Search results for: polarization curve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1428

Search results for: polarization curve

198 Properties of Magnesium-Based Hydrogen Storage Alloy Added with Palladium and Titanium Hydride

Authors: Jun Ying Lin, Tzu Hsiang Yen, Cha'o Kuang Chen

Abstract:

Nowadays, the great majority believe that there is great potentiality in hydrogen storage alloy storing hydrogen by physical and chemical absorption. However, the hydrogen storage alloy is limited by high operation temperature. Scientists find that adding transition elements can improve the properties of hydrogen storage alloy. In this research, outstanding improvements of kinetic and thermal properties are given by the addition of Palladium and Titanium hydride to Magnesium-based hydrogen storage alloy. Magnesium-based alloy is the main material, into which TiH2 / Pd are added separately. Following that, materials are milled by a Planetary Ball Miller at 650 rpm. TGA/DSC and PCT measure the capacity, spending time and temperature of abs/des-orption. Additionally, SEM and XRD analyze the structures and components of material. It is clearly shown that Pd is beneficial to kinetic properties. 2MgH2-0.1Pd has the highest capacity of all the alloys listed, approximately 5.5 wt%. Secondly, there are not any new Ti-related compounds found from XRD analysis. Thus, TiH2, considered as the catalyst, leads to the condition of 2MgH2-TiH2 and 2MgH2-TiH2-0.1Pd efficiently absorbing hydrogen in low temperature. 2MgH2-TiH2 can reach roughly 3.0 wt% in 82.4 minutes at 50°C and 8 minutes at 100°C, while2MgH2-TiH2-0.1Pd can reach 2.0 wt% in 400 minutes at 50°C and in 48 minutes at 100°C. The lowest temperature of 2MgH2-0.1Pd and 2MgH2-TiH2 is similar (320°C), otherwise the lowest temperature of 2MgH2-TiH2-0.1Pd decrease by 20°C. From XRD, it can be observed that PdTi2 and Pd3Ti are produced by mechanical alloying when adding Pd as well as TiH2 into MgH2. Due to the synergistic effects between Pd and TiH2, 2MgH2-TiH2-0.1Pd owns the lowest dehydrogenation temperature. Furthermore, the Pressure-Composition-Temperature (PCT) curve of 2MgH2-TiH2-0.1Pd is measured at different temperature, 370°C, 350°C, 320°C and 300°C separately. The plateau pressure is given form the PCT curves above. In accordance to different plateau pressures, enthalpy and entropy in the Van’t Hoff equation can be solved. In 2MgH2-TiH2-0.1Pd, the enthalpy is 74.9 KJ/mol and the entropy is 122.9 J/mol. Activation means that hydrogen storage alloy undergoes repeat abs/des-orpting processes. It plays an important role in the abs/des-orption. Activation shortens the abs/des-orption time because of the increase in surface area. From SEM, it is clear that the grain size and surface become smaller and rougher

Keywords: hydrogen storage materials, magnesium hydride, abs-/des-orption performance, Plateau pressure

Procedia PDF Downloads 267
197 Effects of Nutrient Source and Drying Methods on Physical and Phytochemical Criteria of Pot Marigold (Calendula offiCinalis L.) Flowers

Authors: Leila Tabrizi, Farnaz Dezhaboun

Abstract:

In order to study the effect of plant nutrient source and different drying methods on physical and phytochemical characteristics of pot marigold (Calendula officinalis L., Asteraceae) flowers, a factorial experiment was conducted based on completely randomized design with three replications in Research Laboratory of University of Tehran in 2010. Different nutrient sources (vermicompost, municipal waste compost, cattle manure, mushroom compost and control) which were applied in a field experiment for flower production and different drying methods including microwave (300, 600 and 900 W), oven (60, 70 and 80oC) and natural-shade drying in room temperature, were tested. Criteria such as drying kinetic, antioxidant activity, total flavonoid content, total phenolic compounds and total carotenoid of flowers were evaluated. Results indicated that organic inputs as nutrient source for flowers had no significant effects on quality criteria of pot marigold except of total flavonoid content, while drying methods significantly affected phytochemical criteria. Application of microwave 300, 600 and 900 W resulted in the highest amount of total flavonoid content, total phenolic compounds and antioxidant activity, respectively, while oven drying caused the lowest amount of phytochemical criteria. Also, interaction effect of nutrient source and drying method significantly affected antioxidant activity in which the highest amount of antioxidant activity was obtained in combination of vermicompost and microwave 900 W. In addition, application of vermicompost combined with oven drying at 60oC caused the lowest amount of antioxidant activity. Based on results of drying trend, microwave drying showed a faster drying rate than those oven and natural-shade drying in which by increasing microwave power and oven temperature, time of flower drying decreased whereas slope of moisture content reduction curve showed accelerated trend.

Keywords: drying kinetic, medicinal plant, organic fertilizer, phytochemical criteria

Procedia PDF Downloads 336
196 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh

Authors: Zahid Khalil, Saad Ul Haque, Asif Khan

Abstract:

Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).

Keywords: Remote sensing, GIS, AHP, RWH

Procedia PDF Downloads 389
195 Physicochemical Properties of Pea Protein Isolate (PPI)-Starch and Soy Protein Isolate (SPI)-Starch Nanocomplexes Treated by Ultrasound at Different pH Values

Authors: Gulcin Yildiz, Hao Feng

Abstract:

Soybean proteins are the most widely used and researched proteins in the food industry. Due to soy allergies among consumers, however, alternative legume proteins having similar functional properties have been studied in recent years. These alternative proteins are also expected to have a price advantage over soy proteins. One such protein that has shown good potential for food applications is pea protein. Besides the favorable functional properties of pea protein, it also contains fewer anti-nutritional substances than soy protein. However, a comparison of the physicochemical properties of pea protein isolate (PPI)-starch nanocomplexes and soy protein isolate (SPI)-starch nanocomplexes treated by ultrasound has not been well documented. This study was undertaken to investigate the effects of ultrasound treatment on the physicochemical properties of PPI-starch and SPI-starch nanocomplexes. Pea protein isolate (85% pea protein) provided by Roquette (Geneva, IL, USA) and soy protein isolate (SPI, Pro-Fam® 955) obtained from the Archer Daniels Midland Company were adjusted to different pH levels (2-12) and treated with 5 minutes of ultrasonication (100% amplitude) to form complexes with starch. The soluble protein content was determined by the Bradford method using BSA as the standard. The turbidity of the samples was measured using a spectrophotometer (Lambda 1050 UV/VIS/NIR Spectrometer, PerkinElmer, Waltham, MA, USA). The volume-weighted mean diameters (D4, 3) of the soluble proteins were determined by dynamic light scattering (DLS). The emulsifying properties of the proteins were evaluated by the emulsion stability index (ESI) and emulsion activity index (EAI). Both the soy and pea protein isolates showed a U-shaped solubility curve as a function of pH, with a high solubility above the isoelectric point and a low one below it. Increasing the pH from 2 to 12 resulted in increased solubility for both the SPI and PPI-starch complexes. The pea nanocomplexes showed greater solubility than the soy ones. The SPI-starch nanocomplexes showed better emulsifying properties determined by the emulsion stability index (ESI) and emulsion activity index (EAI) due to SPI’s high solubility and high protein content. The PPI had similar or better emulsifying properties at certain pH values than the SPI. The ultrasound treatment significantly decreased the particle sizes of both kinds of nanocomplex. For all pH levels with both proteins, the droplet sizes were found to be lower than 300 nm. The present study clearly demonstrated that applying ultrasonication under different pH conditions significantly improved the solubility and emulsify¬ing properties of the SPI and PPI. The PPI exhibited better solubility and emulsifying properties than the SPI at certain pH levels

Keywords: emulsifying properties, pea protein isolate, soy protein isolate, ultrasonication

Procedia PDF Downloads 319
194 Parametric Approach for Reserve Liability Estimate in Mortgage Insurance

Authors: Rajinder Singh, Ram Valluru

Abstract:

Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.

Keywords: actuarial loss reserving techniques, logistic regression, parametric function, volatility

Procedia PDF Downloads 131
193 Optical Vortex in Asymmetric Arcs of Rotating Intensity

Authors: Mona Mihailescu, Rebeca Tudor, Irina A. Paun, Cristian Kusko, Eugen I. Scarlat, Mihai Kusko

Abstract:

Specific intensity distributions in the laser beams are required in many fields: optical communications, material processing, microscopy, optical tweezers. In optical communications, the information embedded in specific beams and the superposition of multiple beams can be used to increase the capacity of the communication channels, employing spatial modulation as an additional degree of freedom, besides already available polarization and wavelength multiplexing. In this regard, optical vortices present interest due to their potential to carry independent data which can be multiplexed at the transmitter and demultiplexed at the receiver. Also, in the literature were studied their combinations: 1) axial or perpendicular superposition of multiple optical vortices or 2) with other laser beam types: Bessel, Airy. Optical vortices, characterized by stationary ring-shape intensity and rotating phase, are achieved using computer generated holograms (CGH) obtained by simulating the interference between a tilted plane wave and a wave passing through a helical phase object. Here, we propose a method to combine information through the reunion of two CGHs. One is obtained using the helical phase distribution, characterized by its topological charge, m. The other is obtained using conical phase distribution, characterized by its radial factor, r0. Each CGH is obtained using plane wave with different tilts: km and kr for CGH generated from helical phase object and from conical phase object, respectively. These reunions of two CGHs are calculated to be phase optical elements, addressed on the liquid crystal display of a spatial light modulator, to optically process the incident beam for investigations of the diffracted intensity pattern in far field. For parallel reunion of two CGHs and high values of the ratio between km and kr, the bright ring from the first diffraction order, specific for optical vortices, is changed in an asymmetric intensity pattern: a number of circle arcs. Both diffraction orders (+1 and -1) are asymmetrical relative to each other. In different planes along the optical axis, it is observed that this asymmetric intensity pattern rotates around its centre: in the +1 diffraction order the rotation is anticlockwise and in the -1 diffraction order, the rotation is clockwise. The relation between m and r0 controls the diameter of the circle arcs and the ratio between km and kr controls the number of arcs. For perpendicular reunion of the two CGHs and low values of the ratio between km and kr, the optical vortices are multiplied and focalized in different planes, depending on the radial parameter. The first diffraction order contains information about both phase objects. It is incident on the phase masks placed at the receiver, computed using the opposite values for topological charge or for the radial parameter and displayed successively. In all, the proposed method is exploited in terms of constructive parameters, for the possibility offered by the combination of different types of beams which can be used in robust optical communications.

Keywords: asymmetrical diffraction orders, computer generated holograms, conical phase distribution, optical vortices, spatial light modulator

Procedia PDF Downloads 311
192 The Radicalization of Islam in the Syrian Conflict: A Systematic Review from the Interreligious Dialogue Perspective

Authors: Cosette Maiky

Abstract:

Seven years have passed since the crisis erupted and the list of challenges to peacebuilding and interreligious dialogue is still growing ever more discouraging: Violence, displacement, sectarianism, discrimination, radicalisation, fragmentation, and collapse of various social and economic infrastructure have notoriously plagued the war-torn country. As the situation in Syria and neighbouring countries is still creating a real concern about the future of the social cohesion and the coexistence in the region, in her function as Field Expert on Arab Countries at King Abdullah bin Abdelaziz Centre for Interreligious and Intercultural Dialogue, the author shall present a systematic review paper that focuses on the radicalization of Islam in Syria. The exercise was based on a series of research questions that guided both the review of literature as well as the interviews. Their relative meaningfulness shall be assessed and trade-offs discussed in each case to ensure that key questions were addressed and to avoid unnecessary effort. There was an element of flexibility, as the assessment progressed, to further provide and inject additional generic questions. The main sources for the information were: Documents and literature with a direct bearing on the issues of relevance collected in all available formats and information collected through key informant interviews. This latter was particularly helpful to understand what some of the capacity constraints are, as well as the gaps, enablers and barriers. Respondents were selected among those who are engaged in IRD activities clearly linked to peacebuilding (i.e. religious leaders, leaders in religious communities, peace actors, religious actors, conflict parties, minority groups, women initiatives, youth initiatives, civil society organizations, academia, etc.), with relevant professional qualifications and work experience. During the research process, the Consultant carefully took account of sensitivities around terminologies as well as a highly insecure and dynamic context. The Consultant (Arabic native speaker), therefore, adapted terminologies while conducting interviews according to the area and respondent. Findings revealed: the deep ideological polarization and lack of trust dividing communities and preventing meaningful dialogue opportunities; the challenge of prioritizing IRD and peacebuilding work in the context of such a severe humanitarian crisis facing the country; the need to engage religious leaders and institutions in peacebuilding processes and initiatives, the need to have institutions with specific IRD mandate, which can have a sustainable influence on peace through various levels of interventions (from grassroots level to policy and research), and lastly, the need to address stigma in media representation of Muslims and Islam. While religion and religious agendas have been massively used for political issues and power play in the Middle East – and elsewhere, more extensive policy and research efforts are needed to highlight the positive role of religion and religious actors in dialogue and peacebuilding processes.

Keywords: radicalisation, Islam, Syria, conflict

Procedia PDF Downloads 173
191 Validation of the Arabic Version of the Positive and Negative Syndrome Scale (PANSS)

Authors: Arij Yehya, Suhaila Ghuloum, Abdlmoneim Abdulhakam, Azza Al-Mujalli, Mark Opler, Samer Hammoudeh, Yahya Hani, Sundus Mari, Reem Elsherbiny, Ziyad Mahfoud, Hassen Al-Amin

Abstract:

Introduction: The Positive and Negative Syndrome Scale (PANSS) is a valid instrument developed by Kay and colleagues6 to assess symptoms of patients with schizophrenia. It consists of 30 items that factor the symptoms into three subscales: positive, negative and general psychopathology. This scale has been translated and validated in several languages. Objective: This study aims to determine the validity and psychometric properties of the Arabic version of the PANSS. Methods: A standardized translation and cultural adaptation method was adopted. Patients diagnosed with schizophrenia (n=98), according to psychiatrist’s diagnosis based on DSM-IV criteria, were recruited from the Psychiatry Department at Rumailah Hospital, Qatar. A first rater confirmed the diagnosis using the Arabic version of Mini International Neuropsychiatric Interview (MINI 6). A second and independent rater-administered the Arabic version of PANSS. Also, a control group (n=101), with no history of psychiatric disorder was recruited from the family and friends of the patients and from primary health care centers in Qatar. Results: There were more males than females in our sample of patients with schizophrenia (68.9% and 31.6%, respectively). On the other hand, in the control group the number of females outweighed that of males (58.4% and 41.6% respectively). The scale had a good internal consistency with Cronbach’s alpha 0.91. There was a significant difference between the scores on the three subscales of the PANSS. Patients with schizophrenia scored significantly higher (p<.0001) than the control subjects on subscales for positive symptoms 20.01(SD=7.21) and 7.30(SD=1.38), negative symptoms 18.89(SD=8.88) and 7.37(SD=2.38) and general psychopathology 34.41 (SD=11.56) and 16.93 (SD=3.93), respectively. Factor analysis and ROC curve were carried out to further test the psychometrics of the scale. Conclusions: The Arabic version of PANSS is a reliable and valid tool to assess both positive and negative symptoms of patients with schizophrenia in a balanced manner. In addition to providing the Arab population with a standardized tool to monitor symptoms of schizophrenia, this version provides a gateway to compare the prevalence of positive and negative symptoms in the Arab world which can be compared to others done elsewhere.

Keywords: Arabic version, assessment, diagnosis, schizophrenia, validation

Procedia PDF Downloads 635
190 Non-Steroidal Microtubule Disrupting Analogues Induce Programmed Cell Death in Breast and Lung Cancer Cell Lines

Authors: Marcel Verwey, Anna M. Joubert, Elsie M. Nolte, Wolfgang Dohle, Barry V. L. Potter, Anne E. Theron

Abstract:

A tetrahydroisoquinolinone (THIQ) core can be used to mimic the A,B-ring of colchicine site-binding microtubule disruptors such as 2-methoxyestradiol in the design of anti-cancer agents. Steroidomimeric microtubule disruptors were synthesized by introducing C'2 and C'3 of the steroidal A-ring to C'6 and C'7 of the THIQ core and by introducing a decorated hydrogen bond acceptor motif projecting from the steroidal D-ring to N'2. For this in vitro study, four non-steroidal THIQ-based analogues were investigated and comparative studies were done between the non-sulphamoylated compound STX 3450 and the sulphamoylated compounds STX 2895, STX 3329 and STX 3451. The objective of this study was to investigate the modes of cell death induced by these four THIQ-based analogues in A549 lung carcinoma epithelial cells and metastatic breast adenocarcinoma MDA-MB-231 cells. Cytotoxicity studies to determine the half maximal growth inhibitory concentrations were done using spectrophotometric quantification via crystal violet staining and lactate dehydrogenase (LDH) assays. Microtubule integrity and morphologic changes of exposed cells were investigated using polarization-optical transmitted light differential interference contrast microscopy, transmission electron microscopy and confocal microscopy. Flow cytometric quantification was used to determine apoptosis induction and the effect that THIQ-based analogues have on cell cycle progression. Signal transduction pathways were elucidated by quantification of the mitochondrial membrane integrity, cytochrome c release and caspase 3, -6 and -8 activation. Induction of autophagic cell death by the THIQ-based analogues was investigated by morphological assessment of fluorescent monodansylcadaverine (MDC) staining of acidic vacuoles and by quantifying aggresome formation via flow cytometry. Results revealed that these non-steroidal microtubule disrupting analogues inhibited 50% of cell growth at nanomolar concentrations. Immunofluorescence microscopy indicated microtubule depolarization and the resultant mitotic arrest was further confirmed through cell cycle analysis. Apoptosis induction via the intrinsic pathway was observed due to depolarization of the mitochondrial membrane, induction of cytochrome c release as well as, caspase 3 activation. Potential involvement of programmed cell death type II was observed due to the presence of acidic vacuoles and aggresome formation. Necrotic cell death did not contribute significantly, indicated by stable LDH levels. This in vitro study revealed the induction of the intrinsic apoptotic pathway as well as possible involvement of autophagy after exposure to these THIQ-based analogues in both MDA-MB-231- and A549 cells. Further investigation of this series of anticancer drugs still needs to be conducted to elucidate the temporal, mechanistic and functional crosstalk mechanisms between the two observed programmed cell deaths pathways.

Keywords: apoptosis, autophagy, cancer, microtubule disruptor

Procedia PDF Downloads 253
189 Influence of Bottom Ash on the Geotechnical Parameters of Clayey Soil

Authors: Tanios Saliba, Jad Wakim, Elie Awwad

Abstract:

Clayey soils exhibit undesirable problems in civil engineering project: poor bearing soil capacity, shrinkage, cracking, …etc. On the other hand, the increasing production of bottom ash and its disposal in an eco-friendly manner is a matter of concern. Soil stabilization using bottom ash is a new technic in the geo-environmental engineering. It can be used wherever a soft clayey soil is encountered in foundations or road subgrade, instead of using old technics such as cement-soil mixing. This new technology can be used for road embankments and clayey foundations platform (shallow or deep foundations) instead of replacing bad soil or using old technics which aren’t eco-friendly. Moreover, applying this new technic in our geotechnical engineering projects can reduce the disposal of the bottom ash problem which is getting bigger day after day. The research consists of mixing clayey soil with different percentages of bottom ash at different values of water content, and evaluates the mechanical properties of every mix: the percentages of bottom ash are 10% 20% 30% 40% and 50% with values of water content of 25% 35% and 45% of the mix’s weight. Before testing the different mixes, clayey soil’s properties were determined: Atterbeg limits, soil’s cohesion and friction angle and particle size distribution. In order to evaluate the mechanical properties and behavior of every mix, different tests are conducted: -Direct shear test in order to determine the cohesion and internal friction angle of every mix. -Unconfined compressive strength (stress strain curve) to determine mix’s elastic modulus and compressive strength. Soil samples are prepared in accordance with the ASTM standards, and tested at different times, in order to be able to emphasize the influence of the curing period on the variation of the mix’s mechanical properties and characteristics. As of today, the results obtained are very promising: the mix’s cohesion and friction angle vary in function of the bottom ash percentage, water content and curing period: the cohesion increases enormously before decreasing for a long curing period (values of mix’s cohesion are larger than intact soil’s cohesion) while internal friction angle keeps on increasing even when the curing period is 28 days (the tests largest curing period), which give us a better soil behavior: less cracks and better soil bearing capacity.

Keywords: bottom ash, Clayey soil, mechanical properties, tests

Procedia PDF Downloads 177
188 Experimental and Analytical Studies for the Effect of Thickness and Axial Load on Load-Bearing Capacity of Fire-Damaged Concrete Walls

Authors: Yeo Kyeong Lee, Ji Yeon Kang, Eun Mi Ryu, Hee Sun Kim, Yeong Soo Shin

Abstract:

The objective of this paper is an investigation of the effects of the thickness and axial loading during a fire test on the load-bearing capacity of a fire-damaged normal-strength concrete wall. Two factors are attributed to the temperature distributions in the concrete members and are mainly obtained through numerous experiments. Toward this goal, three wall specimens of different thicknesses are heated for 2 h according to the ISO-standard heating curve, and the temperature distributions through the thicknesses are measured using thermocouples. In addition, two wall specimens are heated for 2 h while simultaneously being subjected to a constant axial loading at their top sections. The test results show that the temperature distribution during the fire test depends on wall thickness and axial load during the fire test. After the fire tests, the specimens are cured for one month, followed by the loading testing. The heated specimens are compared with three unheated specimens to investigate the residual load-bearing capacities. The fire-damaged walls show a minor difference of the load-bearing capacity regarding the axial loading, whereas a significant difference became evident regarding the wall thickness. To validate the experiment results, finite element models are generated for which the material properties that are obtained for the experiment are subject to elevated temperatures, and the analytical results show sound agreements with the experiment results. The analytical method based on validated thought experimental results is applied to generate the fire-damaged walls with 2,800 mm high considering the buckling effect: typical story height of residual buildings in Korea. The models for structural analyses generated to deformation shape after thermal analysis. The load-bearing capacity of the fire-damaged walls with pin supports at both ends does not significantly depend on the wall thickness, the reason for it is restraint of pinned ends. The difference of the load-bearing capacity of fire-damaged walls as axial load during the fire is within approximately 5 %.

Keywords: normal-strength concrete wall, wall thickness, axial-load ratio, slenderness ratio, fire test, residual strength, finite element analysis

Procedia PDF Downloads 215
187 Rainwater Harvesting and Management of Ground Water (Case Study Weather Modification Project in Iran)

Authors: Samaneh Poormohammadi, Farid Golkar, Vahideh Khatibi Sarabi

Abstract:

Climate change and consecutive droughts have increased the importance of using rainwater harvesting methods. One of the methods of rainwater harvesting and, in other words, the management of atmospheric water resources is the use of weather modification technologies. Weather modification (also known as weather control) is the act of intentionally manipulating or altering the weather. The most common form of weather modification is cloud seeding, which increases rain or snow, usually for the purpose of increasing the local water supply. Cloud seeding operations in Iran have been married since 1999 in central Iran with the aim of harvesting rainwater and reducing the effects of drought. In this research, we analyze the results of cloud seeding operations in the Simindashtplain in northern Iran. Rainwater harvesting with the help of cloud seeding technology has been evaluated through its effects on surface water and underground water. For this purpose, two different methods have been used to estimate runoff. The first method is the US Soil Conservation Service (SCS) curve number method. Another method, known as the reasoning method, has also been used. In order to determine the infiltration rate of underground water, the balance reports of the comprehensive water plan of the country have been used. In this regard, the study areas located in the target area of each province have been extracted by drawing maps of the influence coefficients of each area in the GIS software. It should be mentioned that the infiltration coefficients were taken from the balance sheet reports of the country's comprehensive water plan. Then, based on the area of each study area, the weighted average of the infiltration coefficient of the study areas located in the target area of each province is considered as the infiltration coefficient of that province. Results show that the amount of water extracted from the rain with the help of cloud seeding projects in Simindasht is as follows: an increase in runoff 63.9 million cubic meters (with SCS equation) or 51.2 million cubic meters (with logical equation) and an increase in ground water resources: 40.5 million cubic meters.

Keywords: rainwater harvesting, ground water, atmospheric water resources, weather modification, cloud seeding

Procedia PDF Downloads 105
186 Enhanced Kinetic Solubility Profile of Epiisopiloturine Solid Solution in Hipromellose Phthalate

Authors: Amanda C. Q. M. Vieira, Cybelly M. Melo, Camila B. M. Figueirêdo, Giovanna C. R. M. Schver, Salvana P. M. Costa, Magaly A. M. de Lyra, Ping I. Lee, José L. Soares-Sobrinho, Pedro J. Rolim-Neto, Mônica F. R. Soares

Abstract:

Epiisopiloturine (EPI) is a drug candidate that is extracted from Pilocarpus microphyllus and isolated from the waste of Pilocarpine. EPI has demonstrated promising schistosomicidal, leishmanicide, anti-inflammatory and antinociceptive activities, according to in vitro studies that have been carried out since 2009. However, this molecule shows poor aqueous solubility, which represents a problem for the release of the drug candidate and its absorption by the organism. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of a solid solution (SS) of EPI in hipromellose phthalate HP-55 (HPMCP), an enteric polymer carrier. SS was obtained by the solvent evaporation methodology, using acetone/methanol (60:40) as solvent system. Both EPI and polymer (drug loading 10%) were dissolved in this solvent until a clear solution was obtained, and then dried in oven at 60ºC during 12 hours, followed by drying in a vacuum oven for 4 h. The results show a considerable modification in the crystalline structure of the drug candidate. For instance, X-ray diffraction (XRD) shows a crystalline behavior for the EPI, which becomes amorphous for the SS. Polarized light microscopy, a more sensitive technique than XRD, also shows completely absence of crystals in SS sample. Differential Scanning Calorimetric (DSC) curves show no signal of EPI melting point in SS curve, indicating, once more, no presence of crystal in this system. Interaction between the drug candidate and the polymer were found in Infrared microscopy, which shows a carbonyl 43.3 cm-1 band shift, indicating a moderate-strong interaction between them, probably one of the reasons to the SS formation. Under sink conditions (pH 6.8), EPI SS had its dissolution performance increased in 2.8 times when compared with the isolated drug candidate. EPI SS sample provided a release of more than 95% of the drug candidate in 15 min, whereas only 45% of EPI (alone) could be dissolved in 15 min and 70% in 90 min. Thus, HPMCP demonstrates to have a good potential to enhance the kinetic solubility profile of EPI. Future studies to evaluate the stability of SS are required to conclude the benefits of this system.

Keywords: epiisopiloturine, hipromellose phthalate HP-55, pharmaceuticaltechnology, solubility

Procedia PDF Downloads 607
185 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 425
184 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 421
183 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection

Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol

Abstract:

The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.

Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress

Procedia PDF Downloads 225
182 Study of Secondary Metabolites of Sargassum Algae: Anticorrosive and Antibacterial Activities

Authors: Prescilla Lambert, Christophe Roos, Mounim Lebrini

Abstract:

For several years, the Caribbean islands and West Africa have had to deal with the massive arrival of the brown seaweed Sargassum. Overall, this macroalgae, which constitutes a habitat for a great diversity of marine organisms, is also an additional stress factor for the marine environment (e.g., coral reefs). In addition, the accumulation followed by the significant decomposition of the Sargassum spp. biomass on the coast leads to the release of toxic gases (H₂S and NH₃), which calls into question the functioning of the economic, health and tourist life of the island and the other interested territories. Originally, these algae are formed by the eutrophication of the oceans accentuated by global warming. Unfortunately, scientists predict a significant recurrence of these Sargassum strandings for years to come. It is therefore more than necessary to find solutions by putting in place a sustainable management plan for this phenomenon. Martinique, a small island in the Caribbean arc, is one of the many areas impacted by Sargassum seaweed strandings. Since 2011, there has been a constant increase in the degradation of the materials present in this region, largely due to toxic/corrosive gases released by the algae decomposition. In order to protect the structures and the vulnerable building materials while limiting the use of synthetic/petroleum based molecules as much as possible, research is being conducted on molecules of natural origin. Thus, thanks to the chemical composition, which comprise molecules with interesting properties, algae such as Sargassum could potentially help to solve many issues. Therefore, this study focuses on the green extraction and characterization of molecules from the species Sargassum fluitans and Sargassum natans present in Martinique. The secondary metabolites found in these extracts showed variability in yield rates due to local climatic conditions. The tests carried out shed light on the anticorrosive and antibacterial potential of the algae. These extracts can thus be described as natural inhibitors. The effect of variation in inhibitor concentrations was tested in electrochemistry using electrochemical impedance spectroscopy and polarization curves. The analysis of electrochemical results obtained by direct immersion in the extracts and self-assembled molecular layers (SAMs) for Sargassum fluitans III, Sargassum natans I and VIII species was conclusive in acid and alkaline environments. The excellent results obtained reveal an inhibitory efficacy of 88% at 50mg/L for the crude extract of Sargassum fluitans III and efficacies greater than 97% for the chemical families of Sargassum fluitans III. Similarly, microbiological tests also suggest a bactericidal character. Results for Sargassum fluitans III crude extract show a minimum inhibitory concentration (MIC) of 0.005 mg/mL on Gram-negative bacteria and a MIC greater than 0.6 mg/mL on Gram-positive bacteria. These results make it possible to consider the management of local and international issues while valuing a biomass rich in biodegradable molecules. The next step in this study will therefore be the evaluation of the toxicity of Sargassum spp..

Keywords: Sargassum, secondary metabolites, anticorrosive, antibacterial, natural inhibitors

Procedia PDF Downloads 72
181 Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate.

Keywords: adsorption, breakthrough curve, clay, congo red, fixed bed column, regeneration

Procedia PDF Downloads 333
180 The Effects of Shift Work on Neurobehavioral Performance: A Meta Analysis

Authors: Thomas Vlasak, Tanja Dujlociv, Alfred Barth

Abstract:

Shift work is an essential element of modern labor, ensuring ideal conditions of service for today’s economy and society. Despite the beneficial properties, its impact on the neurobehavioral performance of exposed subjects remains controversial. This meta-analysis aims to provide first summarizing the effects regarding the association between shift work exposure and different cognitive functions. A literature search was performed via the databases PubMed, PsyINFO, PsyARTICLES, MedLine, PsycNET and Scopus including eligible studies until December 2020 that compared shift workers with non-shift workers regarding neurobehavioral performance tests. A random-effects model was carried out using Hedge’s g as a meta-analytical effect size with a restricted likelihood estimator to summarize the mean differences between the exposure group and controls. The heterogeneity of effect sizes was addressed by a sensitivity analysis using funnel plots, egger’s tests, p-curve analysis, meta-regressions, and subgroup analysis. The meta-analysis included 18 studies resulting in a total sample of 18,802 participants and 37 effect sizes concerning six different neurobehavioral outcomes. The results showed significantly worse performance in shift workers compared to non-shift workers in the following cognitive functions with g (95% CI): processing speed 0.16 (0.02 - 0.30), working memory 0.28 (0.51 - 0.50), psychomotor vigilance 0.21 (0.05 - 0.37), cognitive control 0.86 (0.45 - 1.27) and visual attention 0.19 (0.11 - 0.26). Neither significant moderating effects of publication year or study quality nor significant subgroup differences regarding type of shift or type of profession were indicated for the cognitive outcomes. These are the first meta-analytical findings that associate shift work with decreased cognitive performance in processing speed, working memory, psychomotor vigilance, cognitive control, and visual attention. Further studies should focus on a more homogenous measurement of cognitive functions, a precise assessment of experience of shift work and occupation types which are underrepresented in the current literature (e.g., law enforcement). In occupations where shift work is fundamental (e.g., healthcare, industries, law enforcement), protective countermeasures should be promoted for workers.

Keywords: meta-analysis, neurobehavioral performance, occupational psychology, shift work

Procedia PDF Downloads 108
179 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 446
178 Chemical and Biomolecular Detection at a Polarizable Electrical Interface

Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon

Abstract:

Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquid

Keywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface

Procedia PDF Downloads 446
177 Emergency Multidisciplinary Continuing Care Case Management

Authors: Mekroud Amel

Abstract:

Emergency departments are known for the workload, the variety of pathologies and the difficulties in their management with the continuous influx of patients The role of our service in the management of patients with two or three mild to moderate organ failures, involving several disciplines at the same time, as well as the effect of this management on the skills and efficiency of our team has been demonstrated Borderline cases between two or three or even more disciplines, with instability of a vital function, which have been successfully managed in the emergency room, the therapeutic procedures adopted, the consequences on the quality and level of care delivered by our team, as well as that the logistical consequences, and the pedagogical consequences are demonstrated. The consequences found are Positive on the emergency teams, in rare situations are negative Regarding clinical situations, it is the entanglement of hemodynamic distress with right, left or global participation, tamponade, low flow with acute pulmonary edema, and/or state of shock With respiratory distress with more or less profound hypoxemia, with haematosis disorder related to a bacterial or viral lung infection, pleurisy, pneumothorax, bronchoconstrictive crisis. With neurological disorders such as recent stroke, comatose state, or others With metabolic disorders such as hyperkalaemia renal insufficiency severe ionic disorders with accidents with anti vitamin K With or without septate effusion of one or more serous membranes with or without tamponade It’s a Retrospective, monocentric, descriptive study Period 05.01.2022 to 10.31.2022 the purpose of our work: Search for a statistically significant link between the type of moderate to severe pathology managed in the emergency room whose problems are multivisceral on the efficiency of the healthcare team and its level of care and optional care offered for patients Statistical Test used: Chi2 test to prove the significant link between the resolution of serious multidisciplinary cases in the emergency room and the effectiveness of the team in the management of complicated cases Search for a statistically significant link : The management of the most difficult clinical cases for organ specialties has given general practitioner emergency teams a great perspective and has been able to improve their efficiency in the face of emergencies received

Keywords: emergency care teams, management of patients with dysfunction of more than one organ, learning curve, quality of care

Procedia PDF Downloads 80
176 Durability Analysis of a Knuckle Arm Using VPG System

Authors: Geun-Yeon Kim, S. P. Praveen Kumar, Kwon-Hee Lee

Abstract:

A steering knuckle arm is the component that connects the steering system and suspension system. The structural performances such as stiffness, strength, and durability are considered in its design process. The former study suggested the lightweight design of a knuckle arm considering the structural performances and using the metamodel-based optimization. The six shape design variables were defined, and the optimum design was calculated by applying the kriging interpolation method. The finite element method was utilized to predict the structural responses. The suggested knuckle was made of the aluminum Al6082, and its weight was reduced about 60% in comparison with the base steel knuckle, satisfying the design requirements. Then, we investigated its manufacturability by performing foraging analysis. The forging was done as hot process, and the product was made through two-step forging. As a final step of its developing process, the durability is investigated by using the flexible dynamic analysis software, LS-DYNA and the pre and post processor, eta/VPG. Generally, a car make does not provide all the information with the part manufacturer. Thus, the part manufacturer has a limit in predicting the durability performance with the unit of full car. The eta/VPG has the libraries of suspension, tire, and road, which are commonly used parts. That makes a full car modeling. First, the full car is modeled by referencing the following information; Overall Length: 3,595mm, Overall Width: 1,595mm, CVW (Curve Vehicle Weight): 910kg, Front Suspension: MacPherson Strut, Rear Suspension: Torsion Beam Axle, Tire: 235/65R17. Second, the road is selected as the cobblestone. The road condition of the cobblestone is almost 10 times more severe than that of usual paved road. Third, the dynamic finite element analysis using the LS-DYNA is performed to predict the durability performance of the suggested knuckle arm. The life of the suggested knuckle arm is calculated as 350,000km, which satisfies the design requirement set up by the part manufacturer. In this study, the overall design process of a knuckle arm is suggested, and it can be seen that the developed knuckle arm satisfies the design requirement of the durability with the unit of full car. The VPG analysis is successfully performed even though it does not an exact prediction since the full car model is very rough one. Thus, this approach can be used effectively when the detail to full car is not given.

Keywords: knuckle arm, structural optimization, Metamodel, forging, durability, VPG (Virtual Proving Ground)

Procedia PDF Downloads 419
175 Thulium Laser Design and Experimental Verification for NIR and MIR Nonlinear Applications in Specialty Optical Fibers

Authors: Matej Komanec, Tomas Nemecek, Dmytro Suslov, Petr Chvojka, Stanislav Zvanovec

Abstract:

Nonlinear phenomena in the near- and mid-infrared region are attracting scientific attention mainly due to the supercontinuum generation possibilities and subsequent utilizations for ultra-wideband applications like e.g. absorption spectroscopy or optical coherence tomography. Thulium-based fiber lasers provide access to high-power ultrashort pump pulses in the vicinity of 2000 nm, which can be easily exploited for various nonlinear applications. The paper presents a simulation and experimental study of a pulsed thulium laser based for near-infrared (NIR) and mid-infrared (MIR) nonlinear applications in specialty optical fibers. In the first part of the paper the thulium laser is discussed. The thulium laser is based on a gain-switched seed-laser and a series of amplification stages for obtaining output peak powers in the order of kilowatts for pulses shorter than 200 ps in full-width at half-maximum. The pulsed thulium laser is first studied in a simulation software, focusing on seed-laser properties. Afterward, a pre-amplification thulium-based stage is discussed, with the focus of low-noise signal amplification, high signal gain and eliminating pulse distortions during pulse propagation in the gain medium. Following the pre-amplification stage a second gain stage is evaluated with incorporating a thulium-fiber of shorter length with increased rare-earth dopant ratio. Last a power-booster stage is analyzed, where the peak power of kilowatts should be achieved. Examples of analytical study are further validated by the experimental campaign. The simulation model is further corrected based on real components – parameters such as real insertion-losses, cross-talks, polarization dependencies, etc. are included. The second part of the paper evaluates the utilization of nonlinear phenomena, their specific features at the vicinity of 2000 nm, compared to e.g. 1550 nm, and presents supercontinuum modelling, based on the thulium laser pulsed output. Supercontinuum generation simulation is performed and provides reasonably accurate results, once fiber dispersion profile is precisely defined and fiber nonlinearity is known, furthermore input pulse shape and peak power must be known, which is assured thanks to the experimental measurement of the studied thulium pulsed laser. The supercontinuum simulation model is put in relation to designed and characterized specialty optical fibers, which are discussed in the third part of the paper. The focus is placed on silica and mainly on non-silica fibers (fluoride, chalcogenide, lead-silicate) in their conventional, microstructured or tapered variants. Parameters such as dispersion profile and nonlinearity of exploited fibers were characterized either with an accurate model, developed in COMSOL software or by direct experimental measurement to achieve even higher precision. The paper then combines all three studied topics and presents a possible application of such a thulium pulsed laser system working with specialty optical fibers.

Keywords: nonlinear phenomena, specialty optical fibers, supercontinuum generation, thulium laser

Procedia PDF Downloads 321
174 Piezotronic Effect on Electrical Characteristics of Zinc Oxide Varistors

Authors: Nadine Raidl, Benjamin Kaufmann, Michael Hofstätter, Peter Supancic

Abstract:

If polycrystalline ZnO is properly doped and sintered under very specific conditions, it shows unique electrical properties, which are indispensable for today’s electronic industries, where it is used as the number one overvoltage protection material. Under a critical voltage, the polycrystalline bulk exhibits high electrical resistance but becomes suddenly up to twelve magnitudes more conductive if this voltage limit is exceeded (i.e., varistor effect). It is known that these peerless properties have their origin in the grain boundaries of the material. Electric charge is accumulated in the boundaries, causing a depletion layer in their vicinity and forming potential barriers (so-called Double Schottky Barriers, or DSB) which are responsible for the highly non-linear conductivity. Since ZnO is a piezoelectric material, mechanical stresses induce polarisation charges that modify the DSB heights and as a result the global electrical characteristics (i.e., piezotronic effect). In this work, a finite element method was used to simulate emerging stresses on individual grains in the bulk. Besides, experimental efforts were made to testify a coherent model that could explain this influence. Electron back scattering diffraction was used to identify grain orientations. With the help of wet chemical etching, grain polarization was determined. Micro lock-in infrared thermography (MLIRT) was applied to detect current paths through the material, and a micro 4-point probes method system (M4PPS) was employed to investigate current-voltage characteristics between single grains. Bulk samples were tested under uniaxial pressure. It was found that the conductivity can increase by up to three orders of magnitude with increasing stress. Through in-situ MLIRT, it could be shown that this effect is caused by the activation of additional current paths in the material. Further, compressive tests were performed on miniaturized samples with grain paths containing solely one or two grain boundaries. The tests evinced both an increase of the conductivity, as observed for the bulk, as well as a decreased conductivity. This phenomenon has been predicted theoretically and can be explained by piezotronically induced surface charges that have an impact on the DSB at the grain boundaries. Depending on grain orientation and stress direction, DSB can be raised or lowered. Also, the experiments revealed that the conductivity within one single specimen can increase and decrease, depending on the current direction. This novel finding indicates the existence of asymmetric Double Schottky Barriers, which was furthermore proved by complementary methods. MLIRT studies showed that the intensity of heat generation within individual current paths is dependent on the direction of the stimulating current. M4PPS was used to study the relationship between the I-V characteristics of single grain boundaries and grain orientation and revealed asymmetric behavior for very specific orientation configurations. A new model for the Double Schottky Barrier, taking into account the natural asymmetry and explaining the experimental results, will be given.

Keywords: Asymmetric Double Schottky Barrier, piezotronic, varistor, zinc oxide

Procedia PDF Downloads 267
173 Incidence and Predictors of Mortality Among HIV Positive Children on Art in Public Hospitals of Harer Town, Enrolled From 2011 to 2021

Authors: Getahun Nigusie

Abstract:

Background; antiretroviral treatment reduce HIV-related morbidity, and prolonged survival of patients however, there is lack of up-to-date information concerning the treatment long term effect on the survival of HIV positive children especially in the study area. Objective: To assess incidence and predictors of mortality among HIV positive children on ART in public hospitals of Harer town who were enrolled from 2011 to 2021. Methodology: Institution based retrospective cohort study was conducted among 429 HIV positive children enrolled in ART clinic from January 1st 2011 to December30th 2021. Data were collected from medical cards by using a data extraction form, Descriptive analyses were used to Summarized the results, and life table was used to estimate survival probability at specific point of time after introduction of ART. Kaplan Meier survival curve together with log rank test was used to compare survival between different categories of covariates, and Multivariate Cox-proportional hazard regression model was used to estimate adjusted Hazard rate. Variables with p-values ≤0.25 in bivariable analysis were candidates to the multivariable analysis. Finally, variables with p-values < 0.05 were considered as significant variables. Results: The study participants had followed for a total of 2549.6 child-years (30596 child months) with an overall mortality rate of 1.5 (95% CI: 1.1, 2.04) per 100 child-years. Their median survival time was 112 months (95% CI: 101–117). There were 38 children with unknown outcome, 39 deaths, and 55 children transfer out to different facility. The overall survival at 6, 12, 24, 48 months were 98%, 96%, 95%, 94% respectively. being in WHO clinical Stage four (AHR=4.55, 95% CI:1.36, 15.24), having anemia(AHR=2.56, 95% CI:1.11, 5.93), baseline low absolute CD4 count (AHR=2.95, 95% CI: 1.22, 7.12), stunting (AHR=4.1, 95% CI: 1.11, 15.42), wasting (AHR=4.93, 95% CI: 1.31, 18.76), poor adherence to treatment (AHR=3.37, 95% CI: 1.25, 9.11), having TB infection at enrollment (AHR=3.26, 95% CI: 1.25, 8.49),and no history of change their regimen(AHR=7.1, 95% CI: 2.74, 18.24), were independent predictors of death. Conclusion: more than half of death occurs within 2 years. Prevalent tuberculosis, anemia, wasting, and stunting nutritional status, socioeconomic factors, and baseline opportunistic infection were independent predictors of death. Increasing early screening and managing those predictors are required.

Keywords: human immunodeficiency virus-positive children, anti-retroviral therapy, survival, Ethiopia

Procedia PDF Downloads 22
172 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 133
171 Design of In-House Test Method for Assuring Packing Quality of Bottled Spirits

Authors: S. Ananthakrishnan, U. H. Acharya

Abstract:

Whether shopping in a retail location or via the internet, consumers expect to receive their products intact. When products arrive damaged or over-packaged, the result can be customer dissatisfaction and increased cost for retailers and manufacturers. The packaging performance depends on both the transport situation and the packaging design. During transportation, the packaged products are subjected to the variation in vibration levels from transport vehicles that vary in frequency and acceleration while moving to their destinations. Spirits manufactured by this Company were being transported to various parts of the country by road. There were instances of package breaking and customer complaints. The vibration experienced on a straight road at some speed may not be same as the vibration experienced by the same vehicle on a curve at the same speed. This vibration may negatively affect the product or packing. Hence, it was necessary to conduct a physical road test to understand the effect of vibration in the packaged products. The field transit trial has to be done before the transportations, which results in high investment. The company management was interested in developing an in-house test environment which would adequately represent the transit conditions. With the objective to develop an in-house test condition that can accurately simulate the mechanical loading scenario prevailing during the storage, handling and transportation of the products a brainstorming was done with the concerned people to identify the critical factors affecting vibration rate. Position of corrugated box, the position of bottle and speed of vehicle were identified as factors affecting the vibration rate. Several packing scenarios were identified by Design of Experiment methodology and simulated in the in-house test facility. Each condition was observed for 30 minutes, which was equivalent to 1000 km. The achieved vibration level was considered as the response. The average achieved in the simulated experiments was near to the third quartile (Q3) of the actual data. Thus, we were able to address around three-fourth of the actual phenomenon. Most of the cases in transit could be reproduced. The recommended test condition could generate a vibration level ranging from 9g to 15g as against a maximum of only 7g that was being generated earlier. Thus, the Company was able to test the packaged cartons satisfactorily in the house itself before transporting to the destinations, assuring itself that the breakages of the bottles will not happen.

Keywords: ANOVA, Corrugated box, DOE, Quartile

Procedia PDF Downloads 125
170 Coffee Consumption Has No Acute Effects on Glucose Metabolism in Healthy Men: A Randomized Crossover Clinical Trial

Authors: Caio E. G. Reis, Sara Wassell, Adriana L. Porto, Angélica A. Amato, Leslie J. C. Bluck, Teresa H. M. da Costa

Abstract:

Background: Multiple epidemiologic studies have consistently reported association between increased coffee consumption and a lowered risk of Type 2 Diabetes Mellitus. However, the mechanisms behind this finding have not been fully elucidated. Objective: We investigate the effect of coffee (caffeinated and decaffeinated) on glucose effectiveness and insulin sensitivity using the stable isotope minimal model protocol with oral glucose administration in healthy men. Design: Fifteen healthy men underwent 5 arms randomized crossover single-blinding (researchers) clinical trial. They consumed decaffeinated coffee, caffeinated coffee (with and without sugar), and controls – water (with and without sugar) followed 1 hour by an oral glucose tolerance test (75 g of available carbohydrate) with intravenous labeled dosing interpreted by the two compartment minimal model (225 minutes). One-way ANOVA with Bonferroni adjustment were used to compare the effects of the tested beverages on glucose metabolism parameters. Results: Decaffeinated coffee resulted in 29% and 85% higher insulin sensitivity compared with caffeinated coffee and water, respectively, and the caffeinated coffee showed 15% and 60% higher glucose effectiveness compared with decaffeinated coffee and water, respectively. However, these differences were not significant (p > 0.10). In overall analyze (0 – 225 min) there were no significant differences on glucose effectiveness, insulin sensitivity, and glucose and insulin area under the curve between the groups. The beneficial effects of coffee did not seem to act in the short-term (hours) on glucose metabolism parameters mainly on insulin sensitivity indices. The benefits of coffee consumption occur in the long-term (years) as has been shown in the reduction of Type 2 Diabetes Mellitus risk in epidemiological studies. The clinical relevance of the present findings is that there is no need to avoid coffee as the drink choice for healthy people. Conclusions: The findings of this study demonstrate that the consumption of caffeinated and decaffeinated coffee with or without sugar has no acute effects on glucose metabolism in healthy men. Further researches, including long-term interventional studies, are needed to fully elucidate the mechanisms behind the coffee effects on reduced risk for Type 2 Diabetes Mellitus.

Keywords: coffee, diabetes mellitus type 2, glucose, insulin

Procedia PDF Downloads 436
169 Structural, Spectral and Optical Properties of Boron-Aluminosilicate Glasses with High Dy₂O₃ and Er₂O₃ Content for Faraday Rotator Operating at 2µm

Authors: Viktor D. Dubrovin, Masoud Mollaee, Jie Zong, Xiushan Zhu, Nasser Peyghambarian

Abstract:

Glasses doped with high rare-earth (RE) elements concentration attracted considerable attention since the middle of the 20th century due to their particular magneto-optical properties. Such glasses exhibit the Faraday effect in which the polarization plane of a linearly polarized light beam is rotated by the interaction between the incident light and the magneto-optical material. That effect found application in optical isolators that are useful for laser systems, which can prevent back reflection of light into lasers or optical amplifiers and reduce signal instability and noise. Glasses are of particular interest since they are cost-effective and can be formed into fibers, thus breaking the limits of traditional bulk optics requiring optical coupling for use with fiber-optic systems. The advent of high-power fiber lasers operating near 2µm revealed a necessity in the development of all fiber isolators for this region. Ce³⁺, Pr³⁺, Dy³⁺, and Tb³⁺ ions provide the biggest contribution to the Verdet constant value of optical materials among the RE. It is known that Pr³⁺ and Tb³⁺ ions have strong absorption bands near 2 µm, thus making Dy³⁺ and Ce³⁺ the only prospective candidates for fiber isolator operating in that region. Due to the high tendency of Ce³⁺ ions pass to Ce⁴⁺ during the synthesis, glasses with high cerium content usually suffers from Ce⁴⁺ ions absorption extending from visible to IR. Additionally, Dy³⁺ (₆H¹⁵/²) same as Ho³⁺ (⁵I₈) ions, have the largest effective magnetic moment (µeff = 10.6 µB) among the RE ions that starts to play the key role if the operating region is far from 4fⁿ→ 4fⁿ⁻¹5 d¹ electric-dipole transition relevant to the Faraday Effect. Considering the high effective magnetic moment value of Er³⁺ ions (µeff = 9.6 µB) that is 3rd after Dy³⁺/ Ho³⁺ and Tb³⁺, it is possible to assume that Er³⁺ doped glasses should exhibit Verdet constant value near 2µm that is comparable with one of Dy doped glasses. Thus, partial replacement of Dy³⁺ on Er³⁺ ions has been performed, keeping the overall concentration of Re₂O₃ equal to 70 wt.% (30.6 mol.%). Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ (RE= Er, Dy) glasses had been synthesized, and their thermal, spectral, optical, structural, and magneto-optical properties had been studied. Glasses synthesis had been conducted in Pt crucibles for 3h at 1500 °C. The obtained melt was poured into preheated up to 400 °C mold and annealed from 800 oC to room temperature for 12h with 1h dwell. The mass of obtained glass samples was about 200g. Shown that the difference between crystallization and glass transition temperature is about 150 oC, even taking into account the fact that high content of RE₂O₃ leads to glass network depolymerization. Verdet constant of Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses for wavelength 1950 nm can reach more than 5.9 rad/(T*m), which is among the highest number reported for a paramagnetic glass at this wavelength. The refractive index value was found to be equal to 1.7545 at 633 nm. Our experimental results show that Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses with high Dy₂O₃ content are expected to be promising material for use as highly effective Faraday isolators and modulators of electromagnetic radiation in the 2μm region.

Keywords: oxide glass, magneto-optical, dysprosium, erbium, Faraday rotator, boron-aluminosilicate system

Procedia PDF Downloads 114