Solar Cells

Authors: A. I. Al-Bassam, A. M. El-Nggar

Abstract:

Polycrystalline Cu In I-x GaxSe2 thin films have been fabricated. Some physical properties such as lattice parameters, crystal structure and microstructure of Cu In I-x GaxSe2 were determined using X-ray diffractometry and scanning electron microscopy. X-ray diffraction analysis showed that the films with x ≥ 0.5 have a chalcopyrite structure and the films with x ≤ 0.5 have a zinc blende structure. The lattice parameters were found to vary linearly with composition over a wide range from x = 0 to x =1.0. The variation of lattice parameters with composition was found to obey Vegard's law. The variation of the c/a with composition was also linear. The quality of a wide range of Cu In I-xGaxSe2 thin film absorbers from CuInSe to CuGaSe was evaluated by Photoluminescence (PL) measurements.

Keywords: grain size, polycrystalline, solar cells, lattice parameters

Procedia PDF Downloads 501
9206 Application of Dissolved Air Flotation for Removal of Oil from Wastewater

Authors: Talat Ghomashchi, Zahra Akbari, Shirin Malekpour, Marjan Alimirzaee

Abstract:

Mixing the waste water of industries with natural water has caused environmental pollution. So researcher try to obtain methods and optimum conditions for waste water treatment. One of important stage in waste water treatment is dissolved air flotation. DAF is used for the removal of suspended solids and oils from waste water. In this paper, the effect of several parameters on flotation efficiency with Cationic polyacrylamide as flocculant, was examined, namely, (a) concentration of cationic flocculants, (b) pH (c) fast mixing time, (d) fast mixing speed,(e) slow mixing time,(f) retention time and temperature. After design of experiment, in each trial turbidity of waste water was measured by spectrophotometer. Results show that contribution of pH and concentration of flocculant on flotation efficiency are 75% and 9% respectively. Cationic polyacrylamide led to a significant increase in the settling speed and effect of temperature is negligible. In the optimum condition, the outcome of the DAF unit is increased and amount of suspended solid and oil in waste water is decreased effectively.

Keywords: dissolved air flotation, oil industry, waste water, treatment

Procedia PDF Downloads 526
9205 Impact of Microbial Pathogen on Aquatic Environment

Authors: Muhammad Younis Laghari

Abstract:

Global climate change has had many effects on the aquatic environment, and the major issue is pollution. Along with the other pollutants, there are a significant number of human microbial pathogens that pollute the water bodies. Another concern about the water quality is that the major aquatic resources bring water-borne pathogens and other related diseases. These resources include industrial effluent, untreated domestic sewage, acid mine drainage, etc. However, these water discharges through various routes may have treatment to eliminate the pathogenic microbes. Therefore, it is essential to control the leakage from sewer systems, residential discharge, and agricultural run-off. These pathogenic microbes have been implicated in the lives of water health (fishes), which is harmful and causes diseases. Mostly, the mortality of aquatic species results because of catastrophic floods due to poor water waste treatment and sanitation that introduce pathogenic bacteria into rivers. Pathogens survive in rivers and remain poorly known but essential to control water-borne diseases. The presence of bacteria in watercourses is diverse and constitutes a complicated subject. Many species are autochthonous and play an important role in aquatic ecosystems, while many others arise from untreated or poorly treated waste from industrial and domestic sources. Further, more investigation is required to know the induction of water-borne pathogens in various water resources and the potential impacts of water resource development on pathogen contamination.

Keywords: microbial pathogens, contamination, water resources, river water body

Procedia PDF Downloads 70
9204 Investigating Willingness to Pay for Water Services in a Newly Established Municipality in Malamulele, Vhembe District Municipality, South Africa

Authors: D. T. Chabalala

Abstract:

Currently South Africa is facing a triple challenge of poverty, unemployment and inequality. As such, communities have limited access to basic municipal services such as water, sanitation and electricity. Citizens such as those residing at Malamulele Township will be responsible to pay for the cost of water services that they consume instead of having the costs subsidised by the newly formed Municipality. The question on whether Malamulele residents would be willing to pay for water services provided for them need to be investigated. This study was conducted in Malamulele Township and surrounding villages. The article is based on a survey of 500 randomly selected households from township and villages surrounding Malamulele. The study uses the contingent valuation method to determine households’ willingness to pay for water services as well as the consequences they possibly will encounter in case their response is negative. The obtained results can be used by the Municipality and other Government Departments in order to better identify the affordable rates and the quantity of water service to be provided. Thus, it will make Municipality water supply services stable and sustainable. It will also be used as a tool to provide inform decisions about a range of infrastructure to enhance water supply systems.

Keywords: willingness to pay, contingent valuation method, water supply systems, Malamulele

Procedia PDF Downloads 226
9203 Nano Sol Based Solar Responsive Smart Window for Aircraft

Authors: K. A. D. D. Kuruppu, R. M. De Silva, K. M. N. De Silva

Abstract:

This research work was based on developing a solar responsive aircraft window panel which can be used as a self-cleaning surface and also a surface which degrade Volatile Organic compounds (VOC) available in the aircraft cabin areas. Further, this surface has the potential of harvesting energy from Solar. The transparent inorganic nano sol solution was prepared. The obtained sol solution was characterized using X-ray diffraction, Particle size analyzer and FT-IR. The existing nano material which shows the similar characteristics was also used to compare the efficiencies with the newly prepared nano sol. Nano sol solution was coated on cleaned four aircraft window pieces separately using a spin coater machine. The existing nano material was dissolved and prepared a solution having the similar concentration as nano sol solution. Pre-cleaned four aircraft window pieces were coated with this solution and the rest cleaned four aircraft window pieces were considered as control samples. The control samples were uncoated from anything. All the window pieces were allowed to dry at room temperature. All the twelve aircraft window pieces were uniform in all the factors other than the type of coating. The surface morphologies of the samples were analyzed using SEM. The photocatalytic degradation of VOC was determined after incorporating gas of Toluene to each sample followed by the analysis done by UV-VIS spectroscopy. The self- cleaning capabilities were analyzed after adding of several types of stains on the window pieces. The self-cleaning property of each sample was analyzed using UV-VIS spectroscopy. The highest photocatalytic degradation of Volatile Organic compound and the highest photocatalytic degradation of stains were obtained for the samples which were coated by the nano sol solution. Therefore, the experimental results clearly show that there is a potential of using this nano sol in aircraft window pieces which favors the self-cleaning property as well as efficient photocatalytic degradation of VOC gases. This will ensure safer environment inside aircraft cabins.

Keywords: aircraft, nano, smart windows, solar

Procedia PDF Downloads 250
9202 Solar Panel Design Aspects and Challenges for a Lunar Mission

Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair

Abstract:

TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.

Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude

Procedia PDF Downloads 228
9201 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties

Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou

Abstract:

The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.

Keywords: cellulose, spectroscopy, surface treatment, water absorption

Procedia PDF Downloads 199
9200 Voluntary Water Intake of Flavored Water in Euhydrated Horses

Authors: Brianna M. Soule, Jesslyn A. Bryk-Lucy, Linda M. Ritchie

Abstract:

Colic, defined as abdominal pain in the horse, has several known predisposing factors. Decreased water intake has been shown to predispose equines to impaction colic. The objective of this study was to determine if offering flavored water (sweet feed or banana extract) would increase voluntary water intake in horses to serve as an assessable, noninvasive method for farm managers, veterinarians, or owners to decrease the risk of impaction colic. An a priori power analysis, which was conducted using G*Power version 3.1.9.7, indicated that the minimum sample size required to achieve 80% power for detecting a large effect at a significance level of α = .05 was 19 horses for a one-way repeated measures ANOVA with three treatment levels and assuming a non-sphericity correction of ε=0.5. After a three-day control period, 21 horses were randomly divided into two sequences and offered either banana or sweet feed flavored water. Horses always had a bucket of unflavored water available. A repeated measure study design was used to measure water consumption of each horse over a 62-hour period. A one-way repeated measures ANOVA was conducted to determine whether there were statistically significant differences among the means for the three-day average water intake (ml/kg). Although not statistically significant (F(2, 38) = 1.28, p = .290, partial η2 = .063), the three-day average water intake was largest for banana flavored water (M = 53.51, SD = 9.25 ml/kg), followed by sweet feed (M = 52.93, SD = 11.99 ml/kg), and, finally, unflavored water (M = 50.40, SD = 10.82 ml/kg). Paired-samples t-tests were used to determine whether there was a statistically significant difference between the three-day average water intake (ml/kg) for flavored versus unflavored water. The average unflavored water intake (M = 29.3 ml/kg, SD = 8.9) over the measurement period was greater than the banana flavored water (M = 27.7 ml/kg, SD = 9.8), but the average consumption of the sweet feed flavored water (M = 30.4 ml/kg, SD = 14.6) was greater than unflavored water (M = 24.3 ml/kg, SD = 11.4). None of these differences in average intake were statistically significant (p > .244). Future research is warranted to determine if other flavors significantly increase voluntary water intake in horses.

Keywords: colic, equine, equine science, water intake, flavored water, horses, equine management, equine health, horse health, horse health care management, colic prevention

Procedia PDF Downloads 140
9199 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization

Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade

Abstract:

The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.

Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy

Procedia PDF Downloads 114
9198 Impact of Climate Change on Water Resources in Morocco

Authors: Abdelghani Qadem, Zouhair Qadem

Abstract:

Like the countries of the Mediterranean region, Morocco is likely to be at high risk of water scarcity due to climate change. Morocco, which is the subject of this study, is located between two climatic zones, temperate in the North tropical in the South, Morocco is distinguished by four types of climate: humid, sub-humid, semi-arid, and arid. The last decades attest to the progression of the semi-arid climate towards the North of the country. The IPCC projections, which have been made in this direction, show that there is an overall downward trend in rainfall contributions varying on average between 10% and 30% depending on the scenario selected and the region considered, they also show an upward trend in average annual temperatures. These trends will have a real impact on water resources, which will result in a drop in the volume of water resources varying between 7.6% and 40.6%. The present study aims to describe the meteorological conditions of Morocco in order to answer the problem dealing with the effect of climatic fluctuations on water resources and to assess water vulnerability in the face of climate change.

Keywords: morocco, climate change, water resources, impact, water scarcity

Procedia PDF Downloads 81
9197 Assessment of Drinking Water Quality in Relation to Arsenic Contamination in Drinking Water in Liberia: Achieving the Sustainable Development Goal of Ensuring Clean Water and Sanitation

Authors: Victor Emery David Jr., Jiang Wenchao, Daniel Mmereki, Yasinta John

Abstract:

The fundamentals of public health are access to safe and clean drinking water. The presence of arsenic and other contaminants in drinking water leads to the potential risk to public health and the environment particularly in most developing countries where there’s inadequate access to safe and clean water and adequate sanitation. Liberia has taken steps to improve its drinking water status so as to achieve the Sustainable Development Goals (SDGs) target of ensuring clean water and effective sanitation but there is still a lot to be done. The Sustainable Development Goals are a United Nation initiative also known as transforming our world: The 2030 agenda for sustainable development. It contains seventeen goals with 169 targets to be met by respective countries. Liberia is situated within in the gold belt region where there exist the presence of arsenic and other contaminants in the underground water due to mining and other related activities. While there are limited or no epidemiological studies conducted in Liberia to confirm illness or death as a result of arsenic contamination in Liberia, it remains a public health concern. This paper assesses the drinking water quality, the presence of arsenic in groundwater/drinking water in Liberia, and proposes strategies for mitigating contaminants in drinking water and suggests options for improvement with regards to achieving the Sustainable Development Goals of ensuring clean water and effective sanitation in Liberia by 2030.

Keywords: arsenic, action plan, contaminants, environment, groundwater, sustainable development goals (SDGs), Monrovia, Liberia, public health, drinking water

Procedia PDF Downloads 257
9196 Some Aspects of Water Resources Management in Arid and Semi-Arid Regions, Case Study of Western Iran

Authors: Amir Hamzeh Haghiabi

Abstract:

Water resource management is of global significance as it plays a key role in the socioeconomic development of all nations. On account of the fact that Iran is situated in a highly pressurized belt in the world, precipitation is limited, so that the average annual precipitation in the country is about 250 mm, only about one third to one quarter of the world average for rainfall. Karkheh basin is located in the semiarid and arid regions of Western Iran, an area with severe water scarcity. 70 % of rainfall is directly evaporated. The potential annual evaporation of the southern and northern regions is 3,600 mm 1,800 mm, respectively. In this paper, Some aspects of water resources management for this region, the specifications of the Karkheh reservoir dam & hydroelectric power plant as the biggest dam in history of Iran with total volume of reservoir 7.3 Bm3 are illustrated. Also the situation of water availability in the basin, surface and groundwater potential are considered.

Keywords: Iran, water availability, water resources, Zagros

Procedia PDF Downloads 644
9195 Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers

Authors: Bastien Sanglard, Simon Cayez, Guillaume Viau, Thomas Blon, Julian Carrey, Sébastien Lachaize

Abstract:

The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work.

Keywords: solar concentration, metallurgy, ammonia, hydrogen, sustainability

Procedia PDF Downloads 136
9194 An Investigation on the Suitability of Dual Ion Beam Sputtered GMZO Thin Films: For All Sputtered Buffer-Less Solar Cells

Authors: Vivek Garg, Brajendra S. Sengar, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shailendra Kumar, Shaibal Mukherjee

Abstract:

CuInGaSe (CIGSe) is the dominant thin film solar cell technology. The band alignment of Buffer/CIGSe interface is one of the most crucial parameters for solar cell performance. In this article, the valence band offset (VBOff) and conduction band offset (CBOff) values of Cu(In0.70Ga0.30)Se/ 1 at.% Ga: Mg0.25Zn0.75O (GMZO) heterojunction, grown by dual ion beam sputtering system (DIBS), are calculated to understand the carrier transport mechanism at the heterojunction for the realization of all sputtered buffer-less solar cells. To determine the valence band offset (VBOff), ∆E_V at GMZO/CIGSe heterojunction interface, the standard method based on core-level photoemission is utilized. The value of ∆E_V can be evaluated by considering common core-level peaks. In our study, the values of (Valence band onset)VBOn, obtained by linear extrapolation method for GMZO and CIGSe films are calculated to be 2.86 and 0.76 eV. In the UPS spectra peak positions of Se 3d is observed in UPS spectra at 54.82 and 54.7 eV for CIGSe film and GMZO/CIGSe interface respectively, while the peak position of Mg 2p is observed at 50.09 and 50.12 eV for GMZO and GMZO/CIGSe interface respectively. The optical band gap of CIGSe and GMZO are obtained from absorption spectra procured from spectroscopic ellipsometry are 1.26 and 3.84 eV respectively. The calculated average values of ∆E_v and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. We investigated the band-offset properties at the GMZO/CIGSe heterojunction to verify the suitability of the GMZO for the realization of the buffer-less solar cells. The calculated average values of ∆E_V and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B.S.S and A.K acknowledge CSIR and V.G acknowledge UGC, India for their fellowships. B.S.S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.

Keywords: CIGSe, DIBS, GMZO, solar cells, UPS

Procedia PDF Downloads 275
9193 Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems

Authors: Marco Correa, Flavio Araujo, Paulo Scalize, Antonio Albuquerque

Abstract:

The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials.

Keywords: re-use, residue, sustainable, water treatment plants, sludge

Procedia PDF Downloads 486
9192 Water Access and Food Security: A Cross-Sectional Study of SSA Countries in 2017

Authors: Davod Ahmadi, Narges Ebadi, Ethan Wang, Hugo Melgar-Quiñonez

Abstract:

Compared to the other Least Developed Countries (LDCs), major countries in sub-Saharan Africa (SSA) have limited access to the clean water. People in this region, and more specifically females, suffer from acute water scarcity problems. They are compelled to spend too much of their time bringing water for domestic use like drinking and washing. Apart from domestic use, water through affecting agriculture and livestock contributes to the food security status of people in vulnerable regions like SSA. Livestock needs water to grow, and agriculture requires enormous quantities of water for irrigation. The main objective of this study is to explore the association between access to water and individuals’ food security status. Data from 2017 Gallup World Poll (GWP) for SSA were analyzed (n=35,000). The target population in GWP is the entire civilian, non-institutionalized, aged 15 and older population. All samples selection is probability based and nationally representative. The Gallup surveys an average of 1,000 samples of individuals per country. Three questions related to water (i.e., water quality, availability of water for crops and availability of water for livestock) were used as the exposure variables. Food Insecurity Experience Scale (FIES) was used as the outcome variable. FIES measures individuals’ food security status, and it is composed of eight questions with simple dichotomous responses (1=Yes and 0=No). Different statistical analyses such as descriptive, crosstabs and binary logistic regression, form the basis of this study. Results from descriptive analyses showed that more than 50% of the respondents had no access to enough water for crops and livestock. More than 85% of respondents were categorized as “food insecure”. Findings from cross-tabulation analyses showed that food security status was significantly associated with water quality (0.135; P=0.000), water for crops (0.106; P=0.000) and water for livestock (0.112; P=0.000). In regression analyses, the probability of being food insecure increased among people who expressed no satisfaction with water quality (OR=1.884 (OR=1.768-2.008)), not enough water for crops (OR=1.721 (1.616-1.834)) and not enough water for livestock (OR=1.706 (1.819)). In conclusion, it should note that water access affects food security status in SSA.

Keywords: water access, agriculture, livestock, FIES

Procedia PDF Downloads 145
9191 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field

Authors: A. J. Nazari, S. Honma

Abstract:

This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.

Keywords: fractional flow, oil displacement, relative permeability, simultaneously flow

Procedia PDF Downloads 387
9190 Development of Transparent Nano-Structured Super-Hydrophobic Coating on Glass and Evaluation of Anti-Dust Properties

Authors: Abhilasha Mishra, Neha Bhatt

Abstract:

Super-hydrophobicity is an effect in which a surface roughness and chemical composition are combined to produce unusual water and dust repellent surface. The super-hydrophobic surface is widely used in many applications such as windshields of the automobile, aircraft, lens, solar cells, roofing, boat hull, paints, etc. Four coating solutions were prepared by varying compositions of 1,1,1,3,3,3 hexametyldisilazane (HDMS) and tetraethylorthosilicate (TEOS) sol. These solutions were coated on glass slides by a spin coating method and etched at a high temperature ranging 250 -350 oC. All the coatings were studied for its different properties like water repellent, anti-dust, and transparency and contact angle measurements. Stability of coatings was also studied with respect to temperature, external environment, and pH. It was found that all coatings impart a significant super-hydrophobicity on a glass surface with contact angle ranging from 156o to 162o and have good stability in the external environment. The results of the different coatings were observed and compared with each other. On increasing layers of coatings the super-hydrophobicity and anti-dust properties increases but after 3 coatings the transparency of coating starts decreasing.

Keywords: super-hydrophobic, contact angle, coating, anti-dust

Procedia PDF Downloads 254
9189 Investigation of Surface Water Quality Intera-Annual Variations, Gorganroud Basin, Iran

Authors: K. Ebrahimi, S. Shahid, H. Dehban

Abstract:

Climate variability can affect surface water quality. The objective of present study is to assess the impacts of climate variability on water quality of Gorganroud River, Iran, over the time period 1971 to 2011. To achieve this aim, climate variability and water quality variations were studied involving a newly developed drought index (MRDI) and hysteresis curves, respectively. The results show that climate variability significantly affected surface water quality over the time. The existence of yearly internal variation and hysteresis phenomenon for pH and EC parameters was observed. It was found that though drought affected pH considerably, it could not affect EC significantly.

Keywords: climate variability, hysteresis curves, multi drought index, water quality

Procedia PDF Downloads 366
9188 Direct Palladium-Catalyzed Selective N-Allylation of 2,3-Disubstituted Indoles with Allylic Alcohols in Water

Authors: Bai-Jing Peng, Shyh-Chyun Yang

Abstract:

Organic reactions in water have recently attracted much attention, not only because unique reactivity is often observed in water but also because water is a safe and economical substitute for conventional organic solvents. Thus, development of environmental safe, atom-economical reactions in water is one of the most important goals of synthetic chemistry. The recent paper has documented renewed interest in the use of allylic substrates in the synthesis of new C−C, C−N, and C−O bonds. We have reported our attempts and some successful applications of a process involving the C-O bond cleavage catalyzed by palladium or platinum complexes in water. Because of the importance of heterocycle indole derivatives, much effort has been directed toward the development of methods for functionalization of the indole nucleus at N1 site. In our research, the palladium-catalyzed 2,3-disubstitued indoles with allylic alcohols was investigated under different conditions. Herein, we will establish a simple, convenient, and efficient method, which affords high yields of allylated indoles.

Keywords: palladium-catalyzed, allylic alcohols, indoles, water, allylation

Procedia PDF Downloads 236
9187 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 472
9186 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D

Authors: Nima E. Gorji

Abstract:

The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.

Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling

Procedia PDF Downloads 328