Search results for: progressive phase distribution
8441 Photophysical Study of Pyrene Butyric Acid in Aqueous Ionic Liquid
Authors: Pratap K. Chhotaray, Jitendriya Swain, Ashok Mishra, Ramesh L. Gardas
Abstract:
Ionic liquids (ILs) are molten salts, consist predominantly of ions and found to be liquid below 100°C. The unparalleled growing interest in ILs is based upon their never ending design flexibility. The use of ILs as a co-solvent in binary as well as a ternary mixture with molecular solvents multifold it’s utility. Since polarity is one of the most widely applied solvent concepts which represents simple and straightforward means for characterizing and ranking the solvent media, its study for a binary mixture of ILs is crucial for its widespread application and development. The primary approach to the assessment of solution phase intermolecular interactions, which generally occurs on the picosecond to nanosecond time scales, is to exploit the optical response of photophysical probe. Pyrene butyric acid (PBA) is used as fluorescence probe due to its high quantum yield, longer lifetime and high solvent polarity dependence of fluorescence spectra. Propylammonium formate (PAF) is the IL used for this study. Both the UV-absorbance spectra and steady state fluorescence intensity study of PBA in different concentration of aqueous PAF, reveals that with an increase in PAF concentration, both the absorbance and fluorescence intensity increases which indicate the progressive solubilisation of PBA. Whereas, near about 50% of IL concentration, all of the PBA molecules get solubilised as there are no changes in the absorbance and fluorescence intensity. Furthermore, the ratio II/IV, where the band II corresponds to the transition from S1 (ν = 0) to S0 (ν = 0), and the band IV corresponds to transition from S1 (ν = 0) to S0 (ν = 2) of PBA, indicates that the addition of water into PAF increases the polarity of the medium. Time domain lifetime study shows an increase in lifetime of PBA towards the higher concentration of PAF. It can be attributed to the decrease in non-radiative rate constant at higher PAF concentration as the viscosity is higher. The monoexponential decay suggests that homogeneity of solvation environment whereas the uneven width at full width at half maximum (FWHM) indicates there might exist some heterogeneity around the fluorophores even in the water-IL mixed solvents.Keywords: fluorescence, ionic liquid, lifetime, polarity, pyrene butyric acid
Procedia PDF Downloads 4578440 Experimental and Numerical Modeling of Dynamic Axial Crushing of a Composite Glass/PEHD
Authors: Mahmoudi Noureddine, Kaou Abdellah
Abstract:
Energy absorption is a major requirement for automotive structures. Although crashworthy structures of composite based glass fiber have exhibited energy absorption greater than similar at other composites structures, the crush process in many cases is accompanied by fracture, rather than by plastic deformation. The crash experiments show that the tubes are crushed in progressive manner start from one end of the tubes and delamination takes place between the layers. To better understand details of the crash process, ABAQUS finite element code is used.Keywords: Energy absorption, crash, PEHD
Procedia PDF Downloads 4968439 Honey Bee (Apis Mellifera) Drone Flight Behavior Revealed by Radio Frequency Identification: Short Trips That May Help Drones Survey Weather Conditions
Authors: Vivian Wu
Abstract:
During the mating season, honeybee drones make mating fights to congregation areas where they face fierce competition to mate with a queen. Drones have developed distinct anatomical and functional features in order to optimize their chances of success. Flight activities of western honeybee (Apis mellifera) drones and foragers were monitored using radio frequency identification (RFID) to test if drones have also developed distinct flight behaviors. Drone flight durations showed a bimodal distribution dividing the flights into short flights and long flights while forager flight durations showed a left-skewed unimodal distribution. Interestingly, the short trips occurred prior to the long trips on a daily basis. The first trips of the day the drones made were primarily short trips, and the distribution significantly shifted to long trips as the drones made more trips. In contrast, forager trips showed no such shift of distribution. In addition, drones made short trips but no long mating trips on days associated with a significant drop in temperature and increase of clouds compared to the previous day. These findings suggest that drones may have developed a unique flight behavior making short trips first to survey the weather conditions before flying out to the congregation area to pursue a successful mating.Keywords: apis mellifera, drone, flight behavior, weather, RFID
Procedia PDF Downloads 788438 Hg Anomalies and Soil Temperature Distribution to Delineate Upflow and Outflow Zone in Bittuang Geothermal Prospect Area, south Sulawesi, Indonesia
Authors: Adhitya Mangala, Yobel
Abstract:
Bittuang geothermal prospect area located at Tana Toraja district, South Sulawesi. The geothermal system of the area related to Karua Volcano eruption product. This area has surface manifestation such as fumarole, hot springs, sinter silica and mineral alteration. Those prove that there are hydrothermal activities in the subsurface. However, the project and development of the area have not implemented yet. One of the important elements in geothermal exploration is to determine upflow and outflow zone. This information very useful to identify the target for geothermal wells and development which it is a risky task. The methods used in this research were Mercury (Hg) anomalies in soil, soil and manifestation temperature distribution and fault fracture density from 93 km² research area. Hg anomalies performed to determine the distribution of hydrothermal alteration. Soil and manifestation temperature distribution were conducted to estimate heat distribution. Fault fracture density (FFD) useful to determine fracture intensity and trend from surface observation. Those deliver Hg anomaly map, soil and manifestation temperature map that combined overlayed to fault fracture density map and geological map. Then, the conceptual model made from north – south, and east – west cross section to delineate upflow and outflow zone in this area. The result shows that upflow zone located in northern – northeastern of the research area with the increase of elevation and decrease of Hg anomalies and soil temperature. The outflow zone located in southern - southeastern of the research area which characterized by chloride, chloride - bicarbonate geothermal fluid type, higher soil temperature, and Hg anomalies. The range of soil temperature distribution from 16 – 19 °C in upflow and 19 – 26.5 °C in the outflow. The range of Hg from 0 – 200 ppb in upflow and 200 – 520 ppb in the outflow. Structural control of the area show northwest – southeast trend. The boundary between upflow and outflow zone in 1550 – 1650 m elevation. This research delivers the conceptual model with innovative methods that useful to identify a target for geothermal wells, project, and development in Bittuang geothermal prospect area.Keywords: Bittuang geothermal prospect area, Hg anomalies, soil temperature, upflow and outflow zone
Procedia PDF Downloads 3248437 Preparation and Characterization of Antifouling Polysulfone Flat Sheet Membrane by Phase Inversion
Authors: Bharti Saini, Sukanta K. Dash
Abstract:
In this work polymeric Nanofiltration (NF) membranes of polysulfone (PSF) (average molecular weight of 22400 Da) were prepared using polyethylene glycol (PEG) (average molecular weight of 200 Da) as an organic additive and ZnCl2 as an inorganic additive. Dimethyl acetamide (DMAc) was used as the solvent, and Deionised water as nonsolvent. The membranes were prepared by phase inversion (immersion precipitation) method. PEG 200 and ZnCl2 in varying concentration are directly added into the casting solution of PSF and DMAc. PEG 200 was used in concentration varying from 0 to 10 % (w/w) in the solution of PSF and DMAc, while ZnCl2 is varied from 0 to 2% (w/w). Membranes were characterized for surface morphology, water uptake, porosity and contact angle, with respect to concentration of PEG and ZnCl2. It was observed that with the increase in additive PEG 200, the porosity and hence, hydrophilicity increase. As a result, the number of pores increases as justified by the SEM analysis as well. The study revealed that the synergistic effect of PEG with ZnCl2 is more effective, and the best results were produced by the solution containing 2% PEG 200 and 1% ZnCl2. It was inferred that with the increase in concentration of additives, the pore size goes on decreasing. The membranes obtained gradually move from microfiltration range to nanofiltration range, and this change is primarily brought about by the addition of ZnCl2.Keywords: membrane, phase inversion method, polysulfone, porous structure
Procedia PDF Downloads 2338436 An Automated Bender Element System Used for S-Wave Velocity Tomography during Model Pile Installation
Authors: Yuxin Wu, Yu-Shing Wang, Zitao Zhang
Abstract:
A high-speed and time-lapse S-wave velocity measurement system has been built up for S-wave tomography in sand. This system is based on bender elements and applied to model pile tests in a tailor-made pressurized chamber to monitor the shear wave velocity distribution during pile installation in sand. Tactile pressure sensors are used parallel together with bender elements to monitor the stress changes during the tests. Strain gages are used to monitor the shaft resistance and toe resistance of pile. Since the shear wave velocity (Vs) is determined by the shear modulus of sand and the shaft resistance of pile is also influenced by the shear modulus of sand around the pile, the purposes of this study are to time-lapse monitor the S-wave velocity distribution change at a certain horizontal section during pile installation and to correlate the S-wave velocity distribution and shaft resistance of pile in sand.Keywords: bender element, pile, shaft resistance, shear wave velocity, tomography
Procedia PDF Downloads 4278435 Examining the Drivers to Sustainable Consumer Behavioral Intention in the Irish Aviation Industry
Authors: Amy Whelan
Abstract:
This paper presents a comprehensive study on the drivers of sustainable consumer behavior in the Irish aviation industry. It aims to understand the underlying factors that facilitate or hinder a consumer's sustainable consumption habits related to aviation and its impact on the achievement of the United Nations' Sustainable Development Goals (SDGs). Adopted by all UN member states in 2015, the SDGs represent a global call to action to end poverty, protect the planet, and ensure peace and prosperity for all by 2030. The research takes a mixed methodology approach, combining focus groups in phase 1 and a survey in phase 2. The focus groups will be used to elicit qualitative data to understand the attitudes and perceptions of consumers toward sustainable aviation and tourism in Ireland. The survey in phase 2 will then provide a more comprehensive and quantifiable understanding of the topic. The results of this study will contribute to the advancement of knowledge in the field of sustainable tourism and will provide insights into the drivers of sustainable consumer behavior in the Irish aviation industry. It is expected that the findings of this research will have practical implications for industry stakeholders and policy-makers in their efforts to promote sustainable tourism and achieve the SDGs in Ireland.Keywords: aviation, consumer behaviour, marketing, sustainability
Procedia PDF Downloads 788434 Loop Heat Pipe Two-Phase Heat Transports: Guidelines for Technology Utilization
Authors: Triem T. Hoang
Abstract:
Loop heat pipes (LHPs) are two-phase capillary-pumped heat transports. An appropriate working fluid is selected for the intended application temperature range. A closed-loop is evacuated to a high vacuum, back-filled partially with the working fluid, and then hermetically sealed under the fluid own pressure. Heat from a heat source conducts through the evaporator casing to vaporize liquid on the outer surface of the wick structure inside the evaporator. The generated vapor is compelled to vent out of the evaporator and into the vapor line for transport to the condenser assembly. There, heat is removed and rejected to a heat sink to condensed vapor back to liquid. The liquid exits the condenser and travels in the liquid line to return to the evaporator to complete the cycle. The circulation of fluid, and thus the heat transport in the LHP, is accomplished entirely by capillary action. The LHP contains no mechanical moving part to wear out or break down and, therefore possesses, reliability and a long life even without maintenance. In this paper, the author not only attempts to introduce the LHP technology in simplistic terms to those who are not familiar with it but also provides necessary technical information to potential users for the proper design and analysis of the LHP system.Keywords: two-phase heat transfer, loop heat pipe, capillary pumped technology, thermal-fluid modeling
Procedia PDF Downloads 1398433 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone
Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay
Abstract:
Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.
Procedia PDF Downloads 1448432 Analysis and Mapping of Climate and Spring Yield in Tanahun District, Nepal
Authors: Resham Lal Phuldel
Abstract:
This study based on a bilateral development cooperation project funded by the governments of Nepal and Finland. The first phase of the project has been completed in August 2012 and the phase II started in September 2013 and will end September 2018. The project strengthens the capacity of local governments in 14 districts to deliver services in water supply, sanitation and hygiene in Western development region and in Mid-Western development region of Nepal. In recent days, several spring sources have been dried out or slowly decreasing its yield across the country due to changing character of rainfall, increasing evaporative losses and some other manmade causes such as land use change, infrastructure development work etc. To sustain the hilly communities, the sources have to be able to provide sufficient water to serve the population, either on its own or in conjunction with other sources. Phase III have measured all water sources in Tanahu district in 2004 and sources were located with the GPS. Phase II has repeated the exercise to see changes in the district. 3320 water sources as identified in 2004 and altogether 4223 including new water sources were identified and measured in 2014. Between 2004 and 2014, 50% flow rate (yield) deduction of point sources’ average yield in 10 years is found. Similarly, 21.6% and 34% deductions of average yield were found in spring and stream water sources respectively. The rainfall from 2002 to 2013 shows erratic rainfalls in the district. The monsoon peak month is not consistent and the trend shows the decrease of annual rainfall 16.7 mm/year. Further, the temperature trend between 2002 and 2013 shows warming of + 0.0410C/year.Keywords: climate change, rainfall, source discharge, water sources
Procedia PDF Downloads 2818431 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks
Authors: S. Neelima, P. S. Subramanyam
Abstract:
The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)
Procedia PDF Downloads 4358430 Irregular Meal Pattern: What Is the Impact on Weight
Authors: Maha Alhussain, Moira A Taylor, Ian A. Macdonald
Abstract:
Background: It is well established that dietary composition has effects on metabolism and therefore impacts on health; however other aspects of diet, such as meal pattern, could also be important in both obesity management and promoting health. The present study investigated the effect of irregular meal frequency on anthropometric measurements and energy expenditure (EE) in healthy women. Design: 11 healthy weight women (18–40 years) were studied in a randomized crossover trial with two phases of 2 weeks each. In Phase 1, participants consumed either a regular meal pattern (6 meals/day) or an irregular meal pattern (varying from 3 to 9 meals/day). In Phase 2, participants followed the alternative meal pattern to that followed in Phase 1, after a 2-weeks washout period. In the two phases, identical foods were provided to a participant in amounts designed to keep body weight constant. Participants came to the laboratory after an overnight fast at the start and end of each phase. EE was measured in fasting state by indirect calorimetry. Postprandial EE was measured during the 3 h period after consumption of a milkshake, test drink. Results: There were no significant changes in body weight and anthropometric measurements after both meal pattern interventions. There was also no significant difference in mean daily energy intake between the regular and irregular meal pattern (2043 ±31 and 2099 ±33 respectively). EE in the fasting state showed no significant differences cross the experiment visits. There was a significant difference in Postprandial EE (measured for 3 h) by visit (P=0.04). Postprandial EE after the regular meal pattern was significantly higher than at baseline (P=0.002) or than after the irregular meal pattern (P= 0.04). Conclusion: Eating regularly for 14-day period significantly increases Postprandial EE which may contribute to weight loss and obesity management.Keywords: energy expenditure, energy intake, meal pattern, weight loss
Procedia PDF Downloads 4128429 Heat Transfer Enhancement Due to the Optimal Porosity in Plate Heat Exchangers with Sinusoidal Plates
Authors: Hossein Shokouhmand, Seyyed Mostafa Saadat
Abstract:
In this paper, the effect of thermal dispersion on the performance of plate heat exchangers (PHEs) with sinusoidal plates is investigated. In this regard, the PHE is considered as a porous medium. The important property of a porous medium is porosity that is defined as the total fluid volume divided by the total volume occupied by the solid and fluid. A 2D array of parallel sinusoidal plates with laminar periodically developed forced convection and single-phase constant property flows and conduction in a homogenous solid phase in two directions is considered. The array of flows is counter and the flows heat capacities are equal. Numerical study of conjugate heat transfer and axial conduction in the solid phase with different plate thicknesses showed that there is an optimal porosity in which the efficiency of heat transfer is up to 4% more than the time when the porosity is near one. It is shown that the optimal porosity at zero angle of inclination depends both on Reynolds number and the aspect ratio. The optimal porosity increased while either the Reynolds number or waviness of plates increased.Keywords: plate heat exchanger, optimal porosity, efficiency, aspect ratio
Procedia PDF Downloads 4038428 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques
Authors: Zakaria Baka, Halima Alem
Abstract:
Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques
Procedia PDF Downloads 1948427 Enhancing the Pricing Expertise of an Online Distribution Channel
Authors: Luis N. Pereira, Marco P. Carrasco
Abstract:
Dynamic pricing is a revenue management strategy in which hotel suppliers define, over time, flexible and different prices for their services for different potential customers, considering the profile of e-consumers and the demand and market supply. This means that the fundamentals of dynamic pricing are based on economic theory (price elasticity of demand) and market segmentation. This study aims to define a dynamic pricing strategy and a contextualized offer to the e-consumers profile in order to improve the number of reservations of an online distribution channel. Segmentation methods (hierarchical and non-hierarchical) were used to identify and validate an optimal number of market segments. A profile of the market segments was studied, considering the characteristics of the e-consumers and the probability of reservation a room. In addition, the price elasticity of demand was estimated for each segment using econometric models. Finally, predictive models were used to define rules for classifying new e-consumers into pre-defined segments. The empirical study illustrates how it is possible to improve the intelligence of an online distribution channel system through an optimal dynamic pricing strategy and a contextualized offer to the profile of each new e-consumer. A database of 11 million e-consumers of an online distribution channel was used in this study. The results suggest that an appropriate policy of market segmentation in using of online reservation systems is benefit for the service suppliers because it brings high probability of reservation and generates more profit than fixed pricing.Keywords: dynamic pricing, e-consumers segmentation, online reservation systems, predictive analytics
Procedia PDF Downloads 2348426 Nursing System Development in Patients Undergoing Operation in 3C Ward
Authors: Darawan Augsornwan, Artitaya Sabangbal, Maneewan Srijan, Kanokarn Kongpitee, Lalida Petphai, Palakorn Surakunprapha
Abstract:
Background: Srinagarind Hospital, Ward 3C, has patients with head and neck cancer, congenital urology anomalies such as hypospadis, cleft lip and cleft palate and congenital megacolon who need surgery. Undergoing surgery is a difficult time for patients/ family; they feel fear and anxiety. Nurses work closely with patients and family for 24 hours in the process of patients care, so should have the good nursing ability, innovation and an efficient nursing care system to promote patients self-care ability reducing suffering and preventing complications. From previous nursing outcomes we found patients did not receive appropriate information, could not take care of their wound, not early ambulation after the operation and lost follow-up. Objective: to develop the nursing system for patients who were undergoing an operation. Method: this is a participation action research. The sample population was 11 nurses and 60 patients. This study was divided into 3 phase: Phase 1. Situation review In this phase we review the clinical outcomes, the process of care from documents such as nurses note and interview nurses, patients and family about the process of care by nurses. Phase 2: focus group with 11 nurses, searching guideline for specific care, nursing care system then establish the protocol. This phase we have the protocol for giving information, teaching protocol and teaching record, leaflet for all of top five diseases, make video media to convey information, ambulation package and protocol for patients with head and neck cancer, patients zoning, primary nurse, improved job description for each staff level. Program to record number of patients, kind of medical procedures for showing nurses activity each day. Phase 3 implementation and evaluation. Result: patients/family receive appropriate information about deep breathing exercise, cough, early ambulation after the operation, information during the stay in the hospital. Patients family satisfaction is 95.04 percent, appropriate job description for a practical nurse, nurse aid, and worker. Nurses satisfaction is 95 percent. The complications can be prevented. Conclusion: the nursing system is the dynamic process using evidence to develop nursing care. The appropriate system depends on context and needs to keep an eye on every event.Keywords: development, nursing system, patients undergoing operation, 3C Ward
Procedia PDF Downloads 2638425 Characterization of Titanium -Niobium Alloys by Powder Metallurgy as İmplant
Authors: Eyyüp Murat Karakurt, Yan Huang, Mehmet Kaya, Hüseyin Demirtaş, Alper İncesu
Abstract:
In this study, Ti-(x) Nb (at. %) master alloys (x:10, 20, and 30) were fabricated following a standard powder metallurgy route and were sintered at 1200 ˚C for 6h, under 300 MPa by powder metallurgy method. The effect of the Nb concentration in Ti matrix and porosity level was examined experimentally. For metallographic examination, the alloys were analysed by optical microscopy and energy dispersive spectrometry analysis. In addition, X-ray diffraction was performed on the alloys to determine which compound formed in the microstructure. The compression test was applied to the alloys to understand the mechanical behaviors of the alloys. According to Nb concentration in Ti matrix, the β phase increased. Also, porosity level played a crucial role on the mechanical performance of the alloys.Keywords: Nb concentration, porosity level, powder metallurgy, The β phase
Procedia PDF Downloads 2638424 Modelling Operational Risk Using Extreme Value Theory and Skew t-Copulas via Bayesian Inference
Authors: Betty Johanna Garzon Rozo, Jonathan Crook, Fernando Moreira
Abstract:
Operational risk losses are heavy tailed and are likely to be asymmetric and extremely dependent among business lines/event types. We propose a new methodology to assess, in a multivariate way, the asymmetry and extreme dependence between severity distributions, and to calculate the capital for Operational Risk. This methodology simultaneously uses (i) several parametric distributions and an alternative mix distribution (the Lognormal for the body of losses and the Generalized Pareto Distribution for the tail) via extreme value theory using SAS®, (ii) the multivariate skew t-copula applied for the first time for operational losses and (iii) Bayesian theory to estimate new n-dimensional skew t-copula models via Markov chain Monte Carlo (MCMC) simulation. This paper analyses a newly operational loss data set, SAS Global Operational Risk Data [SAS OpRisk], to model operational risk at international financial institutions. All the severity models are constructed in SAS® 9.2. We implement the procedure PROC SEVERITY and PROC NLMIXED. This paper focuses in describing this implementation.Keywords: operational risk, loss distribution approach, extreme value theory, copulas
Procedia PDF Downloads 6008423 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic
Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni
Abstract:
The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress
Procedia PDF Downloads 2568422 Effect of Omega-3 Supplementation on Stunted Egyptian Children at Risk of Environmental Enteric Dysfunction: An Interventional Study
Authors: Ghada M. El-Kassas, Maged A. El Wakeel, Salwa R. El-Zayat
Abstract:
Background: Environmental enteric dysfunction (EED) is asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. Evidence has suggested that supplementary omega-3 might ameliorate this damage by reducing gastrointestinal inflammation and may also benefit cognitive development. Objective: We tested whether omega-3 supplementation improves intestinal integrity, growth, and cognitive function in stunted children predicted to have EED. Methodology: 100 Egyptian stunted children aged 1-5 years and 100 age and gender-matched normal children as controls. At the primary phase of the study, we assessed anthropometric measures and fecal markers such as myeloperoxidase (MPO), neopterin (NEO), and alpha-1-anti-trypsin (AAT) (as predictors of EED). Cognitive development was assessed (Bayley or Wechsler scores). Oral n-3 (omega-3) LC-PUFA at a dosage of 500 mg/d was supplemented to all cases and followed up for 6 months after which the 2ry phase of the study included the previous clinical, laboratory and cognitive assessment. Results: Fecal inflammatory markers were significantly higher in cases compared to controls. (MPO), (NEO) and (AAT) showed a significant decline in cases at the end of the 2ry phase (P < 0.001 for all). Omega-3 supplementation resulted also in a significant increase in mid-upper arm circumference (MUAC) (P < 0.01), weight for age z-score, and skinfold thicknesses (P< 0.05 for both). Cases showed significant improvement of cognitive function at phase 2 of the study. Conclusions: Omega-3 supplementation successfully improved intestinal inflammatory state related to EED. Also, some improvement of anthropometric and cognitive parameters showed obvious improvement with omega-3 supplementation.Keywords: cognitive functions, EED, omega-3, stunting
Procedia PDF Downloads 1498421 Predicting Long-Term Performance of Concrete under Sulfate Attack
Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki
Abstract:
Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC
Procedia PDF Downloads 1608420 A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation
Authors: Nikolaos Papadimas, Joanna Bennett, Amir Sakhaei, Timothy Dodwell
Abstract:
Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling.Keywords: data-driven , material consolidation, stochastic finite elements, surrogate models
Procedia PDF Downloads 1438419 Assessment of Spatial Development in Peri Urban Villages of Baramati
Authors: Rutuja Rajendra Ghadage
Abstract:
Villages surrounding the city undergo the process of peri urbanization, which transforms their original village character. These villages undergo fast and unplanned physical growth and development. Due to the expansion of urban activities, peri-urban villages are experiencing extensive changes. Focusing on the peri-urban villages of Baramati city in Maharashtra, India, this paper assesses the nature and extent of spatial development and identifies the factors contributing to the rapid development of eleven sample Peri-urban villages. After reviewing similar studies, four indicators are selected to assess the spatial development of peri-urban villages; 1) population, 2) road network, 3) land use landcover change, and 4) built-up distribution. The spatial development of peri-urban villages of Baramati is uneven as few villages are still expanding or growing while few villages have started intensifying. The main factor for this development is the presence of industries and educational institutions. They have affected spatial development directly as well as indirectly. In the future, most of the peri-urban villages of Baramati will be in the intensification phase, so if this happens in an unplanned manner, it will create stress on services and facilities.Keywords: factors and indicators of spatial development, peri urban villages, peri urbanization, spatial development
Procedia PDF Downloads 2158418 Identification of Outliers in Flood Frequency Analysis: Comparison of Original and Multiple Grubbs-Beck Test
Authors: Ayesha S. Rahman, Khaled Haddad, Ataur Rahman
Abstract:
At-site flood frequency analysis is used to estimate flood quantiles when at-site record length is reasonably long. In Australia, FLIKE software has been introduced for at-site flood frequency analysis. The advantage of FLIKE is that, for a given application, the user can compare a number of most commonly adopted probability distributions and parameter estimation methods relatively quickly using a windows interface. The new version of FLIKE has been incorporated with the multiple Grubbs and Beck test which can identify multiple numbers of potentially influential low flows. This paper presents a case study considering six catchments in eastern Australia which compares two outlier identification tests (original Grubbs and Beck test and multiple Grubbs and Beck test) and two commonly applied probability distributions (Generalized Extreme Value (GEV) and Log Pearson type 3 (LP3)) using FLIKE software. It has been found that the multiple Grubbs and Beck test when used with LP3 distribution provides more accurate flood quantile estimates than when LP3 distribution is used with the original Grubbs and Beck test. Between these two methods, the differences in flood quantile estimates have been found to be up to 61% for the six study catchments. It has also been found that GEV distribution (with L moments) and LP3 distribution with the multiple Grubbs and Beck test provide quite similar results in most of the cases; however, a difference up to 38% has been noted for flood quantiles for annual exceedance probability (AEP) of 1 in 100 for one catchment. These findings need to be confirmed with a greater number of stations across other Australian states.Keywords: floods, FLIKE, probability distributions, flood frequency, outlier
Procedia PDF Downloads 4498417 Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites
Authors: Marianna I. Triantou, Petroula A. Tarantili
Abstract:
In this research work, poly (acrylonitrile-butadiene-styrene)/polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.Keywords: acrylonitrile, butadiene, styrene terpolymer, compatibilizer, organoclay, polypropylene
Procedia PDF Downloads 3198416 The Effect of Water Droplets Size in Fire Fighting Systems
Authors: Tassadit Tabouche
Abstract:
Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume.Keywords: droplets, water spray, water droplets size, 3D
Procedia PDF Downloads 5318415 Tectonic Inversion Manifestations in the Jebel Rouas-Ruissate (Northeastern Tunisia)
Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed
Abstract:
The Rouas-Ruissateis a part of TunisianAtlas system. Analyze of the collected field data allowed us to propose a new interpretation for the main structural features of thisregion. Tectonic inversions along NE-SW trending fault of Zaghouan and holokinetic movements are the main factors controlling the architecture and geometry of the Jebel Rouas-Ruissate. The presence of breccias, Slumps, and synsedimentaryfaults along NW-SE and N-S trending major faults show that they were active during the Mesozoicextensionalepisodes. During Cenozoic inversion period, this structurewas shaped as imbricatefansformed byNE-SW trending thrust faults. The angularunconformitybetweenupperEocene- Oligocene, and Cretaceousdeposits reveals a compressive Eocene tectonic phase (called Pyrenean phase)occurred duringPaleocene-lower Eocene.The Triassicsaltsacted as a decollementlevel in the NE-SW trendingfault propagation fold model of the Rouas-Ruissate.The inversion of fault-slip data along the main regional fault zones reveals a coexistence of strike-slip and reverse fault stress regimes with NW-SE maximum horizontal stress(SHmax) characterizing the Alpine compressive phase (Upper Tortonian).Keywords: tunisia, imbricate fans, triassic decollement level, fault propagation fold
Procedia PDF Downloads 1518414 Effect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy
Authors: Jung-Ho Moon, Tae Kwon Ha
Abstract:
The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8 Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25 wt. %Y, a large amount of pro-eutectic phases have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8 Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature.Keywords: Sn-Zn eutectic alloy, yttrium, FactSage®, microstructure, mechanical properties
Procedia PDF Downloads 4668413 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power
Authors: T. Mohammed Chikouche, K. Hartani
Abstract:
In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method.Keywords: power quality, direct power control, power ripple, switching table, unity power factor
Procedia PDF Downloads 3188412 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete
Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen
Abstract:
The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance
Procedia PDF Downloads 306